JPH0471119B2 - - Google Patents

Info

Publication number
JPH0471119B2
JPH0471119B2 JP58088166A JP8816683A JPH0471119B2 JP H0471119 B2 JPH0471119 B2 JP H0471119B2 JP 58088166 A JP58088166 A JP 58088166A JP 8816683 A JP8816683 A JP 8816683A JP H0471119 B2 JPH0471119 B2 JP H0471119B2
Authority
JP
Japan
Prior art keywords
oil
glycerol esters
fatty acids
parts
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58088166A
Other languages
Japanese (ja)
Other versions
JPS59213798A (en
Inventor
Shoshi Maruzeni
Juji Hayasaka
Nozomi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP58088166A priority Critical patent/JPS59213798A/en
Publication of JPS59213798A publication Critical patent/JPS59213798A/en
Publication of JPH0471119B2 publication Critical patent/JPH0471119B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はグリセロールエステル類の分離方法に
関する。さらに詳しくは、主成分が、脂肪酸とグ
リセロールエステル類からなる混合物より、中融
点部グリセロールエステルを分離する方法に関す
る。 酸価が異常に高くなつた油脂、あるいは脂肪酸
とグリセロールエステルのエステル基交換反応物
などのように、主たる成分が、脂肪酸とグリセロ
ールエステル類からなる混合物を脂肪酸とグリセ
ロールエステル類に分離する工業的方法には、ア
ルカリ脱酸方法及び水蒸気蒸留方法等が知られて
いる。アルカリ脱酸方法は、脂肪酸含量が比較的
低い場合に適用出来るが、脂肪酸含量が高い場合
にはグリセロールエステル類の石鹸混合物フーツ
へのロスが大きく適用出来ない。また、水蒸気蒸
留方法は、グリセロールエステル及び/あるいは
脂肪酸間のエステル交換が起こり、グリセロール
エステルの組成が変化するため、望ましいグリセ
ロールエステル組成物を得ることが出来ない。ま
た脂肪酸とグリセロールエステル類の実験室的な
分離方法としては、カラムクロマトグラフイーが
あり、この方法によれば、グリセロールエステル
の組成変化を起こすことなく脂肪酸とグリセロー
ルエステル類の分離を行うことが出来る。しかし
該カラムクロマトグラフイーでは、工程コストが
高く工業的に適用することが不可能である。 本発明の目的は、脂肪酸含量が20%以上である
脂肪酸とグリセロールエステル類からなる混合物
より、グリセロールエステル類の組成変化を起こ
すことなく脂肪酸とグリセロールエステル類とを
分離する方法を提供することにある。また、それ
と同時にグリセロールエステル類より高品質の中
融点部グリセロールエステルを分離する方法を提
供することにある。 即ち、本発明のグリセロールエステル類の分離
方法は、脂肪酸とグリセロールエステル類からな
り、脂肪酸含量が20%以上である混合物より、先
ず、ヘキサンによる溶剤分別により、脂肪酸及び
高融点部グリセロールエステルを結晶部として分
離し、次に、得られた濾液部に液状油物質を加え
アルカリ脱酸により残余脂肪酸を除去した後、こ
のアルカリ脱酸油をアセトンによる溶剤分別によ
り、中融点部グリセロールエステルを結晶部とし
て、低融点部グリセロールエステルを濾液部とし
て分離することを特徴とするものである。 以下に本発明のグリセロールエステル類の分離
方法について詳述する。 本発明においては、最初の溶剤分別の溶剤とし
ては、ヘキサンを用いることにより脂肪酸と高融
点部グリセロールエステルをより選択的に結晶化
させることができる。このヘキサンとしては、n
−ヘキサン、イソヘキサン、シクロヘキサンが挙
げられ、特に、n−ヘキサン、イソヘキサン(混
合物)がより有効に使用できる。 前記液状油物質としては、常温で液体の油状物
質が有効に使用できるが、特に、常温で液状のグ
リセロールエステル、例えば、大豆油、コーン
油、ナタネ油、棉実サラダ油、あるいは、パーム
油、マウア脂、サル脂、シア脂等の分別軟部油が
より有効に使用出来る。 本発明において、アルカリ脱酸油の溶剤分別に
用いられるアセトンは、簡便に且つ有効に使用で
き、このアセトンとしては、アセトン単独の他
に、アセトンと水の混合物、アセトンとアルコー
ルの混合物等が挙げられる。 溶剤分別に用いる溶剤としては、効果が同一で
あれば、二種以上の混合系溶剤よりも、単一溶剤
の方が回収系が単純化されるという点でより望ま
しい。 ヘキサンの使用量は原料(主成分が、脂肪酸と
グリセロールエステル類からなる混合物)1重量
部に対して2重量部から8重量部が望ましく、よ
り望ましくは、3重量部から5重量部である。こ
のときの分別温度は溶剤の種類及びその使用量に
よつて異なるが、ヘキサンの場合、−5℃から5
℃が望ましい。この溶剤分別で得られた濾液部1
重量部に対して、液状油物質0.2重量部から2重
量部添加することにより、効果的にアルカリ脱酸
することが出来る。 またアセトンの使用量はアルカリ脱酸油1重量
部に対して1重量部から10重量部が望ましく、よ
り望ましくは1.5重量部から4重量部である。こ
のときの分別温度はアセトンの使用量によつて異
なるが、−5℃から+2℃が望ましい。 本発明の方法によつて得られる中融点部グリセ
ロールエステルは主にカカオバター代用脂として
用いられるが、脂肪酸が多く含まれる混合物より
該中融点部グリセロールエステルを分取する際、
最も注意しなければならないことは、グリセロー
ルエステル間及びグリセロールエステルと脂肪酸
間のランダムエステル交換を最小限に抑制するこ
とである。その理由は脂肪酸が多く含まれる場
合、工程中にランダムエステル交換が非常に起こ
りやすく、グリセロールエステルの組成変化が起
こり、従つて物性変化が起こりやすいからであ
る。通常の食用油脂の製造に際には組成変化及び
物性変化によつてそれほど大きな影響を受けない
が、カカオバター代用脂あるいはその原料となる
