JPH0470369B2 - - Google Patents

Info

Publication number
JPH0470369B2
JPH0470369B2 JP10355785A JP10355785A JPH0470369B2 JP H0470369 B2 JPH0470369 B2 JP H0470369B2 JP 10355785 A JP10355785 A JP 10355785A JP 10355785 A JP10355785 A JP 10355785A JP H0470369 B2 JPH0470369 B2 JP H0470369B2
Authority
JP
Japan
Prior art keywords
partial pressure
oxygen partial
copper
converter
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10355785A
Other languages
Japanese (ja)
Other versions
JPS61261445A (en
Inventor
Takayoshi Kimura
Seiichi Tsuyukuchi
Yoshiaki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60103557A priority Critical patent/JPS61261445A/en
Publication of JPS61261445A publication Critical patent/JPS61261445A/en
Publication of JPH0470369B2 publication Critical patent/JPH0470369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は銅転炉から排出される転炉〓を溶融
状態のまゝあるいは固化した後、そのまゝ溶錬炉
へ繰返したり、浮遊選鉱法により有価物を回収し
たりすることなく別の炉で溶融処理して銅分並び
に含有する有価物を効率よく回収する方法におけ
る操業終点の判定方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to recycling the converter discharged from a copper converter in a molten state or after solidifying it to a smelting furnace or flotation. The present invention relates to a method for determining the end point of operation in a method for efficiently recovering copper and valuables contained therein by melting in a separate furnace without recovering the valuables by a process.

〔従来の技術〕[Conventional technology]

銅転炉から排出される転炉〓は、一般に銅分を
3〜5重量%と、25〜35重量%のFe3O4を含んで
いるため、種々の方法で有価金属が回収される。
Since the converter discharged from the copper converter generally contains 3 to 5% by weight of copper and 25 to 35% by weight of Fe 3 O 4 , valuable metals can be recovered by various methods.

従来、最も広く用いられている〓選鉱法は転炉
〓を一旦凝固させた後微粉砕して浮遊選鉱法によ
り銅分の高い精鉱を回収し溶錬炉に繰返すもので
ある。又転炉〓を容体のまゝ溶錬用の反射炉、あ
るいは電気炉に繰返すことが行なわれる。また、
近時溶融状態の転炉〓を還元剤を添加して還元す
る所謂スラグクリーニングが提案されているが、
電気炉が主役であり溶湯の攪拌が不充分で銅分を
十分回収できなかつた。
Conventionally, the most widely used ore beneficiation method is to solidify the ore in a converter, then pulverize it, recover the concentrate with a high copper content using the flotation method, and repeat it in the smelting furnace. In addition, the converter is repeatedly used as a reverberatory furnace for smelting or an electric furnace. Also,
Recently, so-called slag cleaning has been proposed in which the molten converter is reduced by adding a reducing agent.
The electric furnace was the main player, and the stirring of the molten metal was insufficient, making it impossible to recover enough copper.

このスラグクリーニングに使用する炉として、
攪拌の効果を十分に出すために多数の羽口を有し
溶融物中に送風が可能な非鉄製錬用転炉や固定床
炉を使用すると有効である。このような炉を用い
て反応を進行させると、転炉〓中のFe3O4が還元
されるにつれて〓の粘性が低下し、懸垂していた
銅分が沈降し、更に還元が進むと〓中に化学的に
溶解していた銅の一部も還元されメタル相に沈降
する。この還元反応の操業で還元が不充分であれ
ば、廃棄する〓中の銅分が高くなつて銅の収率が
低下し、一方必要以上に還元を進めても還元剤の
使用量が多くなり、また〓中の酸化鉄を金属鉄に
まで還元し、却つて〓の溶融温度を高め、流動性
を悪化することになる。従つて目的とする銅の回
収率を達成しつつ、還元剤の使用量を極力少なく
するためには、還元反応の終点を精度よく判定
し、〓中の銅分が目標値にまで下つた時に還元剤
の添加と送風とを中止して操業を終了することが
必要である。
As the furnace used for this slag cleaning,
In order to obtain sufficient stirring effects, it is effective to use a converter for non-ferrous smelting or a fixed bed furnace that has a large number of tuyeres and can blow air into the melt. When the reaction progresses using such a furnace, as the Fe 3 O 4 in the converter is reduced, the viscosity of the converter decreases, the suspended copper settles out, and as the reduction progresses further, A portion of the copper chemically dissolved therein is also reduced and precipitated into the metal phase. If the reduction is insufficient during the operation of this reduction reaction, the copper content in the waste product will increase and the copper yield will decrease.On the other hand, even if the reduction is carried out more than necessary, the amount of reducing agent used will increase. In addition, the iron oxide in the molten metal is reduced to metallic iron, which increases the melting temperature of the molten metal and deteriorates its fluidity. Therefore, in order to achieve the desired copper recovery rate while minimizing the amount of reducing agent used, the end point of the reduction reaction must be accurately determined, and when the copper content has fallen to the target value, It is necessary to stop adding the reducing agent and blowing air to end the operation.

