JPH0470878B2 - - Google Patents

Info

Publication number
JPH0470878B2
JPH0470878B2 JP59138212A JP13821284A JPH0470878B2 JP H0470878 B2 JPH0470878 B2 JP H0470878B2 JP 59138212 A JP59138212 A JP 59138212A JP 13821284 A JP13821284 A JP 13821284A JP H0470878 B2 JPH0470878 B2 JP H0470878B2
Authority
JP
Japan
Prior art keywords
current
bridge
regeneration
voltage
sine wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138212A
Other languages
Japanese (ja)
Other versions
JPS6118379A (en
Inventor
Juzo Takakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP59138212A priority Critical patent/JPS6118379A/en
Publication of JPS6118379A publication Critical patent/JPS6118379A/en
Publication of JPH0470878B2 publication Critical patent/JPH0470878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はインバータ特に電動機駆動用インバ
ータに用いられる双方向順変換装置の制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of controlling a bidirectional forward conversion device used in an inverter, particularly an inverter for driving a motor.

〔従来の技術〕[Conventional technology]

誘導電動機や同期電動機(特にサーボ用の永久
磁石ロータ)のインバータ駆動において、制動
(回生)モードでは回転エネルギーが回生され直
流リンク部のコンデンサが充電される。これを放
置すると、コンデンサ電圧は上昇を続け過電圧と
なりついには破壊に至る。過電圧を防ぐため、従
来よりa抵抗放電式、b電源回生式の2つの方法
が用いられてきたが、制動頻度の高い装置とか大
容量の装置にあつては、高効率化、省エネ等の観
点から後者のb電源回生式が主流である。
When driving an induction motor or synchronous motor (particularly a permanent magnet rotor for a servo) with an inverter, in braking (regeneration) mode, rotational energy is regenerated and the capacitor in the DC link is charged. If this is left unattended, the capacitor voltage will continue to rise and become overvoltage, eventually leading to destruction. To prevent overvoltage, two methods have traditionally been used: (a) resistance discharge method and (b) power regeneration method, but for equipment that requires frequent braking or equipment with large capacity, it is recommended to use methods such as high efficiency and energy saving. The latter b power regeneration type is the mainstream.

電源回生式の場合、順変換装置は力行、回生の
両方向への整流機能を有する双方向の順変換装置
が使用される。双方向順変換装置は、サイリスタ
ブリツジを逆並列接続したものがあるが、これは
力行/回生の各ブリツジ間の短絡防止のため切替
時に無駄時間を要し、頻繁な力行、回生動作を伴
う電動機駆動用としては応答特性が悪く不適であ
る。
In the case of a power regeneration type, a bidirectional forward conversion device having a rectification function in both directions of power running and regeneration is used as the forward conversion device. Some bidirectional forward conversion devices have thyristor bridges connected in reverse parallel, but this requires wasted time during switching to prevent short circuits between the power running/regeneration bridges, and involves frequent power running and regeneration operations. It has poor response characteristics and is unsuitable for driving electric motors.

また、最近のPWM制御技術の進展により、逆
変換部で周波数とともに電圧も制御可能となり、
直流リンク部の直流電圧は固定としてよく、力行
方向の順変換装置は可制御機能を必要としなくな
つてきた。
In addition, with recent advances in PWM control technology, it is now possible to control both frequency and voltage in the inverse conversion section.
The DC voltage of the DC link portion may be fixed, and the powering direction forward conversion device no longer requires a controllable function.

すなわち、双方向順変換装置として、力行方向
の変換は可制御機能を有しない単なる整流器ブリ
ツジで行い、回生方向の変換は、自己消弧形スイ
ツチ素子を用い、回生エネルギーの調整を可能と
する、回生用ブリツジで行うもの、が用いられて
いる。
That is, as a bidirectional forward conversion device, conversion in the power running direction is performed by a simple rectifier bridge without a controllable function, and conversion in the regeneration direction is performed using a self-extinguishing switch element, making it possible to adjust the regenerative energy. A regeneration bridge is used.