中融点部グリセロールエステルの製造の場合に
は、一担組成変化つまり物性変化の起こつたもの
は、カカオバター代用脂あるいはその原料として
使用出来ない。 本発明のグリセロールエステル類の分離方法は
脂肪酸含量が20%以上である高酸価のグリセロー
ルエステルに適用する。このような原料を先ずヘ
キサンで溶剤分別するのであるが、この溶剤分別
では主に飽和脂肪酸、モノグリセリド、ジグリセ
リドおよび高融点トリグリセリド等の成分が結晶
部として除去される。得られた濾液部の脂肪酸含
量は原料の脂肪酸含量の約半分程度になる。残余
の脂肪酸の主体は不飽和脂肪酸である。この濾液
部に液状油物質を添加してアルカリ脱酸すること
により、中融点グリセロールエステルのフーツの
ロスを低減させることができる。またこのアルカ
リ脱酸では残余のモノグリセリド、ジグリセリド
が除去される。この脱酸油を必要に応じて湯洗お
よび/あるいは漂白し、さらにアセトンで溶剤分
別することにより、結晶部に品質良好な中融点部
グリセロールエステルを分離分取することができ
る。該中融点部グリセロールエステルは漂白およ
び脱臭することにより、カカオバター代用脂ある
いはカカオバター代用脂原料として使用すること
が出来る。 以下に実施例を示し、本発明をより詳細に説明
する。 比較例 A ステアリン酸9部とサル脂軟部油10部をヘキサ
ン溶媒中でリゾプスデレマー由来のリパーゼによ
りエステル基交換反応を行い、酸価97.7(脂肪酸
含量49%)の反応油を得た。この反応油のシリル
化物のガスクロマトグラフイーによる組成分析
(相対感度考慮していない)では、脂肪酸50.2%、
ジグリセリド6.1%、トリグリセリド43.4%であ
つた。この反応油1部にヘキサン4部を加え、加
熱溶解した後、4℃まで冷却し、結晶部と濾液部
に濾別した。濾液部の収率は60.7%、酸価53.2
(脂肪酸含量約26.6%)であつた。この濾液部の
シリル化物のガスクロマトグラフイーによる組成
分析(相対感度考慮していない)では、脂肪酸
32.4%、ジグリセリド6.0%、トリグリセリド61.6
%であつた。この濾液部6部に液状油4部を混合
し、アルカリ脱酸を行つた。脱酸油のシリル化物
のガスクロマトグラフイーによる組成分析(相対
感度考慮していない)では、脂肪酸0%、ジグリ
セリド6.1%、トリグリセリド93.9%であつた。
この脱酸油1部にn−ヘキサン1.7部を混合し、
加熱溶解した後冷却し、−7℃で溶剤分別を行つ
た。結晶部の収率は、31.5%であり、得られた結
晶部の性状を調べたところカカオバター代用脂の
原料として非常に良好であつた。 実施例 1 比較例Aで得た脱酸油1部にアセトン2.2部を
混合し、加熱溶解した後0℃で溶剤分別を行つ
た。結晶部の収率は28.7%であり、得られた結晶
部の性状を調べたところ、カカオバター代用脂の
原料として非常に良好であつた。特にチヨコレー
トのテンパリング作業性の良好な原料であつた。 比較例 B ステアリン酸9部とパーム軟部油10部をヘキサ
ン溶媒中でリゾプスデレマー由来のリパーゼによ
りエステル基交換反応を行い、酸価96.2の(脂肪
酸含量48%)の反応油を得た。この反応油のシリ
ル化物のガスクロマトグラフイーによる組成分析
(相対感度考慮していない)では、脂肪酸57.4%、
ジグリセリド5.6%、トリグリセリド36.8%であ
つた。この反応油1部にヘキサン4部を加え、加
熱溶解した後、2℃で分別した。濾液部の収率は
61.3%、酸価58.4(脂肪酸含量約29.2%)であつ
た。この濾液部のシリル化物のガスクロマトグラ
フイーによる組成分析(相対感度考慮していな
い)では、脂肪酸33%、ジグリセリド6.1%、ト
リグリセリド60.9%であつた。この濾液部5部に
液状油5部を混合し、アルカリ脱酸を行つた。脱
酸油のシリル化物のガスクロマトグラフイーによ
る組成分析(相対感度考慮していない)では、脂
肪酸0%、ジグリセリド3.9%、トリグリセリド
96.1%であつた。この脱酸油1部にn−ヘキサン
1.5部を混合し、加熱溶解した後冷却し、−7℃で
溶剤分別を行つた。結晶部の収率は、19.1%であ
り、得られた結晶部の性状を調べたところカカオ
バター代用脂の原料として非常に良好であつた。 比較例 1 比較例Aの、リパーゼによるエステル基交換反
応の反応油(酸価97.7)を水蒸気蒸留により脱酸
した。この方法は、一般にフイジカルリフアイニ
ングと呼ばれる脱酸方法である。この脱酸油は酸
価12.8であつた。この脱酸油をさらに通常のアル
カリ脱酸方法で脱酸した。このアルカリ脱酸油を
二段溶剤分別にかけ、中融点部グリセロールエス
テルを分取したが、カカオバター代用脂としては
使用し得ないものであつた。 比較例 2 比較例Aの、リパーゼによるエステル基交換反
応の反応油(酸価97.7)を通常のアルカリ脱酸方
法で脱酸したが、中性油がフーツから分離しなか
つた。 比較例 3 比較例Aの工程のうち、アルカリ脱酸を行なわ
ずに、リパーゼによるエステル基交換反応の反応
油を、ヘキサンにより二段階の分別を行つた。得
られた結晶部の性状を調べたところ、脂肪酸含量
が約30%であり、脂肪酸が殆ど除去されていなか
つた。 比較例 4 比較例Aの工程のうち、最後のn−ヘキサンに
よる分別を行なわずに、リパーゼによるエステル
基交換反応の反応油を、ヘキサンにより分別した
後、アルカリ脱酸したところで、脱酸油の性状を
調べた。この脱酸油は、中融点部と低融点部が混
合していて、カカオバター代用脂の原料とはなら
なかつた。 比較例 5 比較例Aで得た、リパーゼによるエステル基交
換反応の反応油(酸価97.7)50gを、三角フラス
コにとり、アセトン150gを溶剤としてこれに溶
解する。この溶液を−10℃に冷却してアンモニア
ガスを吹き込んだが、反応油に含有されるトリグ
リセリド及び脂肪酸由来の結晶が生じ、脂肪酸の
アンモニウム塩の沈殿物を分離することはできな
かつた。 比較例 6 比較例Aで得られた反応油1部に、アセトン4
部を加え、加熱溶解した後、18℃で溶剤分別を行
つた。濾液部の収率は80%、酸価は89.5であつ
た。 この濾液部に、液状油4部を混合し、アルカリ
脱酸を行つたが、中性油がフーツから分離しなか
つた。 比較例 7 比較例Aで得られた反応油1部に、ヘキサン4
部を加え、加熱溶解した後、4℃まで冷却し、結
晶部と濾液部に瀘別した。 得られた濾液部をアルカリ脱酸を行わずに、ア
セトン2.2部を混合し、加熱溶解した後、0℃で
溶剤分別を行つたが、得られた結晶部の酸価は15
であり、カカオバター代用脂としては使用できな
いものであつた。続いて、これに液状油1.5部を
添加し、アルカリ脱酸したが、フーツが多量に生
成し、脱酸ロスが著しく、収量は脱酸前の結晶部
