JPH047040A - Catalyst for decomposing ozone and production thereof - Google Patents

Catalyst for decomposing ozone and production thereof

Info

Publication number
JPH047040A
JPH047040A JP2106390A JP10639090A JPH047040A JP H047040 A JPH047040 A JP H047040A JP 2106390 A JP2106390 A JP 2106390A JP 10639090 A JP10639090 A JP 10639090A JP H047040 A JPH047040 A JP H047040A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
manganese dioxide
amorphous alumina
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2106390A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sakakibara
吉延 榊原
Masayasu Sato
真康 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd filed Critical Cataler Industrial Co Ltd
Priority to JP2106390A priority Critical patent/JPH047040A/en
Publication of JPH047040A publication Critical patent/JPH047040A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent deterioration of catalytic performance and to enhance durability by forming a catalyst for decomposing ozone which is made of activated manganese dioxide, fluororesin and amorphous alumina and constituted of high-density granular bodies having specified sp. gr. and specified surface area. CONSTITUTION:A mixture is prepared by kneading activated manganese dioxide, a polyfluoroethylene-based binder and amorphous alumina hydrate. Then a catalyst for decomposing ozone is produced by molding this mixture into granules and thereafter calcining or drying the granules at <=400 deg.C. The obtained catalyst for decomposing ozone is made of activated manganese dioxide, fluororesin and amorphous alumina and constituted of high-density granular bodies having >=1.5g/cc bulk sp. gr. and >=30m<2>/g specific surface area. Deterioration in strength of the catalyst and in catalytic performance can be prevented because strength of the catalyst and hydrophobic property thereof are enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は、オゾン排ガスを浄化するためのオゾン分解用
触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ozone decomposition catalyst for purifying ozone exhaust gas.

[従来の技術] オゾンは強力な酸化作用を有するので、上水の浄化、殺
菌、下水もしくは工業廃液の処理、排気ガスの脱硝処理
および脱臭処理等に幅広く利用されているか、通常、酸
化処理を充分に行わせるため過剰のオゾンか使用されて
おり、そのため余剰の未反応オゾンか排出される。
[Prior Art] Ozone has a strong oxidizing effect, so it is widely used for purification and sterilization of tap water, treatment of sewage or industrial waste liquid, denitration treatment and deodorization treatment of exhaust gas, etc. Excess ozone is used to ensure sufficient reaction, so excess unreacted ozone is discharged.

また、電子写真複写コロナ放電を伴う装置からもオゾン
か放出されている。
Ozone is also emitted from equipment that involves electrophotographic corona discharge.

オゾンは非常に臭気の強い気体でありかつ空気中に0.
lppm以上存在する場合は、人体に悪影響をおよほす
ので、この余剰オゾンを分解除去する必要かある。
Ozone is a gas with a very strong odor and is present in the air at 0.
If more than 1 ppm of ozone is present, it will have an adverse effect on the human body, so it is necessary to decompose and remove this excess ozone.

従って、オゾンを無害化することは環境衛生上重要にな
っている。
Therefore, rendering ozone harmless has become important in terms of environmental health.

従来、このオゾン分解方法として、オゾンの活性炭によ
る吸着方法、あるいは活性炭やアルミナ、ンリカ、チタ
ニア等の無機質担体、コージェライト、紙質等のハニカ
ム担体にマンガン、ニッケル、コバルト、クロム、銅、
銀、白金、パラジウム、ロジウム等の触媒成分を付着し
た触媒とオゾンとを接触させてオゾンを分解させる方法
が特公昭56−17939号公報、特開昭62−201
648号公報等に記載されている。
Conventionally, methods for decomposing ozone include adsorption of ozone with activated carbon, or activation of activated carbon, inorganic carriers such as alumina, phosphoric acid, titania, etc., honeycomb carriers such as cordierite and paper, and manganese, nickel, cobalt, chromium, copper, etc.
A method of decomposing ozone by bringing a catalyst attached with catalyst components such as silver, platinum, palladium, rhodium, etc. into contact with ozone is disclosed in Japanese Patent Publication No. 56-17939 and Japanese Patent Application Laid-open No. 62-201.
It is described in Publication No. 648, etc.