しかしながら〓中の銅分を迅速に分析する方法
はなく、操業中の〓の銅品位を直接知ることはで
きなかつた。
However, there was no way to quickly analyze the copper content in the 〓, and it was not possible to directly know the copper content of the 〓 during operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は銅転炉〓の還元処理において、〓中の
銅品位を精度良く、且つ迅速に推定して操業の終
点を判定する方法を提供せんとするものである。
The present invention aims to provide a method for accurately and quickly estimating the copper quality in a copper converter and determining the end point of the operation in the reduction process of the copper converter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこの目的を達するために、溶融状態の
銅転炉〓中に還元剤を空気又は酸素富化空気と共
に吹込んで〓中の銅分を分離回収する操業におい
て、酸素濃淡電池を用いた酸素センサーにより〓
中の酸素分圧を測定し、この値を一定温度におけ
る酸素分圧に標準化し、その値から〓中の銅品位
を推定し目標値となつたところで操業の終点とす
るようにしたものである。
In order to achieve this object, the present invention has developed an oxygen concentration cell using an oxygen concentration cell in an operation in which a reducing agent is blown into a molten copper converter together with air or oxygen-enriched air to separate and recover the copper contained therein. By sensor〓
The oxygen partial pressure inside the tank is measured, this value is standardized to the oxygen partial pressure at a constant temperature, and the copper content inside the tank is estimated from that value, and the operation ends when the target value is reached. .

〓の酸素分圧と含銅量の関係については、過去
多くの文献が発表されているが、それらはいずれ
も静置したルツボ中での実験室的規模のデーター
を基にして、主として〓中への化学的溶解を論じ
たものであり、懸垂状態で銅が〓中に混入してい
るものと、化学的溶解が同時に起つている実操業
規模への適用は困難であつた。
Many papers have been published in the past regarding the relationship between oxygen partial pressure and copper content in It was difficult to apply to an actual operational scale where copper is mixed in the suspension and chemical dissolution occurs at the same time.

〔作用〕[Effect]

発明者等はFe−FeOを基準極とする酸素濃淡
電池を用いた酸素センサーを用いて実験を繰返し
た結果、還元剤と空気又は酸素富化空気が同時に
吹き込まれ、激しく反応し、且つ攪拌されている
〓においては、測定して得られた酸素分圧の値を
一定温度における酸素分圧に補正した値は、懸垂
銅分による〓中の含銅品位と、溶解銅分による〓
中の含銅品位との合計値との間に明確な関係があ
ることを見出したものである。
As a result of repeated experiments using an oxygen sensor using an oxygen concentration cell with Fe-FeO as the reference electrode, the inventors found that when the reducing agent and air or oxygen-enriched air were blown in at the same time, they reacted violently and were stirred. In this case, the value obtained by correcting the oxygen partial pressure value obtained by measurement to the oxygen partial pressure at a constant temperature is determined by the copper content in the suspended copper content and the dissolved copper content.
It was discovered that there is a clear relationship between the copper content and the total value.