に対して、68%と、非常に低いものであつた。 比較例 8 比較例Aで得られた反応油1部に、ヘキサン4
部を加え、加熱溶解した後、4℃まで冷却し、結
晶部と濾液部に瀘別した。 得られた濾液部の溶剤は、蒸発により除去し、
ついで水蒸気蒸留により脂肪酸を除去した。 これに、アセトン4部を混合し、加熱溶解した
後、0℃で溶剤分別を行つたが、得られた結晶部
は、グリセロールエステルの組成変化が起こり、
物性が損なわれ、カカオバター代用脂としては使
用しえないものであつた。 比較例 9 比較例Aで得られた反応油1部に、液状油1.5
部を加えてアルカリ脱酸を行つた。 しかしながら、フーツの生成量がが多く、中性
油をフーツから分離することはできなかつた。 比較例 10 比較例Aで得られた反応油1部に、ヘキサン4
部を加え、加熱溶解した後、4℃まで冷却し、結
晶部と濾液部に瀘別した。 この濾液部に、液状油を添加せずにアルカリ脱
酸を行つたが、中性油がフーツから分離しなかつ
た。 製造例 実施例1、比較例A及びBで得られた油脂とパ
ーム中部油を、一定の割合で混合して調製した、
カカオバター代用脂を用いて、チヨコレートを製
造した。結果を第1表に示す。
The present invention relates to a method for separating glycerol esters. More specifically, the present invention relates to a method for separating intermediate melting point glycerol esters from a mixture whose main components are fatty acids and glycerol esters. An industrial method for separating mixtures whose main components are fatty acids and glycerol esters into fatty acids and glycerol esters, such as fats and oils with abnormally high acid values or transesterification products of fatty acids and glycerol esters. Known methods include an alkali deoxidation method and a steam distillation method. The alkaline deoxidation method can be applied when the fatty acid content is relatively low, but cannot be applied when the fatty acid content is high because of the large loss of glycerol esters to the soap mixture foot. Further, in the steam distillation method, transesterification occurs between glycerol esters and/or fatty acids, and the composition of the glycerol esters changes, so that a desirable glycerol ester composition cannot be obtained. Column chromatography is a laboratory method for separating fatty acids and glycerol esters, and with this method, fatty acids and glycerol esters can be separated without changing the composition of the glycerol esters. . However, the process cost of column chromatography is high and it is impossible to apply it industrially. An object of the present invention is to provide a method for separating fatty acids and glycerol esters from a mixture of fatty acids and glycerol esters having a fatty acid content of 20% or more without causing a change in the composition of the glycerol esters. . Another object of the present invention is to provide a method for separating high quality intermediate-melting point glycerol esters from glycerol esters. That is, in the method for separating glycerol esters of the present invention, fatty acids and high melting point glycerol esters are first separated into crystalline parts by solvent fractionation using hexane from a mixture consisting of fatty acids and glycerol esters and having a fatty acid content of 20% or more. Next, a liquid oil substance was added to the obtained filtrate to remove residual fatty acids by alkaline deacidification, and this alkaline deoxidized oil was subjected to solvent fractionation with acetone to separate the intermediate melting point glycerol ester as a crystal part. , the low melting point glycerol ester is separated as a filtrate. The method for separating glycerol esters of the present invention will be described in detail below. In the present invention, fatty acids and high melting point glycerol esters can be more selectively crystallized by using hexane as the solvent for the initial solvent fractionation. As this hexane, n