また、特開昭51−4094号公報には、オゾンを含む
ガスを活性酸化マンガンと接触させることか、更に、特
開昭60 7940号公報にはマンガンの可溶性塩と銅
の可溶性塩の混合溶液中に酸化剤を添加後、過マンガン
酸塩を含むアルカリ溶液で中和し、得られた沈殿を乾燥
し、アルミナゾルやケイ酸ソーダと共にベレット等に成
形することか記載されている。
Furthermore, JP-A No. 51-4094 discloses that a gas containing ozone is brought into contact with activated manganese oxide, and JP-A-60-7940 discloses a mixed solution of soluble manganese salts and soluble copper salts. It is described that after adding an oxidizing agent thereto, neutralization is performed with an alkaline solution containing permanganate, the resulting precipitate is dried, and formed into a pellet or the like together with alumina sol or sodium silicate.

[発明か解決しようとする課題] 前記のようなオゾン分解用触媒は、−船釣に25℃以下
の常温で使用され、粒状活性炭や活性炭ハニカム等は初
期性能は良好であるか短期間に耐久性能か低下してしま
う。
[Invention or problem to be solved] Ozone decomposition catalysts such as those described above are used in boat fishing at normal temperatures below 25°C, and granular activated carbon, activated carbon honeycomb, etc. have good initial performance or are durable in a short period of time. Performance will deteriorate.

また、オゾンを上水の浄化、殺菌、下水もしくは工業廃
液の処理等に使用した後の廃オゾンは、水分を多量に含
んでいるため湿気による触媒強度および触媒性能の低下
を生じる。
In addition, waste ozone obtained after ozone is used for purification and sterilization of tap water, treatment of sewage or industrial waste liquid, etc. contains a large amount of water, so that the catalyst strength and performance are reduced due to moisture.

本発明の目的は湿気による触媒強度および触媒性能低下
か少なく、かつ耐久性を有するオゾン分解用触媒を提供
するものである。
An object of the present invention is to provide a catalyst for ozone decomposition that exhibits less deterioration in catalyst strength and catalyst performance due to moisture and has durability.

[課題を解決するための手段] 本発明は、前記課題を解決するために成されたものであ
る。すなわち、本発明のオゾン分解用触媒は、活性二酸
化マンガンとフッ素樹脂および無定形アルミナからなり
、嵩比重か1−5g/cc以上、比表面積が30m2/
g以上の高密度粒状体であることを特徴とする。
[Means for Solving the Problems] The present invention has been accomplished in order to solve the above problems. That is, the ozone decomposition catalyst of the present invention is composed of active manganese dioxide, a fluororesin, and amorphous alumina, and has a bulk specific gravity of 1-5 g/cc or more and a specific surface area of 30 m2/cc.
It is characterized by being a high-density granular material with a particle size of more than g.

嵩比重か1.5g/cc未満て且つ比表面積が30m2
/g未満ては、触媒担体強度および触媒性能か低下して
好ましくない。
Bulk specific gravity is less than 1.5g/cc and specific surface area is 30m2
If the amount is less than /g, the strength of the catalyst carrier and the performance of the catalyst will decrease, which is not preferable.

また、上記オゾン分解用触媒の製造方法は、活性二酸化
マンガン、ポリフッ化エチレン系バインダーおよび無定
形アルミナ水和物を混練してなる混合物を粒状に成形し
た後、400℃以下でか焼または乾燥することを特徴と
する。更に、必要に応じて純水を、活性二酸化マンガン
、ポリフッ化エチレン系バインダーおよび無定形アルミ
ナ水和物に添加することも可能である。
In addition, the method for producing the ozone decomposition catalyst described above includes kneading a mixture of activated manganese dioxide, a polyfluoroethylene binder, and amorphous alumina hydrate, forming the mixture into granules, and then calcining or drying the mixture at 400°C or lower. It is characterized by Furthermore, it is also possible to add pure water to the activated manganese dioxide, the polyfluoroethylene binder, and the amorphous alumina hydrate, if necessary.

本発明の方法において、無定形アルミナ水和物に代えて
ヘーマイト構造あるいは擬ヘーマイト構造を有するアル
ミナ水和物を使用した場合、活性二酸化マンガンとの間
の結合性が充分でなく触媒強度か低下する。
In the method of the present invention, when an alumina hydrate having a hemite structure or a pseudo-hemite structure is used instead of an amorphous alumina hydrate, the bonding property with active manganese dioxide is insufficient, resulting in a decrease in catalyst strength. .

また、400℃を超えてか焼または乾燥するとポリフッ
化エチレン系バインダーがフッ化水素として蒸散し触媒
中に存在しないため触媒の吸湿による触媒性能の低下か
生し、また触媒強度か低下してしまう。
Additionally, if the polyfluoroethylene binder is calcined or dried above 400°C, it evaporates as hydrogen fluoride and is no longer present in the catalyst, resulting in a decrease in catalyst performance due to moisture absorption by the catalyst, and a decrease in catalyst strength. .

[作用] 本願発明は、バインダーとしてポリフッ化エチレン系バ
インダーと無定形アルミナ水和物を使用しているため成
形が容易で、無定形アルミナ水和物の使用により活性二
酸化マンガンとの結合性か良く、しかも400℃以下で
か焼または乾燥しているためフッ素樹脂が触媒中に存在
して触媒強度および触媒の疎水性を有することにより、
触媒強度、触媒性能の低下を防止できる。
[Function] The present invention uses a polyfluoroethylene binder and amorphous alumina hydrate as binders, so it is easy to mold, and the use of amorphous alumina hydrate has good bonding properties with activated manganese dioxide. Moreover, since the catalyst is calcined or dried at a temperature below 400°C, the fluororesin is present in the catalyst, giving it strength and hydrophobicity.
Prevents deterioration of catalyst strength and catalyst performance.

[実施例] 以下に、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1 活性二酸化マンガン粉末99重量部、ポリフッ化エチレ
ン系バインダー(商品名 フルオン、旭硝子株式会社製
)5重量部および無定形アルミナ水和物(商品名: A
S−200、日産稀元素株式会社製)25重量部を混練
し、ディスクベレッタて直径3III+1長さ5關に押
し出し成形後、300℃で乾燥してオゾン分解用粒状触
媒Aを得た。
Example 1 99 parts by weight of activated manganese dioxide powder, 5 parts by weight of polyfluoroethylene binder (product name: Fluon, manufactured by Asahi Glass Co., Ltd.), and amorphous alumina hydrate (product name: A)
25 parts by weight of S-200 (manufactured by Nissan Kigenso Co., Ltd.) were kneaded, extruded using a disk Beretta to have a diameter of 3III + 1 and a length of 5, and dried at 300°C to obtain a granular catalyst A for ozone decomposition.

この粒状触媒の嵩比重は1.62g/cc、比表面積は
48m2/gであった。
This granular catalyst had a bulk specific gravity of 1.62 g/cc and a specific surface area of 48 m2/g.

実施例2 活性二酸化マンガン粉末99重量部、ポリフッ化エチレ
ン系バインダー(フルオン)5重量部および無定形アル
ミナ水和物(AS−200)25重量部を混練し、ディ
スクベレッターで直径311111長さ5 mmに挿口
出し成形後、400℃で乾燥してオゾン分解用粒状触媒
Bを得た。
Example 2 99 parts by weight of activated manganese dioxide powder, 5 parts by weight of polyfluoroethylene binder (Fluon) and 25 parts by weight of amorphous alumina hydrate (AS-200) were kneaded, and the mixture was mixed with a disc beretter to a diameter of 311111 and a length of 5. After molding with a diameter of 1 mm, the catalyst was dried at 400° C. to obtain a granular catalyst B for ozone decomposition.

この粒状触媒の嵩比重は1.65g/cc、比表面積は
51m27gであった。
This granular catalyst had a bulk specific gravity of 1.65 g/cc and a specific surface area of 51 m27 g.

実施例3 活性二酸化マンガン粉末99重量部、ポリフッ化エチレ
ン系バインダー(フルオン)5重量部および無定形アル
ミナ水和物(AS−200)25重量部を混練し、ディ
スクペレッターで直径3順長さ5關に押し出し成形後、
100℃で乾燥してオゾン分解用粒状触媒Cを得た。
Example 3 99 parts by weight of activated manganese dioxide powder, 5 parts by weight of polyfluoroethylene binder (Fluon), and 25 parts by weight of amorphous alumina hydrate (AS-200) were kneaded, and the mixture was mixed with a disc pelleter using a disk pelleter to form a mixture of 3 diameters and 3 lengths. After extrusion molding in 5 steps,
It was dried at 100° C. to obtain ozone decomposition granular catalyst C.

この粒状触媒の嵩比重は1.53g/cc、比表面積は
43m2/gてあった。
This granular catalyst had a bulk specific gravity of 1.53 g/cc and a specific surface area of 43 m2/g.

比較例1 石炭系の乾留炭を賦活処理して嵩比重か0.55g/c
c、比表面積が1000m2/Hの粒状活性炭りを得た
Comparative Example 1 Coal-based carbonized coal is activated and has a bulk specific gravity of 0.55 g/c
c. Granular activated carbon with a specific surface area of 1000 m2/H was obtained.

比較例2 活性炭粉末99重量部とバインダーとしての無定形アル
ミナ水和物(AS−200)40重量部を混練しディス
クペレッターで押し出し成形して粒状活性炭Eを得た。
Comparative Example 2 99 parts by weight of activated carbon powder and 40 parts by weight of amorphous alumina hydrate (AS-200) as a binder were kneaded and extruded using a disk pelleter to obtain granular activated carbon E.

この粒状触媒の嵩比重は0.51g/cc、比表面積は
880m2/gであった。
This granular catalyst had a bulk specific gravity of 0.51 g/cc and a specific surface area of 880 m2/g.

比較例3 比較例2て得られた活性炭を硝酸マンガン溶液に浸漬し
50℃で乾燥してマンガン添着炭Fを得た。マンガンの
担持量は50g/Dであった。
Comparative Example 3 The activated carbon obtained in Comparative Example 2 was immersed in a manganese nitrate solution and dried at 50°C to obtain manganese-impregnated carbon F. The amount of manganese supported was 50 g/D.

この粒状触媒の嵩比重は0.52g/cc、比表面積は
885m2/gであった。
This granular catalyst had a bulk specific gravity of 0.52 g/cc and a specific surface area of 885 m2/g.

比較例4 活性二酸化マンガン粉末を100重量部、へ−マイト系
バインダー[(商品名:Disp−al)コンデイア(
CONDEA)社製] 10重量部、および純水10重
量部を混練しディスクペレソターで直径3 mm長さ5
關に押し圧し成形後、300℃で乾燥してオゾン分解用
粒状触媒Gを得た。
Comparative Example 4 100 parts by weight of activated manganese dioxide powder and a hemite-based binder [(trade name: Disp-al) Condeia (trade name: Disp-al)]
CONDEA) 10 parts by weight and 10 parts by weight of pure water were kneaded using a disc pellet soter to a diameter of 3 mm and a length of 5.
After pressing and molding, it was dried at 300°C to obtain a granular catalyst G for ozone decomposition.

この粒状触媒の嵩比重は1.3g/cc、比表面積は4
5m2/gであった。
The bulk specific gravity of this granular catalyst is 1.3 g/cc, and the specific surface area is 4.
It was 5m2/g.

比較例5 活性二酸化マンガン粉末99重量部およびポリフッ化エ
チレン系バインダー(フルオン)50重量部を混練しデ
ィスクベレッターで直径3III11長さ5 mmに押
し出し成形しようとしたか、押し出し時に熱硬化したた
め成形できなかった。
Comparative Example 5 An attempt was made to knead 99 parts by weight of activated manganese dioxide powder and 50 parts by weight of a polyfluoroethylene binder (Fluon) and extrude the mixture into a diameter of 3III mm and a length of 5 mm using a disc beretter. There wasn't.

比較例6 活性二酸化マンガン粉末を99重量部、ポリフッ化エチ
レン系バインダー(フルオン)5重量部および無定形ア
ルミナ水和物(AS−200)25重量部を混練しディ
スクペレッターで直径3關長さ5 mmに押し出し成形
後、500℃で乾燥してオゾン分解用粒状触媒Hを得た
Comparative Example 6 99 parts by weight of activated manganese dioxide powder, 5 parts by weight of polyfluoroethylene binder (Fluon) and 25 parts by weight of amorphous alumina hydrate (AS-200) were kneaded and mixed with a disk pelleter to a diameter of 3 inches long. After extrusion molding to 5 mm, it was dried at 500°C to obtain a granular catalyst H for ozone decomposition.

この粒状触媒の嵩比重は1.68g/cc、比表面積は
43m2/gてあった。
This granular catalyst had a bulk specific gravity of 1.68 g/cc and a specific surface area of 43 m2/g.

このようにして得た触媒A−Hを次の条件で耐久および
評価し、結果を第1表に示す。また、第2表に水屋式硬
度測定法により7111定した触媒強度を示す。
The durability and evaluation of catalysts A-H thus obtained were carried out under the following conditions, and the results are shown in Table 1. Further, Table 2 shows the catalyst strength determined as 7111 by the Mizuya hardness measuring method.

〈耐久および評価条件〉 オゾン(03)   2000ppm エアー      Ba1ance SV(空間速度)  10,000HrRH(相対湿度
) 100% 温度       25℃ 床 表 第  2 表 第1表から明らかなように本発明の触媒は、従来の活性
炭や触媒と比べ耐久性能か優れている。
<Durability and evaluation conditions> Ozone (03) 2000ppm Air Balance SV (space velocity) 10,000HrRH (relative humidity) 100% Temperature 25°C Floor table 2 As is clear from Table 1, the catalyst of the present invention It has superior durability compared to activated carbon and catalysts.

すなわち、比較例1に見られる活性炭のみの触媒りは初
期性能は本発明と同程度に良好であるが、50時間経過
後あたりから急激に低下し、100時間経過後には、オ
ゾン浄化率かほとんどなくなっている。二酸化マンガン
およびフッ素樹脂を含まぬ比較例2の触媒Eは比較例1
と全く同様に、初期性能は本発明と同程度に良好である
が、50時間経過後あたりから急激に低下し、100時
間経過後には、オゾン浄化率がほとんどなくなっている
In other words, the initial performance of the catalyst using only activated carbon as seen in Comparative Example 1 is as good as that of the present invention, but it rapidly decreases after 50 hours, and after 100 hours, the ozone purification rate is almost the same. It's gone. Catalyst E of Comparative Example 2, which does not contain manganese dioxide and fluororesin, is the catalyst of Comparative Example 1.
Similarly, the initial performance is as good as that of the present invention, but it rapidly decreases after 50 hours, and the ozone purification rate has almost disappeared after 100 hours.

またマンガンは担持しているが、フッ素樹脂および無定
形アルミナを含まぬ比較例3の触媒Fは、オゾン浄化率
か比較例1.2に比べやや上昇するものの、200時間
経過後には、オゾン浄化率かほとんどなくなっており、
触媒の耐久性の点て好ましくない。さらに比較例4の触
媒Gはベーマイト系バインダーを使用したものであるが
、本発明の触媒に比べ50時間経過以後のオゾン浄化率
の低下か見られる。また、比較例6の触媒Hは乾燥温度
を500℃としたものであるか、触媒強度の点において
は本発明の触媒と同し程度のものであるか、時間経過後
、特に100時間経過以後のオゾン浄化率か本発明の触
媒に比へて低くなっている。
Catalyst F of Comparative Example 3, which supports manganese but does not contain fluororesin or amorphous alumina, has a slightly higher ozone purification rate than Comparative Example 1.2, but after 200 hours, the ozone purification rate is The rate has almost disappeared,
This is unfavorable in terms of catalyst durability. Furthermore, although Catalyst G of Comparative Example 4 uses a boehmite-based binder, it can be seen that the ozone purification rate after 50 hours has decreased compared to the catalyst of the present invention. In addition, whether the catalyst H of Comparative Example 6 had a drying temperature of 500°C, or whether it had the same level of catalyst strength as the catalyst of the present invention, or whether it was dried after a period of time, especially after 100 hours. The ozone purification rate is lower than that of the catalyst of the present invention.

さらに第2表から明らかなように本発明の触媒は、従来
の活性炭や触媒と比べ触媒強度(硬度)か優れているこ
とがわかる。
Furthermore, as is clear from Table 2, the catalyst of the present invention is superior in catalytic strength (hardness) compared to conventional activated carbon and catalysts.

[発明の効果] 以上より明らかのように、活性二酸化マンガン、フッ素
樹脂及び無定形アルミナからなる本発明のオゾン分解用
触媒は、従来の活性炭や触媒と比べ耐久性および触媒強
度か優れている。
[Effects of the Invention] As is clear from the above, the ozone decomposition catalyst of the present invention comprising activated manganese dioxide, fluororesin, and amorphous alumina is superior in durability and catalytic strength compared to conventional activated carbon and catalysts.

出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)活性二酸化マンガン、フッ素樹脂および無定形ア
ルミナからなり、嵩比重が1.5g/cc以上、比表面
積が30m^2/g以上の高密度粒状体であることを特
徴とするオゾン分解用触媒。
(1) For ozone decomposition, the material is made of activated manganese dioxide, fluororesin, and amorphous alumina, and is a high-density granular material with a bulk specific gravity of 1.5 g/cc or more and a specific surface area of 30 m^2/g or more. catalyst.
(2)活性二酸化マンガン、ポリフッ化エチレン系バイ
ンダーおよび無定形アルミナ水和物を混練してなる混合
物を粒状に成形した後、400℃以下でか焼または乾燥
することを特徴とするオゾン分解用触媒の製造方法。
(2) An ozone decomposition catalyst characterized by forming a mixture of activated manganese dioxide, a polyfluoroethylene binder, and amorphous alumina hydrate into granules, and then calcining or drying the mixture at 400°C or lower. manufacturing method.
JP2106390A 1990-04-24 1990-04-24 Catalyst for decomposing ozone and production thereof Pending JPH047040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106390A JPH047040A (en) 1990-04-24 1990-04-24 Catalyst for decomposing ozone and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106390A JPH047040A (en) 1990-04-24 1990-04-24 Catalyst for decomposing ozone and production thereof

Publications (1)

Publication Number Publication Date
JPH047040A true JPH047040A (en) 1992-01-10

Family

ID=14432370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106390A Pending JPH047040A (en) 1990-04-24 1990-04-24 Catalyst for decomposing ozone and production thereof

Country Status (1)

Country Link
JP (1) JPH047040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375902B1 (en) * 1999-05-24 2002-04-23 Engelhard Corporation Method, apparatus and composition for removing pollutants from the atmosphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375902B1 (en) * 1999-05-24 2002-04-23 Engelhard Corporation Method, apparatus and composition for removing pollutants from the atmosphere

Similar Documents

Publication Publication Date Title
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JPS6164334A (en) Production of catalyst for purifying nitrogen oxide
JP4129059B2 (en) Calcium aluminate-based catalyst and use of the catalyst
JPH047040A (en) Catalyst for decomposing ozone and production thereof
JP2739025B2 (en) Ozone decomposition catalyst
JP3072521B2 (en) Method for producing ozone decomposition catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3091761B2 (en) Ozone decomposition catalyst and method for producing the same
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3027219B2 (en) How to remove nitrogen oxides
JPH0741146B2 (en) Deodorization method
JP5570122B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JPS5920383B2 (en) NOx reduction catalyst with high activity at low temperatures
JP4745271B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JP3705933B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent and method for removing nitrogen oxide and / or sulfur oxide using the adsorbent
JP3215848B2 (en) Ozone decomposition catalyst and method for producing the same
JPS606695B2 (en) Exhaust gas purification catalyst
JP2908233B2 (en) Method for producing ozone decomposition catalyst
WO2010073350A1 (en) Nox absorbent, method for production of the same, and method for removal of nox
JPH02139033A (en) Poisonous gas adsorbent, its manufacture and purification of exhaust gas using it
JPH03181318A (en) Catalyst for removal of ozone
JPH01245850A (en) Catalyst for ozone decomposition
JPS6372341A (en) Catalyst for removing nitrogen oxide
JPH02253848A (en) Catalyst for decomposition of ozone
JPH02298317A (en) Decomposing method for ozone