ところで、回生用ブリツジの制御は、交流電源
電圧を位相情報として利用し、正弦波PWM制御
あるいは移相制御を行う方法が、一般的である
が、電圧、電流の各制御ループを要し、回路構成
が複雑であつた。
By the way, the common method of controlling a regenerative bridge is to use the AC power supply voltage as phase information and perform sine wave PWM control or phase shift control, but this requires voltage and current control loops, and the circuit The structure was complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

整流器ブリツジと、トランジスタ等自己消弧形
スイツチ素子を要いた回生用ブリツジからなる双
方向順変換装置にあつて、回生用ブリツジの制御
回路の簡易化と、制御性能の向上を図るものであ
る。
The present invention aims to simplify the control circuit of the regenerative bridge and improve its control performance in a bidirectional forward conversion device comprising a rectifier bridge and a regenerative bridge requiring a self-extinguishing switch element such as a transistor.

〔問題点を解決するための手段〕[Means for solving problems]

回生電流を制御する正弦波PWM制御系の電流
指令として、交流電源相電圧に同期した正弦波形
であつてその振幅を素子の電流容量で決まる最大
値に変換したものを使用し、回生電流との間で偏
差をとり、この電流偏差を増幅かつPI調整し正
弦波制御信号とし、キヤリア信号と比較して正弦
波PWM信号に変換し、更にこれを、抵抗放電式
と同様の方法で継続させたことを特徴とする。
As the current command for the sine wave PWM control system that controls the regenerative current, we use a sine waveform synchronized with the AC power supply phase voltage whose amplitude is converted to the maximum value determined by the current capacity of the element, and This current deviation is amplified and PI adjusted to create a sine wave control signal, which is compared with the carrier signal and converted to a sine wave PWM signal, which is then continued in the same way as the resistive discharge type. It is characterized by

〔作用〕[Effect]

正弦波PWM制御が、指令の正弦波をそのまま
忠実に出力させること、であることを鑑みるに、
回生用ブリツジに正弦波PWM制御を行い、電流
指令として交流電源相電圧に同期した力率1の正
弦波を用いることは、以後の回路に何ら特別の処
理・操作を不要とし、極めて簡易の回路で済み制
御も容易となることは明らかである。
Considering that sine wave PWM control is to output the command sine wave faithfully as it is,
Performing sine wave PWM control on the regenerative bridge and using a sine wave with a power factor of 1 synchronized with the AC power supply phase voltage as the current command eliminates the need for any special processing or operation in the subsequent circuits, resulting in an extremely simple circuit. It is clear that this technology also facilitates control.

〔実施例〕〔Example〕

第1図に実施例のブロツク図、第2図にタイム
チヤートを示す。第1図において、1が整流器ブ
リツジ、2が回生用ブリツジ、3が直流リンク部
コンデンサ、力行、回生の双方向に電流を流す双
方向順変換装置を構成する。制御回路は、4が交
流電源の相電圧検出器、5が電流検出器、6が正
弦波電流指令である電圧検出器4の相電圧と電流
検出器5の回生電流との間の偏差を増幅かつPI
調整し正弦波制御信号に変換する電流調節器、7
がPWMのキヤリア三角波を発生する三角波発振
器、8が正弦波制御信号をPWM信号に変換する
第1の比較器、9は直流リンク部電圧検出用の絶
縁検出器、10が直流リンク部コンデンサの許容
最大電圧Ed−MAXと、絶縁検出器出力の直流リ
ンク部電圧Edとの大小関係を決める第2の比較
器、11が第1、第2の比較器8,10の正弦波
PWM信号と過電圧信号とを重畳するANDゲー
ト、12がANDゲート11出力を回生用ブリツ
ジトランジスタのベース信号に変換する絶縁増幅
器である。
FIG. 1 shows a block diagram of the embodiment, and FIG. 2 shows a time chart. In FIG. 1, 1 is a rectifier bridge, 2 is a regeneration bridge, and 3 is a DC link capacitor, which constitutes a bidirectional forward conversion device that allows current to flow in both directions of power running and regeneration. In the control circuit, 4 is a phase voltage detector of the AC power supply, 5 is a current detector, and 6 is a sine wave current command.The control circuit amplifies the deviation between the phase voltage of the voltage detector 4 and the regenerative current of the current detector 5. and PI
a current regulator for regulating and converting into a sinusoidal control signal, 7
is a triangular wave oscillator that generates a PWM carrier triangular wave, 8 is the first comparator that converts the sine wave control signal to a PWM signal, 9 is an insulation detector for detecting the DC link voltage, and 10 is the DC link capacitor tolerance. A second comparator that determines the magnitude relationship between the maximum voltage Ed-MAX and the DC link voltage Ed of the insulation detector output, 11 is the sine wave of the first and second comparators 8 and 10
An AND gate 12 superimposes a PWM signal and an overvoltage signal, and an isolation amplifier 12 converts the output of the AND gate 11 into a base signal of a regenerative bridge transistor.

すなわち、相電圧に同期した正弦波形電流指令
は、その振幅を素子の電流容量で決まる最大値に
設定され、検出された回生電流との間で偏差がと
られ、正弦波の電流偏差信号となり、電流増幅・
調整器6を介し増幅かつPI調整され正弦波制御
信号に変換されて後、キヤリア三角波と比較さ
れ、正弦波のPWM信号に変換される。この正弦
波PWM信号波形は、直流リンク部コンデンサの
許容最大電圧Ed−MAXと、検出電圧Edとの大
小関係が、Ed−MAX≦Edなるとき、ANDゲー
ト11は開路状態にあり、そのまま回生用ブリツ
ジトランジスタのベース入力として使用される。
すなわち、線路には力率−1の電流が流れコンデ
ンサ電圧の上昇を抑え、電動機回転エネルギーを
電源側へ回生することになる。また、逆にEd−
MAX>Edの場合は、ANDゲート11へ閉路さ
れ、絶縁増幅器12の出力は無く回生用ブリツジ
2は動作しない。
In other words, the amplitude of the sinusoidal current command synchronized with the phase voltage is set to the maximum value determined by the current capacity of the element, and the deviation from the detected regenerative current is taken, resulting in a sinusoidal current deviation signal. Current amplification/
After being amplified and PI-adjusted through the regulator 6 and converted into a sine wave control signal, it is compared with a carrier triangular wave and converted into a sine wave PWM signal. This sine wave PWM signal waveform is such that when the magnitude relationship between the maximum allowable voltage Ed-MAX of the DC link capacitor and the detection voltage Ed is Ed-MAX≦Ed, the AND gate 11 is in an open state and is used for regeneration as it is. Used as base input of bridge transistor.
That is, a current with a power factor of -1 flows through the line, suppressing a rise in the capacitor voltage, and regenerating the motor rotational energy to the power supply side. Also, conversely, Ed−
When MAX>Ed, the circuit is closed to the AND gate 11, there is no output from the isolation amplifier 12, and the regeneration bridge 2 does not operate.

なお、交流電源相電圧に同期した回生電流指令
は、先にも述べたがその振幅を素子等容量の最大
値に設定するのであり、当然のことながら予じめ
考えられる電動機回生電力量よりも大なる値とな
り、これによりコンデンサ許容最大電圧Ed−
MAXと、検出電圧Edの大小関係による、回生用
ブリツジの動作、停止の制御を行えることにな
る。すなわち、Ed−MAX<Edのときは回生電
流は最大電流一杯で回生され、コンデンサ電圧
Edは左程の時間を経ることなく最大電圧Ed−
MAX以下に低下し、回生用ブリツジ2は自動的
に動作を停止し、またその停止の間電動機からエ
ネルギーが回生されコンデンサ電圧は上昇する
が、コンデンサ電圧Edが最大電圧Ed−MAXに
達したならば、回生用ブリツジ2は再び正弦波
PWM信号を受け回生動作を行うことになる。所
謂、抵抗放電式における制限抵抗の役目を、相電
圧に同期した正弦波形電流指令により行い、スイ
ツチ素子を回生用ブリツジトランジスタで置き換
えたものである。
As mentioned earlier, the regenerative current command synchronized with the AC power supply phase voltage sets its amplitude to the maximum value of the element capacitance, and of course it is larger than the pre-conceived motor regenerative power amount. The maximum allowable capacitor voltage Ed−
The operation and stop of the regenerative bridge can be controlled based on the magnitude relationship between MAX and the detected voltage Ed. In other words, when Ed−MAX<Ed, the regenerative current is regenerated at the maximum current, and the capacitor voltage
Ed is the maximum voltage Ed− without passing the time shown on the left.
When the voltage drops below MAX, the regeneration bridge 2 automatically stops operating, and during this stop, energy is regenerated from the motor and the capacitor voltage rises, but if the capacitor voltage Ed reaches the maximum voltage Ed-MAX. For example, the regeneration bridge 2 generates a sine wave again.
It receives PWM signals and performs regenerative operation. The role of a limiting resistor in the so-called resistance discharge type is performed by a sinusoidal waveform current command synchronized with the phase voltage, and the switch element is replaced with a regeneration bridge transistor.

第2図のタイムチヤートに各部動作波形を示す
が、上から順に、交流電源相電圧の回生電流指令
a、回生電流b、電流調節器6出力の正弦波制御
信号c、キヤリア三角波形d、正弦波PWM信号
e、許容最大電圧信号Ed−MAXとコンデンサ電
圧Ed、回生用ブリツジ2ベース入力信号f、で
あり、Ed−MAX<Edのときは、正弦波PWM信
号eがそのまま回生用ブリツジ2に与えられ、一
方Ed−MAX>Edのときは、回生用ブリツジ2
のベース入力は遮断される。
The time chart in Figure 2 shows the operating waveforms of each part, and in order from the top, the regenerative current command a of the AC power supply phase voltage, the regenerative current b, the sine wave control signal c of the current regulator 6 output, the carrier triangular waveform d, and the sine wave. The wave PWM signal e, the maximum allowable voltage signal Ed-MAX, the capacitor voltage Ed, and the regeneration bridge 2 base input signal f, and when Ed-MAX<Ed, the sine wave PWM signal e is directly sent to the regeneration bridge 2. On the other hand, when Ed−MAX>Ed, regeneration bridge 2
The base input of is cut off.

〔発明の効果〕〔Effect of the invention〕

指令の正弦波を忠実に出力する正弦波PWM方
式を、回生電流制御に用いたものにあつて、交流
電源相電圧の正弦波形を位相情報としそのまま正
弦波電流指令として使用することは、何ら特別の
処理、操作を不要とし、回路の簡易化、制御性能
の向上に寄与するところ大である。
When a sine wave PWM method that faithfully outputs a command sine wave is used for regenerative current control, there is nothing special about using the sine waveform of the AC power supply phase voltage as phase information and directly using it as the sine wave current command. This eliminates the need for processing and operations, greatly contributing to circuit simplification and improved control performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例のブロツク線図、第2図はその
動作を説明するためのタイムチヤート。 1……整流器ブリツジ、2……回生用ブリツ
ジ、3……コンデンサ、4……相電圧検出器、5
……電流検出器、6……電流調節器、7……キヤ
リア信号発生器、8……第1の比較器、10……
第2の比較器、11……ANDゲート。
FIG. 1 is a block diagram of the embodiment, and FIG. 2 is a time chart for explaining its operation. 1... Rectifier bridge, 2... Regeneration bridge, 3... Capacitor, 4... Phase voltage detector, 5
...Current detector, 6...Current regulator, 7...Carrier signal generator, 8...First comparator, 10...
Second comparator, 11...AND gate.

Claims (1)

【特許請求の範囲】[Claims] 1 整流器ブリツジと、逆並列接続の回生用自己
消弧形素子ブリツジと、平滑用のコンデンサ、よ
りなる双方向順変換装置において、回生電流を制
御する正弦波PWM制御系の電流指令として、交
流電源相電圧に同期した正弦波形であつてその振
幅を素子の電流容量で決まる最大値に変換したも
のを使用し、検出された回生電流との間で偏差を
とり、その電流偏差を増幅し、PI調整し正弦波
制御信号とし、キヤリア信号と比較して、正弦波
PWM信号に変換し、かつ予め設定の許容直流電
圧最大値と検出のコンデンサ電圧を比較して、コ
ンデンサ電圧が大なれば上記正弦波PWM信号を
回生用ブリツジ制御信号として用い、他方小なれ
ばこの回生用ブリツジ制御信号を遮断するように
したことを特徴とする双方向順変換装置の制御方
法。
1 In a bidirectional forward conversion device consisting of a rectifier bridge, an anti-parallel connected regenerative self-extinguishing element bridge, and a smoothing capacitor, the AC power source is used as the current command for the sine wave PWM control system that controls the regenerative current. A sinusoidal waveform synchronized with the phase voltage whose amplitude is converted to the maximum value determined by the current capacity of the element is used, the deviation is taken from the detected regenerative current, the current deviation is amplified, and the PI Adjust the sine wave control signal and compare it with the carrier signal.
Convert it to a PWM signal and compare the preset allowable DC voltage maximum value with the detected capacitor voltage. If the capacitor voltage is large, the above sine wave PWM signal is used as the bridge control signal for regeneration, and if the capacitor voltage is small, this signal is used as the bridge control signal for regeneration. A method for controlling a bidirectional forward conversion device, characterized in that a bridge control signal for regeneration is cut off.
JP59138212A 1984-07-03 1984-07-03 Controlling method of bidirectional power rectifier Granted JPS6118379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138212A JPS6118379A (en) 1984-07-03 1984-07-03 Controlling method of bidirectional power rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138212A JPS6118379A (en) 1984-07-03 1984-07-03 Controlling method of bidirectional power rectifier

Publications (2)

Publication Number Publication Date
JPS6118379A JPS6118379A (en) 1986-01-27
JPH0470878B2 true JPH0470878B2 (en) 1992-11-12

Family

ID=15216698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138212A Granted JPS6118379A (en) 1984-07-03 1984-07-03 Controlling method of bidirectional power rectifier

Country Status (1)

Country Link
JP (1) JPS6118379A (en)

Also Published As

Publication number Publication date
JPS6118379A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
JP2760666B2 (en) Method and apparatus for controlling PWM converter
JPH0669312B2 (en) Inverter device
JP2005348597A (en) Controller for electric vehicle
JP3490600B2 (en) Pulse width modulation method for power converter
JPH0470878B2 (en)
JPH08266059A (en) Power converter
KR100685444B1 (en) Parallel control system of single-phase inverter
JP3227009B2 (en) AC electric vehicle control device
JP2001103774A (en) Variable speed controller for induction motor
JPH0732607B2 (en) Control device for electric vehicle power converter
JP2005176600A (en) Control unit of electric vehicle
JPS58179180A (en) Power regenerative controller
JPH0337394B2 (en)
JPS6322156B2 (en)
JPS58215977A (en) Power regeneration controller
WO2024057633A1 (en) Power regeneration converter
JPH10164845A (en) Pwm rectifier
JPH0156636B2 (en)
JPH11235068A (en) Servo-driver
JP2000253686A (en) Power regenerating circuit
JP2001178192A (en) Speed control device for induction motor
JPS636000B2 (en)
JPH0528957Y2 (en)
JPH05227756A (en) Switching method for current type inverter
JPH114505A (en) Controller for electric rolling stock