即ち、本発明では煉瓦内寸で直径1.5m、長さ
1.7mのPS型小型転炉に銅品位3.0〜5.0重量%の溶
融転炉〓を約3t装入し、直径20〜40mmの羽口3〜
5本を使用して、羽口から4〜6Kg/分の微粉炭
と、酸素含有量25〜30容量%の酸素富化空気9.5
〜26.5m3/分とを吹込み、還元操業の時間を70〜
150分と還元状態を種々変更して試験を行ない、
炉口より酸素センサーを〓中に挿入して操業終了
時の〓の酸素分圧と温度とを測定し、同時にサン
プルを採取し、化学分析を行なつた。測定した酸
素分圧は1200℃の酸素分圧に標準化して、これと
サンプルの化学分析値との関係を対比したとこ
ろ、第1図のような結果が得られた。第1図にお
いて横軸は、酸素分圧を1200℃に標準化した値を
対数で示し、縦軸は〓中のCu重量%の値を対数
で示した。第1図から明らかなように標準化した
酸素分圧と〓中のCu重量%との間には両者を対
数で表わすと直線で表わされる明瞭な関係があ
り、Cu重量%の高いところではバラツキがやゝ
多いが、Cu重量%が低くなるとバラツキも少な
く、従つて還元操業を〓の酸素分圧を測定して標
準化酸素分圧を求めれば、目標とするCu重量%
に対応する酸素分圧を示したところで操業の終点
とすることができる。例えば廃棄する〓のCuを
0.5重量%以下とするならば、標準化酸素分圧は
ogPo2で−9.8以下とすれば良い。
That is, in the present invention, the internal dimensions of the brick are 1.5 m in diameter and 1.5 m in length.
Approximately 3 tons of melting converter with a copper grade of 3.0 to 5.0% by weight is charged into a 1.7 m PS type small converter, and 3 to tuyeres with a diameter of 20 to 40 mm are charged.
Using 5 cylinders, 4-6 kg/min of pulverized coal from the tuyere and 9.5 ml of oxygen-enriched air with an oxygen content of 25-30% by volume.
〜26.5m3 /min, and the reduction operation time is 70〜
We conducted tests for 150 minutes and various reduction conditions.
An oxygen sensor was inserted into the reactor from the furnace mouth to measure the oxygen partial pressure and temperature of the reactor at the end of operation, and at the same time samples were taken for chemical analysis. The measured oxygen partial pressure was standardized to the oxygen partial pressure at 1200°C, and when the relationship between this and the chemical analysis values of the sample was compared, the results shown in Figure 1 were obtained. In FIG. 1, the horizontal axis shows the value of oxygen partial pressure standardized to 1200° C. in logarithm, and the vertical axis shows the value of Cu weight % in 〓 in logarithm. As is clear from Figure 1, there is a clear relationship between the standardized oxygen partial pressure and the Cu weight % in the equation, which is expressed as a straight line when both are expressed logarithmically, and there is little variation at high Cu weight %. Although it is quite a lot, the lower the Cu weight %, the less variation there is, so if you measure the oxygen partial pressure of 〓 during reduction operation and find the standardized oxygen partial pressure, you can reach the target Cu weight %.
The end point of the operation can be determined when the oxygen partial pressure corresponding to is indicated. For example, discard Cu of
If it is 0.5% by weight or less, the standardized oxygen partial pressure is
It should be −9.8 or less with ogPo 2 .

酸素分圧の測定方法及び酸素分圧の標準化方法
について述べると次の如くである。
The method for measuring oxygen partial pressure and the method for standardizing oxygen partial pressure are as follows.

(イ) 酸素分圧の測定方法 転炉〓の還元反応の条件下で実質上完全な酸素
イオン伝導を示す酸化物、例えば安定化ジルコニ
アZrO2+MgOを固体電解質として用いて酸素濃
淡電池()を構成する。
(b) Method for measuring oxygen partial pressure Oxygen concentration cells () are constructed using an oxide that exhibits virtually complete oxygen ion conduction under the conditions of the reduction reaction in a converter, such as stabilized zirconia ZrO 2 +MgO, as a solid electrolyte. Configure.

Pt/Po2()/ZrO2+MgO/Po2()/Pt(1) この酸素濃淡電池()の起電力Eは次の(2)式
で表すことができる。
Pt/Po 2 ()/ZrO 2 +MgO/Po 2 ()/Pt(1) The electromotive force E of this oxygen concentration battery () can be expressed by the following equation (2).