Examples include -hexane, isohexane, and cyclohexane, and n-hexane and isohexane (mixture) can be used particularly effectively. As the liquid oil substance, oily substances that are liquid at room temperature can be effectively used, but in particular, glycerol esters that are liquid at room temperature, such as soybean oil, corn oil, rapeseed oil, cotton salad oil, palm oil, mahua oil, etc. Fractionated soft part oils such as fat, monkey fat, shea fat, etc. can be used more effectively. In the present invention, acetone used for solvent fractionation of alkaline deoxidized oil can be used easily and effectively, and examples of this acetone include acetone alone, a mixture of acetone and water, a mixture of acetone and alcohol, etc. It will be done. As for the solvent used for solvent fractionation, if the effects are the same, a single solvent is more desirable than a mixed solvent of two or more types in that the recovery system is simplified. The amount of hexane used is preferably 2 to 8 parts by weight, more preferably 3 to 5 parts by weight, per 1 part by weight of the raw material (a mixture whose main components are fatty acids and glycerol esters). The separation temperature at this time varies depending on the type of solvent and the amount used, but in the case of hexane, it ranges from -5℃ to 5℃.
℃ is preferable. Filtrate part 1 obtained by this solvent fractionation
By adding 0.2 to 2 parts by weight of the liquid oil substance based on the weight part, alkaline deoxidation can be effectively carried out. The amount of acetone used is preferably 1 to 10 parts by weight, more preferably 1.5 to 4 parts by weight, per 1 part by weight of the alkaline deoxidized oil. The separation temperature at this time varies depending on the amount of acetone used, but is preferably from -5°C to +2°C. The medium-melting point glycerol ester obtained by the method of the present invention is mainly used as a cocoa butter substitute, but when separating the medium-melting point glycerol ester from a mixture containing a large amount of fatty acids,
The most important thing is to minimize random transesterification between glycerol esters and between glycerol esters and fatty acids. The reason for this is that when a large amount of fatty acids is contained, random transesterification is very likely to occur during the process, resulting in a change in the composition of the glycerol ester and, therefore, a change in physical properties. In the production of ordinary edible fats and oils, compositional changes and changes in physical properties do not affect much, but in the case of production of cocoa butter substitutes or intermediate melting point glycerol esters that are the raw materials for them, one-part composition Products that have undergone changes, that is, changes in physical properties, cannot be used as cocoa butter substitutes or raw materials. The method for separating glycerol esters of the present invention is applied to glycerol esters with a high acid value having a fatty acid content of 20% or more. Such raw materials are first subjected to solvent fractionation using hexane, and in this solvent fractionation, components such as saturated fatty acids, monoglycerides, diglycerides, and high melting point triglycerides are mainly removed as crystalline parts. The fatty acid content of the obtained filtrate is about half of the fatty acid content of the raw material. The remaining fatty acids are mainly unsaturated fatty acids. By adding a liquid oil substance to this filtrate and performing alkaline deoxidation, it is possible to reduce the loss of the intermediate melting point glycerol ester foot. Further, in this alkaline deoxidation, residual monoglycerides and diglycerides are removed. By washing this deoxidized oil with hot water and/or bleaching it as necessary, and further solvent fractionating it with acetone, it is possible to separate and fractionate the intermediate melting point glycerol ester of good quality in the crystalline part. By bleaching and deodorizing the medium-melting point glycerol ester, it can be used as a cocoa butter substitute or a raw material for a cocoa butter substitute. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Comparative Example A A transesterification reaction was performed on 9 parts of stearic acid and 10 parts of monkey fat soft part oil in a hexane solvent using lipase derived from Rhizopus deremer to obtain a reaction oil with an acid value of 97.7 (fatty acid content: 49%). Compositional analysis of the silylated product of this reaction oil by gas chromatography (relative sensitivity not taken into account) revealed that fatty acids were 50.2%;
Diglyceride was 6.1% and triglyceride was 43.4%. 4 parts of hexane was added to 1 part of this reaction oil, heated and dissolved, cooled to 4°C, and filtered into a crystal part and a filtrate part. Yield of filtrate part is 60.7%, acid value 53.2
(Fatty acid content approximately 26.6%). In the compositional analysis of silylated compounds in this filtrate by gas chromatography (relative sensitivity not taken into account), fatty acids
32.4%, diglyceride 6.0%, triglyceride 61.6
It was %. 4 parts of liquid oil was mixed with 6 parts of this filtrate, and alkaline deacidification was performed. Compositional analysis of the silylated product of the deoxidized oil by gas chromatography (relative sensitivity not taken into account) revealed that it contained 0% fatty acids, 6.1% diglycerides, and 93.9% triglycerides.
Mix 1.7 parts of n-hexane with 1 part of this deoxidized oil,
After heating and dissolving, the mixture was cooled and solvent fractionation was carried out at -7°C. The yield of the crystalline part was 31.5%, and when the properties of the obtained crystalline part were examined, it was found to be very suitable as a raw material for a cocoa butter substitute. Example 1 1 part of the deoxidized oil obtained in Comparative Example A was mixed with 2.2 parts of acetone, heated and dissolved, and then subjected to solvent fractionation at 0°C. The yield of the crystalline part was 28.7%, and when the properties of the obtained crystalline part were examined, it was found to be very suitable as a raw material for a cocoa butter substitute. In particular, it was a raw material with good tempering workability for thiyocolate. Comparative Example B 9 parts of stearic acid and 10 parts of palm soft part oil were subjected to a transesterification reaction using lipase derived from Rhizopus delemer in a hexane solvent to obtain a reaction oil with an acid value of 96.2 (fatty acid content: 48%). Compositional analysis of the silylated product of this reaction oil by gas chromatography (relative sensitivity not taken into account) revealed that fatty acids were 57.4%;
Diglyceride was 5.6% and triglyceride was 36.8%. 4 parts of hexane was added to 1 part of this reaction oil, heated and dissolved, and then fractionated at 2°C. The yield of the filtrate part is
61.3%, acid value 58.4 (fatty acid content approximately 29.2%). Compositional analysis of the silylated product in this filtrate by gas chromatography (relative sensitivity not taken into consideration) revealed that it was 33% fatty acids, 6.1% diglycerides, and 60.9% triglycerides. 5 parts of liquid oil was mixed with 5 parts of this filtrate, and alkaline deacidification was performed. Compositional analysis of silylated deacidified oil by gas chromatography (relative sensitivity not taken into consideration) revealed 0% fatty acids, 3.9% diglycerides, and 3.9% triglycerides.
It was 96.1%. Add n-hexane to 1 part of this deoxidized oil.
1.5 parts were mixed, heated and dissolved, then cooled and subjected to solvent fractionation at -7°C. The yield of the crystalline portion was 19.1%, and when the properties of the obtained crystalline portion were examined, it was found to be very suitable as a raw material for a cocoa butter substitute. Comparative Example 1 The reaction oil (acid value 97.7) of the transesterification reaction using lipase in Comparative Example A was deacidified by steam distillation. This method is a deoxidizing method generally called physical refining. This deoxidized oil had an acid value of 12.8. This deoxidized oil was further deoxidized by a conventional alkaline deoxidation method. This alkali-deoxidized oil was subjected to two-stage solvent fractionation to separate the intermediate melting point glycerol ester, but it could not be used as a cocoa butter substitute. Comparative Example 2 The reaction oil (acid value 97.7) from the transesterification reaction using lipase in Comparative Example A was deacidified by a normal alkaline deacidification method, but the neutral oil was not separated from the foots. Comparative Example 3 In the process of Comparative Example A, the reaction oil from the transesterification reaction using lipase was subjected to two-step fractionation using hexane without performing alkaline deacidification. When the properties of the obtained crystalline portion were examined, the fatty acid content was approximately 30%, and it was found that almost no fatty acid had been removed. Comparative Example 4 In the process of Comparative Example A, without performing the final fractionation with n-hexane, the reaction oil of the transesterification reaction using lipase was fractionated with hexane and then deoxidized with alkali. I investigated the properties. This deoxidized oil contained a mixture of medium and low melting point parts and could not be used as a raw material for cocoa butter substitute fat. Comparative Example 5 50 g of the reaction oil obtained in Comparative Example A (acid value: 97.7) for transesterification using lipase is placed in an Erlenmeyer flask, and dissolved in 150 g of acetone as a solvent. Although this solution was cooled to -10°C and ammonia gas was blown into it, crystals derived from the triglyceride and fatty acid contained in the reaction oil were formed, and it was not possible to separate the precipitate of the ammonium salt of the fatty acid. Comparative Example 6 4 parts of acetone was added to 1 part of the reaction oil obtained in Comparative Example A.
After adding 50% of the solution and heating to dissolve, solvent fractionation was carried out at 18°C. The yield of the filtrate was 80% and the acid value was 89.5. 4 parts of liquid oil was mixed with this filtrate portion and alkaline deacidification was performed, but the neutral oil was not separated from the foots. Comparative Example 7 4 parts of hexane was added to 1 part of the reaction oil obtained in Comparative Example A.
After heating and dissolving, the mixture was cooled to 4°C and filtered into a crystal part and a filtrate part. The obtained filtrate was mixed with 2.2 parts of acetone without alkaline deoxidation, heated and dissolved, and then subjected to solvent fractionation at 0°C. The acid value of the obtained crystalline part was 15.
Therefore, it could not be used as a cocoa butter substitute fat. Subsequently, 1.5 parts of liquid oil was added to this and alkaline deoxidation was performed, but a large amount of foots was formed and deoxidation loss was significant, and the yield was only 68% of the crystalline portion before deoxidation. It was low. Comparative Example 8 4 parts of hexane was added to 1 part of the reaction oil obtained in Comparative Example A.
After heating and dissolving, the mixture was cooled to 4°C and filtered into a crystal part and a filtrate part. The solvent in the obtained filtrate was removed by evaporation,
Fatty acids were then removed by steam distillation. This was mixed with 4 parts of acetone, heated and dissolved, and then subjected to solvent fractionation at 0°C, but the resulting crystalline part had a change in the composition of the glycerol ester.
The physical properties were impaired and it could not be used as a cocoa butter substitute. Comparative Example 9 1 part of the reaction oil obtained in Comparative Example A was added with 1.5 parts of liquid oil.
alkaline deoxidation was carried out. However, the amount of foots produced was large and it was not possible to separate the neutral oil from the foots. Comparative Example 10 4 parts of hexane was added to 1 part of the reaction oil obtained in Comparative Example A.
After heating and dissolving, the mixture was cooled to 4°C and filtered into a crystal part and a filtrate part. This filtrate portion was subjected to alkaline deacidification without adding liquid oil, but the neutral oil was not separated from the foots. Production Example Prepared by mixing the oils and fats obtained in Example 1 and Comparative Examples A and B and palm central oil at a certain ratio.
Chiyocolate was produced using a cocoa butter substitute. The results are shown in Table 1.

【表】 いずれの油脂もカカオバター代用脂としては使
用可能であるが、実施例1で得られた油脂は、比
較例A及びBで得られた油脂より、特に作業性に
優れていることが明らかである。
[Table] Although any oil or fat can be used as a cocoa butter substitute, the oil or fat obtained in Example 1 is particularly superior in workability than the oil or fat obtained in Comparative Examples A and B. it is obvious.

Claims (1)

【特許請求の範囲】 1 脂肪酸とグリセロールエステル類からなり、
脂肪酸含量が20%以上である混合物より、中融点
部グリセロールエステルを分離する方法であつ
て、先ず、ヘキサンによる溶剤分別により、脂肪
酸及び高融点部グリセロールエステルを結晶部と
して分離し、次に、得られた濾液部に液状油物質
を加えアルカリ脱酸により残余脂肪酸を除去した
後、このアルカリ脱酸油をアセトンによる溶剤分
別により、中融点部グリセロールエステルを結晶
部として、低融点部グリセロールエステルを濾液
部として分離することを特徴とするグリセロール
エステル類の分離方法。 2 液状油物質が液状のグリセロールエステルで
あることを特徴とする特許請求の範囲第1項記載
のグリセロールエステル類の分離方法。
[Claims] 1. Consists of fatty acids and glycerol esters,
A method for separating medium-melting point glycerol esters from a mixture having a fatty acid content of 20% or more, in which fatty acids and high-melting point glycerol esters are first separated as crystals by solvent fractionation with hexane, and then the obtained A liquid oil substance is added to the resulting filtrate, and residual fatty acids are removed by alkaline deoxidation.The alkaline deoxidized oil is then subjected to solvent fractionation using acetone to convert the medium melting point glycerol ester into the crystalline portion and the low melting point glycerol ester to the filtrate. A method for separating glycerol esters, the method comprising separating glycerol esters as two parts. 2. The method for separating glycerol esters according to claim 1, wherein the liquid oil substance is a liquid glycerol ester.
JP58088166A 1983-05-19 1983-05-19 Separation of glycerol esters Granted JPS59213798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088166A JPS59213798A (en) 1983-05-19 1983-05-19 Separation of glycerol esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088166A JPS59213798A (en) 1983-05-19 1983-05-19 Separation of glycerol esters

Publications (2)

Publication Number Publication Date
JPS59213798A JPS59213798A (en) 1984-12-03
JPH0471119B2 true JPH0471119B2 (en) 1992-11-12

Family

ID=13935332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088166A Granted JPS59213798A (en) 1983-05-19 1983-05-19 Separation of glycerol esters

Country Status (1)

Country Link
JP (1) JPS59213798A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134018A1 (en) * 2001-12-31 2003-07-17 Cargill, Inc. Process for oil extraction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834907A (en) * 1971-09-06 1973-05-23
JPS56127694A (en) * 1980-03-12 1981-10-06 Asahi Denka Kogyo Kk Classification of sulseed fat
JPS57212299A (en) * 1981-06-22 1982-12-27 Asahi Denka Kogyo Kk Fractionation of oil and fat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834907A (en) * 1971-09-06 1973-05-23
JPS56127694A (en) * 1980-03-12 1981-10-06 Asahi Denka Kogyo Kk Classification of sulseed fat
JPS57212299A (en) * 1981-06-22 1982-12-27 Asahi Denka Kogyo Kk Fractionation of oil and fat

Also Published As

Publication number Publication date
JPS59213798A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
DK2399977T3 (en) The fractionation method for 1,3-disaturated-2-unsaturated triglyceride
US4004041A (en) Production of liquid edible oil from palm oil or similar oils
US4960544A (en) Fractionation of fat blends
US4842648A (en) Paraffin wax replacer
JP4952865B2 (en) Method for producing trisaturated fatty acid glyceride-containing oil and fat composition
US7081542B2 (en) Chemical process for the production of 1,3-diglyceride oils
JP2020531628A (en) The process for refining vegetable oils by controlling unwanted impurities
EP0074146B1 (en) Wet fractionation of hardened butterfat
JP2600010B2 (en) Countercurrent dry fractional crystallization
JPH04261497A (en) Purification of oil and fat rich in diglyceride
Duns Palm oil in margarines and shortenings
US3012890A (en) Synthetic cocoa butter substitute
US2238442A (en) Mixed capric-caprylic esters and method of making same
EP0753038B1 (en) Fractionation of triglyceride oils
JP5755472B2 (en) Method for dry separation of fats and oils
JPH0425776B2 (en)
JPS59147099A (en) Manufacture of edible oil containing high vegetable sterol content
JPS61179299A (en) Recovery of hard butter from vegetable fat
US4006264A (en) Preparation of confectioners' fats
JPH0471119B2 (en)
JPH0427813B2 (en)
WO2014109313A1 (en) Method for producing oil or fat
Feuge et al. Cocoa butter‐like fats from domestic oils
Long et al. Physico‐chemical properties of palm olein fractions as a function of diglyceride content in the starting material
JPH069465B2 (en) Hard butter manufacturing method