E=RT/4FnPo2()/Po2() (2) 但し R:ガス定数 T:絶対温度〓 F:フアラデー定数 Po2():参照電極の示す酸素分圧 Po2():測定電極の示す酸素分圧 こゝで、参照電極としては一定温度において一
定の酸素分圧を示すものであれば特に限定される
ものではないが、転炉〓処理においては精度的に
Fe・FeOが優れている。
E=RT/4FnPo 2 ()/Po 2 () (2) where R: Gas constant T: Absolute temperature F: Faraday constant Po 2 (): Oxygen partial pressure indicated by the reference electrode Po 2 (): Measured electrode Here, the reference electrode is not particularly limited as long as it exhibits a constant oxygen partial pressure at a constant temperature, but in converter processing, accuracy is
Fe・FeO is excellent.

式(2)から明らかなように酸素濃淡電池()の
起電力Eと温度Tが測定できれば、参照電極の示
す酸素分圧Po2()の値は既知 〔例えば参照電極がFe・FeOの場合はRT
nPo2()=−526800+129.6T(J・mo-1)と
なる〕 であるため測定電極の示す酸素分圧Po2()を
求めることができる。
As is clear from equation (2), if the electromotive force E and temperature T of the oxygen concentration cell () can be measured, the value of the oxygen partial pressure Po 2 () indicated by the reference electrode is known [For example, when the reference electrode is Fe・FeO RT
nPo 2 ()=−526800+129.6T (J·mo −1 )] Therefore, the oxygen partial pressure Po 2 () indicated by the measurement electrode can be determined.

(ロ) 酸素分圧の標準化方法 酸素濃淡電池によつて測定される酸素分圧は温
度によつて変化し、各測定の度毎に〓え温度は一
般的に異なるため、得られた酸素分圧をある一定
の温度(例えば1200℃,1250℃など)における酸
素分圧に標準化する必要がある。この標準化方法
としては、反応系を構成する化合物成分間に成立
する酸化還元反応式により評価するのが一般的で
あり、本発明においては〓の構成元素に多量の鉄
を含むので次の反応式を考えるのが良い。
(b) Standardization method for oxygen partial pressure The oxygen partial pressure measured by an oxygen concentration battery changes depending on the temperature, and the temperature at each measurement generally differs. It is necessary to standardize the pressure to the oxygen partial pressure at a certain temperature (for example, 1200°C, 1250°C, etc.). This standardization method is generally evaluated using the redox reaction equation established between the compound components constituting the reaction system.In the present invention, since the constituent elements of 〓 contain a large amount of iron, the following reaction equation It's good to think about it.

4FeO()+O2(g)=2Fe2O3() (3) (3)式の標準自由エネルギー変化ΔG°(T)は
FeO()とFe2O3()の活量αFeO,αFe2O3及び酸
素分圧Po2(T)を用いて次式のように表わすこ
とができる。
4FeO () + O 2 (g) = 2Fe 2 O 3 () (3) The standard free energy change ΔG° (T) in equation (3) is
It can be expressed as follows using the activities α FeO and α Fe2O3 of FeO () and Fe 2 O 3 () and the oxygen partial pressure Po 2 (T).

ΔG°(T)=−RTn(αFe2O32
(αFeO4・Po2(T)(5) 従つて測定温度T1における酸素分圧Po2(T1
を標準温度T2における酸素分圧Po2(T2)に標準
化するには、温度T1とT2との変化では活量
αFe2O3,αFeOが変化せず一定であると仮定すれば、
(5)式から次の(6)式が得られる。
ΔG°(T)=−RTn(α Fe2O3 ) 2 /
FeO ) 4・Po 2 (T) (5) Therefore, the oxygen partial pressure Po 2 (T 1 ) at the measurement temperature T 1
To standardize to the oxygen partial pressure Po 2 (T 2 ) at the standard temperature T 2 , assuming that the activities α Fe2O3 and α FeO do not change and remain constant when the temperature changes between T 1 and T 2 ,
The following equation (6) is obtained from equation (5).

nPo2(T2)=1/RT2ΔG°(T2)−1
/RT1ΔG°(T1)+nPo2(T1)(6) 従つて測定温度T1、その温度における酸素分
圧が求められれば(3)式の反応自由エネルギーΔG°
は既知であるから、これらの値を(6)式に代入する
と標準温度T2における酸素分圧Po2(T2)を求め
ることができる。
nPo 2 (T 2 )=1/RT 2 ΔG° (T 2 )−1
/RT 1 ΔG° (T 1 ) + nPo 2 (T 1 ) (6) Therefore, if the measurement temperature T 1 and the oxygen partial pressure at that temperature are found, the reaction free energy ΔG° in equation (3)
is known, so by substituting these values into equation (6), the oxygen partial pressure Po 2 (T 2 ) at the standard temperature T 2 can be determined.

〔実施例〕〔Example〕

煉瓦内寸で直径1.5m、長さ1.7mのPS型転炉
で、内径25mmの羽口4本を具えたものにCu2.8%,
Fe44.7%,SiO221.0%(各重量%)の溶融転炉〓
3.3tを装入し、4.6Kg/分の微粉炭とO226.5容量%
の酸素富化空気15.8Nm3/分とを羽口より吸込ん
だ。この操業中酸素センサーにより酸素分圧、温
度を測定し、同時に少量のサンプルを採取して銅
品位の経時変化を測定した。操業は100分で終点
とした。
A PS type converter with a brick inner diameter of 1.5 m and a length of 1.7 m, equipped with 4 tuyeres with an inner diameter of 25 mm, containing 2.8% Cu,
Melting converter with Fe44.7% and SiO 2 21.0% (each weight%)
Charged 3.3t, 4.6Kg/min of pulverized coal and O 2 26.5% by volume
15.8 Nm 3 /min of oxygen-enriched air was sucked in through the tuyere. During operation, oxygen partial pressure and temperature were measured using the oxygen sensor, and at the same time a small sample was taken to measure changes in copper quality over time. The operation ended after 100 minutes.

求められた酸素分圧を1200℃に標準化した酸素
分圧、〓中のCu重量%と操業時間の関係を第2
図に示す。
The obtained oxygen partial pressure is standardized to 1200℃, and the relationship between Cu weight % in 〓 and operation time is calculated as the second
As shown in the figure.

この結果から、標準化酸素分圧と〓中のCu重
量%の低下がよく対応していることが判る。
This result shows that the normalized oxygen partial pressure corresponds well to the decrease in the weight percent of Cu in the sulfur.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば銅転炉〓の還元処理によつて〓中の銅分を回収
する場合に、攪拌の激しい実操業規模の炉におい
て、酸素センサーを用いて〓中の酸素分圧を測定
し、この値を一定温度における酸素分圧に標準化
した値が、〓中の銅品位と極めて明確な関係があ
り、標準化酸素分圧の値から銅品位を比較的精度
良く推定できるので、〓中の銅品位を目標とする
値になるように操業の終点を決めることができ、
還元操業を効率的に且つ経済的に実施することが
可能となる。
As is clear from the above description, according to the present invention, when recovering the copper content in a copper converter through reduction treatment, an oxygen sensor is used in a commercial-scale furnace with intense stirring. The value obtained by measuring the oxygen partial pressure in 〓 and standardizing this value to the oxygen partial pressure at a constant temperature has a very clear relationship with the copper grade in 〓. Since it can be estimated with high accuracy, the end point of the operation can be determined so that the copper quality in the copper reaches the target value.
It becomes possible to carry out the reduction operation efficiently and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は〓中の標準化酸素分圧と、銅含有量と
の関係を示した図、第2図は〓の還元操業時間
と、銅分含有量及び標準化酸素分圧との関係を示
した図である。
Figure 1 shows the relationship between the standardized oxygen partial pressure in 〓 and the copper content, and Figure 2 shows the relationship between the reduction operation time and the copper content and standardized oxygen partial pressure in 〓. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融状態の銅転炉〓中に還元剤を空気又は酸
素富化空気と共に吹込んで、該〓中の銅分を分離
回収する方法において、〓中の酸素分圧を測定
し、これらの値を予め定めた温度における酸素分
圧に標準化した値が予め設定した値に達したとき
をもつて操業の終点とすることを特徴とする銅転
炉〓の処理方法。
1 In a method of separating and recovering the copper content in a molten copper converter by injecting a reducing agent with air or oxygen-enriched air into the converter, the oxygen partial pressure in the converter is measured and these values are calculated. A method for treating a copper converter, characterized in that the end point of operation is when a standardized value of oxygen partial pressure at a predetermined temperature reaches a predetermined value.
JP60103557A 1985-05-14 1985-05-14 Treatment of copper converter slag Granted JPS61261445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103557A JPS61261445A (en) 1985-05-14 1985-05-14 Treatment of copper converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103557A JPS61261445A (en) 1985-05-14 1985-05-14 Treatment of copper converter slag

Publications (2)

Publication Number Publication Date
JPS61261445A JPS61261445A (en) 1986-11-19
JPH0470369B2 true JPH0470369B2 (en) 1992-11-10

Family

ID=14357118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103557A Granted JPS61261445A (en) 1985-05-14 1985-05-14 Treatment of copper converter slag

Country Status (1)

Country Link
JP (1) JPS61261445A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125820A (en) * 1988-11-02 1990-05-14 Sumitomo Metal Mining Co Ltd Method for operating copper converter
JP2004011011A (en) * 2002-06-11 2004-01-15 Nippon Mining & Metals Co Ltd Method of recovering cooper from cooper converter slag
RU2652278C1 (en) * 2017-06-19 2018-04-25 Общество с ограниченной ответственностью "Институт тепловых металлургических агрегатов и технологий "Стальпроект" Method of processing copper produced converter slag
KR102575339B1 (en) 2018-07-12 2023-09-06 스미토모 긴조쿠 고잔 가부시키가이샤 Method for recovering valuable metals from waste lithium ion batteries
CN111455194A (en) * 2020-04-24 2020-07-28 金川集团股份有限公司 Method for reducing copper content in PS converter slag
JP7226403B2 (en) * 2020-07-09 2023-02-21 住友金属鉱山株式会社 Methods of recovering valuable metals
WO2022009742A1 (en) 2020-07-09 2022-01-13 住友金属鉱山株式会社 Method for recovering valuable metal
JP7226404B2 (en) 2020-07-09 2023-02-21 住友金属鉱山株式会社 Methods of recovering valuable metals
CN113047908B (en) * 2021-04-08 2022-01-28 中国矿业大学(北京) Mine explosion alarm system based on data fusion

Also Published As

Publication number Publication date
JPS61261445A (en) 1986-11-19

Similar Documents

Publication Publication Date Title
US4614543A (en) Mixed lixiviant for separate recovery of zinc and lead from iron-containing waste materials
JPH0470369B2 (en)
Arai et al. Leaching of lead sulphate in sodium carbonate solution
JP5182209B2 (en) Determination of sulfur sulfide
CA1086073A (en) Electric smelting of lead sulphate residues
Nafziger et al. Preparation of titanium feedstock from Minnesota ilmenite by smelting and sulfation-leaching
JP3553107B2 (en) Smelting reduction method with improved recovery of metal components
Ren et al. The Distribution of Cobalt Between Co-Cu Alloys and Alumina-Saturated MnO-SiO 2-Al 2 O 3 Slags
Tan Applications of thermodynamic modeling in copper converting operations
Chikashi Influence of slag composition on reduction control and operations of the slag-cleaning furnace at KCM, Zambia
CN111676377B (en) Method for recycling zinc powder in zinc-containing dust through cyclic enrichment of flash furnace
CN117074607A (en) Method for testing content of alumina in ilmenite sand
US4329868A (en) Method for the determination of hydrogen content in inorganic materials
US718087A (en) Process of separating precious metals from their ores.
Hunter et al. Pyrometallurgical Beneficiation of Offgrade Chromite and Production of Ferrochromium
JPH0987762A (en) Method for recovering copper from copper smelting slag
SU1695168A1 (en) Method of assaying the precious metals
JP3432542B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
Dushina et al. Increase in the Life of Lances Submersible in Liquid Metal in Departments for Desulfurization
NAGATA et al. New Application of Oxygen Sensors to Ironmaking and Steelmaking in Japan
CN117706021A (en) Method for detecting content of aluminum oxide in aluminum-manganese-calcium alloy
Ballani Iron and Steel Making by Hydrometallurgical Method for Syrian Iron Ore.(Abstract only)
Fray et al. Process control in the production of molten metals
Nakagawa BEHAVIOR OF OXYGEN DURING OXIDIZING PERIOD IN THE ACID OPEN-HEARTH FURNACE PROCESS
Kamura Properties of iron made by the process of hydrogen reduction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees