JPH0469644B2 - - Google Patents

Info

Publication number
JPH0469644B2
JPH0469644B2 JP22949185A JP22949185A JPH0469644B2 JP H0469644 B2 JPH0469644 B2 JP H0469644B2 JP 22949185 A JP22949185 A JP 22949185A JP 22949185 A JP22949185 A JP 22949185A JP H0469644 B2 JPH0469644 B2 JP H0469644B2
Authority
JP
Japan
Prior art keywords
polymerization
water
vinyl chloride
salt
pvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22949185A
Other languages
Japanese (ja)
Other versions
JPS6289703A (en
Inventor
Sadahito Kobayashi
Takanori Kubota
Daizo Yamamoto
Yoshiteru Tsubokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP22949185A priority Critical patent/JPS6289703A/en
Publication of JPS6289703A publication Critical patent/JPS6289703A/en
Publication of JPH0469644B2 publication Critical patent/JPH0469644B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は塩玠化塩化ビニル系暹脂の補造方法に
関する。さらに詳しくは、塩玠化塩化ビニル系暹
脂を補造するにあたり、その前工皋ずなる塩化ビ
ニル系暹脂の補造を特定の重合法で行ない、その
のち垞法に埓぀お塩玠化しお塩玠化塩化ビニル系
暹脂を補造する方法に関する。 埓来の技術・発明が解決しようずする問題点 塩化ビニル系暹脂以䞋、PVCずいうの軟
化枩床を向䞊させるずいう性質を有しおいる塩玠
化塩化ビニル系暹脂以䞋、CPVCずいうは、
PVCを埌塩玠化しお補造されおいる。 CPVCの原料暹脂ずしおのPVCは、通垞、郚
分鹞化ポリビニルアルコヌル、メチルセルロヌ
ス、ヒドロキシプロピルメチルセルロヌスなどの
懞濁安定剀およびラりロむルパヌオキサむド、ゞ
−−゚チルヘキシルパヌオキシネオデカノ゚ヌ
ト、−ブチルパヌオキシネオデカノ゚ヌト、
αα′−アゟビス−−ゞメチルバレロニト
リルなどの油溶性重合開始剀を䜿甚した懞濁重合
法で重合されるのが䞀般的である。しかるに該懞
濁重合法でえられたPVCは、通垞、粒子衚面が
分散剀皮膜で芆われおいるためにゲル化性、可塑
剀吞収性などの点においお、乳化重合法による
PVCに劣るこずは知られおいる。 前蚘懞濁重合法でえられたPVCを甚いお
CPVCを補造するず、ゲル化性や初期着色性など
の劣るCPVCしかえられない。 䞀方、乳化重合法でえられたPVCは、基本粒
子が極めお小さく、ゲル化性、可塑剀吞収性が良
く、加工性の点では懞濁重合法によるPVCより
優れおいるが、塩析操䜜を必芁ずし、塩析により
えられた重合物は埮现で嵩比重が小さく、たた䞍
玔物の混入も倧きく、熱安定性などがわるいずい
う欠点がある。 前蚘乳化重合法でえられたPVCを甚いお
CPVCを補造するず、PVCの䞍玔物の混入によ
る熱安定性などがわるい、嵩比重が䜎いなどの問
題がCPVCにものこる䞊、PVCをうる際の塩析
操䜜によるコストアツプなどがそのたたCPVCの
コストなどにも圱響する。 したが぀お、懞濁重合法および乳化重合法の長
所を兌ね備えたPVC、すなわち䞍玔物含有量が
少なく、乳化重合物のような基本粒子が凝集䜓を
なし、懞濁重合法によるばあいのごずき粒子状の
倖芳を有し、該粒子状物の衚面には分散剀皮膜が
存圚せず、か぀塩析操䜜などを行なわなくおもえ
られるPVCを原料暹脂ずしたCPVCは、懞濁重
合法や乳化重合法によるPVCを原料暹脂ずした
CPVCずは異なる優れた特城を有し、しかも䜎コ
ストで補造しうるず考えられる。 このような特城を有するCPVCの原料暹脂の重
合方法ずしお、特公昭54−30833号公報に乳化剀
の䞍存圚䞋、氎性媒䜓䞭、該媒䜓に可溶性の重合
開始剀の存圚䞋で䞀次粒子基本粒子の凝集䜓
よりなる球状PVCをうる方法以䞋、゜ヌプフ
リヌsoap−free乳化重合法ずいうが開瀺さ
れおいる。しかし、該方法では基本粒子が凝集し
お球状粒子が生成する際に集合系が䞍安定ずな
り、䜙熱が困難であるこず、付着スケヌル量が非
垞に倚いこずなどの欠点がある。 本発明は゜ヌプフリヌ乳化重合法の䞊蚘問題
点、すなわち゜ヌプフリヌ乳化重合法による
PVCを甚いたCPVCの問題点を解決するために
なされたものである。 問題点を解決するための手段 本発明者らは重合系内の状態を透芖しうる耐圧
ガラス補重合機を甚いお゜ヌプフリヌ乳化重合法
に぀いお鋭意研究を重ねた結果、基本粒子が凝集
し、重合系が䞍安定化する前に氎難溶性無機リン
酞塩を添加するず、重合系の流動状態を維持しな
がら球状粒子を生成させるこずができ、付着スケ
ヌル量を枛少させうるこずを芋出した。 本発明は前蚘和芋に基づきなされたものであ
り、塩化ビニル単量䜓たたはこれず共重合しうる
他の単量䜓ずの混合物を氎性媒䜓䞭で、氎溶性過
硫酞塩を重合開始剀ずしお乳化剀䞍存圚䞋で重合
を開始し、重合途䞭で氎難溶性無機リン酞塩を添
加しおえられる塩化ビニル系暹脂を埌塩玠化する
こずを特城ずする塩玠化塩化ビニル系暹脂の補造
方法に関する。 実斜䟋 本発明に甚いる塩化ビニル単量䜓ず共重合しう
る他の単量䜓ずしおは、たずえば゚チレン、プロ
ピレンなどのオレフむン類、酢酞ビニル、ステア
リン酞ビニルなどのビニル゚ステル類、アクリル
酞メチル、メタクリル酞メチルなどのアクリル酞
゚ステル類、マレむン酞たたはフマル酞などの酞
の゚ステル類や無氎物類、アクリルニトリルどの
ニトリル化合物類、塩化ビニリデンのごずきビニ
リデン化合物類などがあげられる。 本発明においおは塩化ビニル単量䜓たたはこれ
ず共重合しうる他の単量䜓ずの混合物を氎性媒䜓
䞭で重合する際に、乳化剀䞍存圚䞋で氎溶性過硫
酞塩を重合開始剀ずしお重合が開始せしめられ
る。 前蚘氎性媒䜓䞭ずは、氎に、重合開始剀であ
る、たずえば過硫酞カリりム、過硫酞アンモニり
ムなどの氎溶性過硫酞塩を加え、さらに芁すれば
トリクロロ゚チレン、プロピオンアルデヒド、
−ペンタン、−メルカプト゚タノヌルなどの分
子量調節剀、亜硫酞ナトリりム、亜硫酞氎玠ナト
リりムなどの還元剀などを加えた氎性液のこずで
ある。 前蚘重合反応に䜿甚される氎溶性過硫酞塩、分
子量調節剀、還元剀などは最初に䞀括しお氎に添
加しおもよいが、重合反応䞭、分割しお添加しお
もよい。 前蚘氎溶性過硫酞塩などの氎に察する添加量
は、生産性、品質に察する圱響などの点から最終
的に単量䜓に察しお氎溶性過硫酞塩のばあいで通
åžž0.01〜1.0重量、以䞋同様、奜たしくは
0.05〜0.2、分子量調節剀のばあいで通垞〜
10、奜たしくは〜、還元剀のばあいで通
垞〜0.5、奜たしくは0.01〜0.1である。 塩化ビニル単量䜓たたはこれず共重合しうる他
の単量䜓ず混合物の氎ずの比率は、生産性、重合
機での陀熱などの点から最終的に氎単量䜓
〜が奜たしく、〜がさ
らに奜たしい。なお塩化ビニル単量䜓ずこれず共
重合しうる他の単量䜓ずの混合物を甚いるばあい
の組成ずしおは、党混合物䞭に塩化ビニル単量䜓
が70以䞊含たれおいるこずが品質などの点から
奜たしく、85以䞊であるこずがさらに奜たし
い。 乳化剀䞍存圚䞋で重合が進行するメカニズムに
぀いおは皮々の説が提案されおいるが、氎溶性過
硫酞塩が分解しお生成した硫酞根ラゞカル・
SO4 -にモノマヌが反応し、硫酞根を未
端に有するオリゎマヌMM
MSO4 -が乳化
剀的機胜をはたすものず考えられる。したが぀お
重合開始剀分解物を末端に有するオリゎマヌが乳
化剀的機胜をはたさないずきには、重合が党く進
行しないか、重合速床が非垞に小さいものずなる
ため、乳化剀䞍存圚䞋で本発明に甚いる重合開始
剀ずしお、氎溶性過硫酞塩を甚いるこずが必須で
ある。 本発明においおは重合途䞭で氎難溶性無機リン
酞塩が添加される。 前蚘氎難溶性無機リン酞塩ずしおは、たずえば
リン酞のカルシりム塩、ストロンチりム塩、バリ
りム塩、マグネシりム塩、アルミニりム塩、鉛塩
などがあげられ、これらのうちではリン酞カルシ
りムが重合安定性、品質、コストなどの点から奜
たしい。 前蚘氎難溶性無機リン酞塩の䜿甚量にはずくに
限定はないが、塩化ビニル単量䜓たたはその混合
物100郚重量郚、以䞋同様に察し0.01〜郚
䜿甚するのが重合安定性、品質などの点から奜た
しく、0.05〜0.5郚であるのがさらに奜たしい。 氎難溶性無機リン酞塩の添加は重合初期のラテ
ツクス状のものが䞍安定化する前に添加するこず
が奜たしく、重合条件により異なるが、䞀般に重
合転化率で〜50、さらには10〜30の範囲で
ある。該無機リン酞塩の添加は回だけに限られ
るものではなく、芁すれば回以䞊でよいが、最
初の添加は䞊蚘重合転化率の範囲で行なうこずが
奜たしい。重合初期のラテツクス状のものに凝集
がおこり、䞍安定化したのちに該無機リン酞塩を
添加しおも本発明の効果は少なく、逆に無機リン
酞塩を仕蟌時に添加するず基本粒子の凝集状態に
圱響をおよがし、えられる球状粒子の粒子内空〓
ポロシテむヌが小さくなる傟向が生ずる。 氎難溶性リン酞塩の添加ず同時たたはそののち
であれべ界面掻性剀、懞濁安定剀、PH調敎剀など
を添加しおもよい。 本発明における重合反応の枩床範囲は通垞40〜
75℃であるが、ずくに限定されるものではない。 以䞊説明したような本発明に甚いる方法により
PVCを補造するず、粒子衚面の分散剀皮膜がな
く、基本粒子の凝集䜓からなる球状粒子を、重合
噚内の付着スケヌル量を少なく、陀熱が容易な状
態で重合するこずができる。 さらに乳化重合法によるばあいのように、塩析
操䜜を必芁ずしないので工皋が短かく、䞍玔物の
混入も少なく、熱安定性も良奜なPVCがえられ
る。 本発明に甚いる方法によれば、通垞、粒子埄
〜mm皋床のPVCの球状粒子がえられるが、䞀
旊これを氎性媒䜓から分離したのち、埌塩玠化反
応によりCPVCが補造される。 埌塩玠化反応前に球状粒子を粉砕しおもしなく
おもよいが、塩玠化反応の均䞀性を高め、塩玠化
反応速床を倧きくし、CPVCの初期着色性、熱安
定性などの品質を向䞊させるずいう面からするず
粉砕する方が奜たしい。 球状粒子を粉砕するばあいには、たずえばハン
マヌミル、むンペラヌブレカヌ、ボヌルミル、チ
ナヌブミルなどの粉砕機を甚いる通垞の固䜓の粉
砕に利甚される方法で粉砕すればよい。 埌塩玠化反応ずしおは、氎性懞濁法、有機溶媒
懞濁法、溶液法、気盞法などの方法が知られおお
り、いずれの方法も採甚しうる。これらのうちで
は氎性懞濁法が、重合時に添加した氎難溶性無機
リン酞塩が埌塩玠化反応時の匷酞性条件䞋で氎性
媒䜓䞭に溶出し、重合䜓䞭にほずんど残存しなく
なり、PVCの品質面ずくに透明性からみお
奜たしい。 ぀ぎに本発明の方法を実斜䟋および比范䟋に基
づいお説明するが、本発明はこれらに限定される
ものではない。 なお、以䞋の物性評䟡は䞋蚘の方法に埓぀お行
な぀た。 粒床分垃 ふるい振盪法によ぀た。 嵩比重 JIS  6721によ぀た。 ポロシテむヌ 米囜AMINCO瀟補の氎銀圧入匏ポロシメヌタ
ヌ−7118型を甚いお、絶察圧11〜1011psi
口埄0.17〜15.9Όの間に暹脂100圓りに圧
入される氎銀の容量を枬定しおポロシテむヌを求
めた。 ゲル化時間 CPVC 100郚、カネ゚ヌス−22鐘淵化孊工
業(æ ª)補郚、スズ系安定剀日東化成(æ ª)補の
TVS−8831郚、ステアリン酞日本油脂(æ ª)
補郚をホモゞナむザヌにお分間撹拌
10000rpmしお䜜補したコンパりンド54をブ
ラベンダヌ瀟補プラストグラフ詊隓機に入れ、ロ
ヌタヌの回転数30rpm、チダンバヌ枩床180℃の
条件䞋に投入しおから最高トルクに達するたでの
時間を枬定した。 初期着色性 CPVC 100郚、カネ゚ヌス−22 10郚、スズ
系安定剀日東化成(æ ª)補のTVS−8831郚、
滑剀VPH−ヘキスト瀟補0.7郚、ステアリ
ン酞日本油脂(æ ª)補郚を混合したのち、185
℃×分間混緎しお厚さmmのロヌルシヌトを䜜
補し、該ロヌルシヌトから厚さmmのプレス板
プレス条件190℃×10分を䜜り、その初期着色
性を評䟡した。 熱安定性 初期着色性評䟡のために䜜補したのず同様のロ
ヌルシヌトを䜜補し、195℃のギダヌオヌブン内
に入れお15分毎にシヌトを取出し、黒化するたで
の時間を枬定した。 実斜䟋  内容積1.7m3の重合機に氎200郚、過硫酞カリり
ム0.085郚、亜硫酞ナトリりム0.034郚を仕蟌み、
内郚の空気を真空ポンプで排陀したのち塩化ビニ
ル単量䜓100郚440Kgを装入し、所定の撹拌条
件䞋で64℃たで昇枩しお重合させた。 重合転化率15到達時にリン酞カルシりム0.1
郚を添加し、内圧が定垞圧より2.5Kgcm2䜎䞋し
たずき未反応単量䜓を回収した重合時間時間
分。重合転化率は85、重合時のゞダケツト
最䜎枩床は46℃であり、猶内付着スケヌル量はり
゚ツト状態で0.1察仕蟌モノマヌ量ず少な
か぀た。えられたPVCは、平均粒子埄が5160Ό
で粒子埄の非垞にシダヌプな球状粒子であり、走
査型電子顕埮鏡により芳察した結果、その球状粒
子は基本粒子粒子埄玄0.1〜2Όの凝集察で
あり、通垞の懞濁重合法によるPVCで芳察され
る分散剀皮膜は認められなか぀た。 この球状粒子を粉砕機により平均粒子埄が
250Όの粒子に粉砕した。぀いで粉砕しおえら
れたPVCパりダヌ900ず氎5100ずを内容積
の撹拌機付反応噚に仕蟌み、充分撹拌しお懞濁
液ずし、反応噚内にチツ玠ガスを吹蟌んで反応噚
内の空気をチツ玠で眮換した。 そののちこの懞濁液に塩玠ガスを導入し、反応
系を塩玠で飜和させたのち、反応噚を50℃に昇枩
しお塩玠ガスを過剰に䟛絊しながら、高圧氎銀灯
の照射䞋でPVCを塩玠化した。3.6時間埌に生成
物の塩玠含有率が64に達し、ここで高圧氎銀灯
照射ず塩玠の導入ずの䞭止し、チツ玠ガスを通し
お反応噚内の塩玠をチツ玠で眮換し、スラリヌ䞭
のCPVCに察しお塩酞ヒドロキシアルミンを1.0
加えお撹拌しながら攟眮しお、完党に塩玠を陀
去した。぀いで濟過し、CPVCを充分むオン亀換
氎で氎掗したのち氎酞化ナトリりム氎溶液を加え
お䞭和し、さらに氎掗しおから濟過・也燥しお
CPVCをえた。 えられたCPVCは第衚に瀺すようにゲル化
性、初期着色性、熱安定性共に優れたものであ぀
た。 実斜䟋  実斜䟋で甚いたリン酞カルシりムの添加量を
0.4郚にかえた他は実斜䟋ず同様にしお重合、
埌塩玠化反応を行ない、CPVCをえた。 えられたPVCは第衚に瀺すごずく、平均粒
子埄が3670Όで粒埄分垃のシダヌプな球状粒子
で、重合時のゞダケツト最䜎枩床は45℃ず高く、
付着スケヌル量も少なか぀た。たたえられた
CPVCはゲル化性、初期着色性、熱安定性共に良
奜なものであ぀た。 比范䟋  実斜䟋で甚いた過硫酞カリりムを0.065郚、
亜硫酞ナトリりムを0.026郚ずし、リン酞カルシ
りムを添加しない他は実斜䟋ず同様にしお重
合、埌塩玠化反応を行ない、CPVCをえた。 えられたCPVCは第衚に瀺すごずく、ゲル化
性、初期着色性、熱安定性共に優れたものであ぀
たが、PVC重合時におけるゞダケツト最䜎枩床
が23℃ず䜎く、スケヌルアツプに際しお陀熱が困
難であり、猶内付着スケヌル量は4.5察仕蟌
モノマヌ量ず非垞に倚か぀た。したが぀お、こ
の方法で塩化ビニル単量䜓からCPVCを補造する
際のスケヌルアツプに問題のあるこずがわかる。 比范䟋  懞濁重合法 内容積1.7m3の重合機にヒドロキシプロピルメ
チルセルロヌス0.06郚を溶解した氎200郚、重合
開始剀−ブチルパヌオキシネオデカノ゚ヌ
ト0.018郚、−トリメチルヘキサノ
むルパヌオキサむド0.024郚を仕蟌み、内郚の空
気を真空ポンプで排陀したのち塩化ビニル単量䜓
100郚440Kgを装入し、所定の撹拌条件䞋で64
℃たで昇枩しお懞濁重合を開始させ、内圧が定垞
圧より0.5Kgcm2䜎䞋した時点で未反応単量䜓を
回収した重合時間時間。重合転化率は75、
重合時のゞダケツト最䜎枩床は47℃、猶内付着ス
ケヌル量はり゚ツト状態で0.07察仕蟌モノマ
ヌ量であ぀た。 えられたPVCは平均粒子埄110Όであり、粒
子衚面には特有の分散剀皮膜が認められた。この
PVCパりダヌを粉砕せずに実斜䟋ず同様にし
お埌塩玠化反応を行ない、CPVCをえた。 えられたCPVCは第衚に瀺すごずく、ゲル化
性、初期着色性共にわるか぀た。
[Industrial Application Field] The present invention relates to a method for producing a chlorinated vinyl chloride resin. More specifically, in producing chlorinated vinyl chloride resin, the pre-process of producing vinyl chloride resin is carried out using a specific polymerization method, and then chlorinated according to a conventional method to produce chlorinated vinyl chloride resin. Relating to a method of manufacturing. [Problems to be solved by conventional technology/invention] Chlorinated vinyl chloride resin (hereinafter referred to as CPVC) has the property of improving the softening temperature of vinyl chloride resin (hereinafter referred to as PVC). ,
Manufactured by post-chlorinating PVC. PVC as a raw material resin for CPVC is usually mixed with suspension stabilizers such as partially saponified polyvinyl alcohol, methyl cellulose, hydroxypropyl methyl cellulose, and lauroyl peroxide, di-2-ethylhexyl peroxy neodecanoate, t-butyl peroxy neodecanoate, etc. decanoate,
Polymerization is generally carried out by suspension polymerization using an oil-soluble polymerization initiator such as α,α'-azobis-2,4-dimethylvaleronitrile. However, since PVC obtained by the suspension polymerization method usually has its particle surface covered with a dispersant film, it has poor gelling properties and plasticizer absorption properties compared to those obtained by the emulsion polymerization method.
It is known that it is inferior to PVC. Using PVC obtained by the above suspension polymerization method
When manufacturing CPVC, only CPVC with inferior gelling properties and initial coloring properties can be obtained. On the other hand, PVC obtained by emulsion polymerization has extremely small basic particles, has good gelling properties and plasticizer absorption, and is superior to PVC obtained by suspension polymerization in terms of processability. The polymer obtained by salting out is fine and has a low bulk density, contains a large amount of impurities, and has poor thermal stability. Using PVC obtained by the emulsion polymerization method described above,
When producing CPVC, problems such as poor thermal stability due to the contamination of PVC impurities and low bulk specific gravity persist with CPVC, and the cost increase due to the salting-out operation when obtaining PVC directly adds to the cost of CPVC. is also affected. Therefore, PVC has both the advantages of suspension polymerization and emulsion polymerization, that is, it has a low impurity content, and the basic particles form aggregates like those of emulsion polymers, and the particulate form that is produced by suspension polymerization is low. CPVC, which has the appearance of PVC as a raw material resin, has no dispersant film on the surface of the particles, and can be obtained without salting out operations, can be produced using suspension polymerization or emulsion polymerization. PVC was used as the raw material resin.
It is thought that it has excellent characteristics different from CPVC and can be manufactured at low cost. Japanese Patent Publication No. 54-30833 describes a method for polymerizing raw material resin for CPVC having such characteristics in the absence of an emulsifier in an aqueous medium in the presence of a polymerization initiator soluble in the medium. ) (hereinafter referred to as soap-free emulsion polymerization method) is disclosed. However, this method has drawbacks such as the aggregate system becomes unstable when basic particles aggregate to form spherical particles, it is difficult to preheat, and the amount of attached scale is extremely large. The present invention solves the above-mentioned problems of the soap-free emulsion polymerization method.
This was done to solve the problems of CPVC using PVC. [Means for Solving the Problems] The present inventors have conducted intensive research on the soap-free emulsion polymerization method using a pressure-resistant glass polymerization machine that allows the state inside the polymerization system to be seen through, and have found that the basic particles are agglomerated. discovered that by adding a poorly water-soluble inorganic phosphate before the polymerization system becomes unstable, it is possible to generate spherical particles while maintaining the fluidity of the polymerization system, and the amount of attached scale can be reduced. The present invention has been made based on the above-mentioned findings, and consists of using a vinyl chloride monomer or a mixture with other monomers copolymerizable with it in an aqueous medium, and using a water-soluble persulfate as a polymerization initiator. This invention relates to a method for producing a chlorinated vinyl chloride resin, which comprises starting polymerization in the absence of an emulsifier and adding a poorly water-soluble inorganic phosphate during polymerization to post-chlorinate the obtained vinyl chloride resin. [Example] Other monomers that can be copolymerized with the vinyl chloride monomer used in the present invention include, for example, olefins such as ethylene and propylene, vinyl esters such as vinyl acetate and vinyl stearate, and methyl acrylate. , acrylic esters such as methyl methacrylate, acid esters and anhydrides such as maleic acid or fumaric acid, nitrile compounds such as acrylonitrile, and vinylidene compounds such as vinylidene chloride. In the present invention, when vinyl chloride monomer or a mixture with other monomers copolymerizable with vinyl chloride monomer is polymerized in an aqueous medium, a water-soluble persulfate is used as a polymerization initiator in the absence of an emulsifier. is started. In the aqueous medium, a polymerization initiator such as a water-soluble persulfate such as potassium persulfate or ammonium persulfate is added to water, and if necessary, trichlorethylene, propionaldehyde, n
- An aqueous liquid containing a molecular weight regulator such as pentane or 2-mercaptoethanol, and a reducing agent such as sodium sulfite or sodium bisulfite. The water-soluble persulfate, molecular weight regulator, reducing agent, etc. used in the polymerization reaction may be added all at once to the water at the beginning, or may be added in portions during the polymerization reaction. The amount of water-soluble persulfate added to water is usually 0.01 to 1.0% (wt%) based on the monomer, considering the impact on productivity and quality. , hereinafter the same), preferably
0.05-0.2%, usually 0-0 in the case of molecular weight regulator
10%, preferably 0-5%, and in the case of reducing agents usually 0-0.5%, preferably 0.01-0.1%. The ratio of vinyl chloride monomer or other monomers that can be copolymerized with it to water in the mixture is determined by the final water/monomer ratio from the viewpoint of productivity, heat removal in the polymerization machine, etc.
The ratio is preferably 1/1 to 5/1, and more preferably 1/1 to 3/1. In addition, when using a mixture of vinyl chloride monomer and other monomers that can be copolymerized with vinyl chloride monomer, the composition must contain 70% or more of vinyl chloride monomer in the entire mixture for quality reasons. It is preferable from this point of view, and more preferably 85% or more. Various theories have been proposed regarding the mechanism by which polymerization proceeds in the absence of an emulsifier, but sulfate radicals (.
It is thought that the monomer (M) reacts with SO 4 - ), and the oligomer (MM...MSO 4 - ) having a sulfate group at its end functions as an emulsifier. Therefore, if the oligomer having a polymerization initiator decomposition product at its end does not function as an emulsifier, polymerization will not proceed at all or the polymerization rate will be very low. It is essential to use a water-soluble persulfate as the polymerization initiator. In the present invention, a poorly water-soluble inorganic phosphate is added during polymerization. Examples of the sparingly water-soluble inorganic phosphates include calcium salts, strontium salts, barium salts, magnesium salts, aluminum salts, and lead salts of phosphoric acid. Among these, calcium phosphate has poor polymerization stability, quality, cost, etc. It is preferable from the point of view. Although there is no particular limitation on the amount of the slightly water-soluble inorganic phosphate used, it is preferable to use 0.01 to 1 part per 100 parts (parts by weight, the same applies hereinafter) of vinyl chloride monomer or a mixture thereof to improve polymerization stability and quality. The amount is preferably 0.05 to 0.5 parts, and more preferably 0.05 to 0.5 parts. It is preferable to add the poorly water-soluble inorganic phosphate before the latex becomes unstable at the initial stage of polymerization, and although it varies depending on the polymerization conditions, the polymerization conversion rate is generally 5 to 50%, more preferably 10 to 30%. % range. The addition of the inorganic phosphate salt is not limited to one time, and may be added two or more times if necessary, but the first addition is preferably carried out within the above-mentioned polymerization conversion range. Even if the inorganic phosphate is added after the latex-like material agglomerates and becomes unstable in the early stage of polymerization, the effect of the present invention will be small; conversely, if the inorganic phosphate is added at the time of preparation, the basic particles will agglomerate. Intraparticle voids of spherical particles that affect the state
(porosity) tends to become smaller. A surfactant, a suspension stabilizer, a PH adjuster, etc. may be added simultaneously with or after the addition of the poorly water-soluble phosphate. The temperature range of the polymerization reaction in the present invention is usually 40~
The temperature is 75°C, but is not particularly limited. By the method used in the present invention as explained above,
When PVC is produced, there is no dispersant film on the particle surface, and spherical particles consisting of aggregates of basic particles can be polymerized with a small amount of scale attached in the polymerization vessel and with easy heat removal. Furthermore, unlike the emulsion polymerization method, there is no need for a salting-out operation, so the process is short, there is less contamination of impurities, and PVC with good thermal stability can be obtained. According to the method used in the present invention, the particle size is usually 1
Spherical particles of PVC with a diameter of about 8 mm are obtained, which are once separated from the aqueous medium and then subjected to a post-chlorination reaction to produce CPVC. It is not necessary to crush the spherical particles before the post-chlorination reaction, but it increases the uniformity of the chlorination reaction, increases the chlorination reaction rate, and improves the initial coloring property, thermal stability, and other qualities of CPVC. From the viewpoint of improving the quality of the material, pulverization is preferable. When pulverizing spherical particles, it may be pulverized by a method commonly used for pulverizing solids using a pulverizer such as a hammer mill, impeller breaker, ball mill, or tube mill. As the post-chlorination reaction, methods such as an aqueous suspension method, an organic solvent suspension method, a solution method, and a gas phase method are known, and any method can be adopted. Among these methods, the aqueous suspension method is used because the poorly water-soluble inorganic phosphate added during polymerization is eluted into the aqueous medium under strongly acidic conditions during the post-chlorination reaction, and hardly remains in the polymer. It is preferable in terms of quality (especially transparency). Next, the method of the present invention will be explained based on Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the following physical property evaluation was performed according to the following method. (Particle size distribution) Based on the sieve shaking method. (Bulk specific gravity) According to JIS K 6721. (Porosity) Using a mercury intrusion porosimeter (model 5-7118) manufactured by AMINCO in the United States, the absolute pressure was 11 to 1011 psi.
The porosity was determined by measuring the volume of mercury injected per 100 g of resin between the diameter of 0.17 and 15.9 ÎŒm. (Geling time) 100 parts of CPVC, 7 parts of Kane Ace B-22 (manufactured by Kanebuchi Chemical Industry Co., Ltd.), tin-based stabilizer (manufactured by Nitto Kasei Co., Ltd.)
TVS-8831) 2 parts, stearic acid (NOF Corporation)
54g of the compound prepared by stirring (10,000rpm) 2 parts of the product in a homogenizer for 5 minutes (10,000rpm) was placed in a Brabender Plastograph tester under the conditions of a rotor rotation speed of 30rpm and a chamber temperature of 180℃. The time required to reach the maximum torque was measured. (Initial coloration) 100 parts of CPVC, 10 parts of Kane Ace B-22, 2 parts of tin-based stabilizer (TVS-8831 manufactured by Nitto Kasei Co., Ltd.),
After mixing 0.7 parts of lubricant VPH-4 (manufactured by Hoechst) and 1 part of stearic acid (manufactured by NOF Corporation), 185
A roll sheet with a thickness of 1 mm was prepared by kneading for 3 minutes at 190°C, and a press plate with a thickness of 5 mm (pressing conditions: 190°C for 10 minutes) was made from the roll sheet, and its initial colorability was evaluated. (Thermal stability) A roll sheet similar to that used for initial colorability evaluation was prepared, and the sheet was placed in a gear oven at 195°C, and the sheet was taken out every 15 minutes, and the time until blackening was measured. . Example 1 200 parts of water, 0.085 parts of potassium persulfate, and 0.034 parts of sodium sulfite were charged into a polymerization machine with an internal volume of 1.7 m 3 .
After the internal air was removed using a vacuum pump, 100 parts (440 kg) of vinyl chloride monomer was charged, and the temperature was raised to 64°C under predetermined stirring conditions to polymerize. Calcium phosphate 0.1 when polymerization conversion reaches 15%
When the internal pressure decreased to 2.5 kg/cm 2 from the steady pressure, unreacted monomers were collected (polymerization time: 6 hours and 5 minutes). The polymerization conversion rate was 85%, the minimum temperature of the jacket during polymerization was 46°C, and the amount of scale adhering inside the can was as small as 0.1% (based on the amount of monomer charged) in the wet state. The obtained PVC has an average particle size of 5160 Όm.
They are spherical particles with a very sharp particle size, and as a result of observation using a scanning electron microscope, the spherical particles are agglomerated pairs of elementary particles (particle diameter of about 0.1 to 2 ÎŒm), and PVC produced by the normal suspension polymerization method. No dispersant film was observed. These spherical particles are milled to reduce the average particle size.
It was ground into particles of 250 ÎŒm. Next, 900g of the PVC powder obtained by crushing and 5100g of water were mixed into an inner volume of 8
The mixture was charged into a reactor equipped with a stirrer and sufficiently stirred to form a suspension, and nitrogen gas was blown into the reactor to replace the air in the reactor with nitrogen. After that, chlorine gas was introduced into this suspension to saturate the reaction system with chlorine, and then the temperature of the reactor was raised to 50°C, and while supplying excess chlorine gas, PVC was heated under irradiation with a high-pressure mercury lamp. Chlorinated. After 3.6 hours, the chlorine content of the product reached 64%, at which time the high-pressure mercury lamp irradiation and the introduction of chlorine were stopped, and nitrogen gas was passed to replace the chlorine in the reactor with nitrogen, and the CPVC in the slurry was replaced with nitrogen. hydroxyalumine hydrochloride to 1.0
% was added and left to stand while stirring to completely remove chlorine. Next, filter it, wash the CPVC thoroughly with ion-exchanged water, neutralize it by adding an aqueous sodium hydroxide solution, wash it with water, filter it, and dry it.
I got CPVC. As shown in Table 1, the obtained CPVC had excellent gelling properties, initial coloring properties, and thermal stability. Example 2 The amount of calcium phosphate used in Example 1 was
Polymerization was carried out in the same manner as in Example 1 except that the amount was changed to 0.4 part.
A post-chlorination reaction was performed to obtain CPVC. As shown in Table 1, the obtained PVC was spherical particles with an average particle size of 3670 Όm and a sharp particle size distribution, and the minimum temperature of the jacket during polymerization was as high as 45°C.
The amount of attached scale was also small. was born again
CPVC had good gelling properties, initial coloring properties, and thermal stability. Comparative Example 1 0.065 part of potassium persulfate used in Example 1,
Polymerization and post-chlorination reaction were carried out in the same manner as in Example 1 except that sodium sulfite was used at 0.026 parts and calcium phosphate was not added to obtain CPVC. As shown in Table 1, the resulting CPVC had excellent gelling properties, initial coloring properties, and thermal stability, but the minimum jacket temperature during PVC polymerization was as low as 23°C, and heat removal was difficult during scale-up. However, the amount of scale adhering inside the can was extremely high at 4.5% (based on the amount of monomer charged). Therefore, it can be seen that there is a problem in scale-up when producing CPVC from vinyl chloride monomer using this method. Comparative Example 2 (Suspension polymerization method) In a polymerization machine with an internal volume of 1.7 m 3 , 200 parts of water in which 0.06 part of hydroxypropyl methylcellulose was dissolved, 0.018 part of polymerization initiator (t-butylperoxyneodecanoate), 3.5 parts , 0.024 part of 5-trimethylhexanoyl peroxide was added, and after removing the air inside with a vacuum pump, vinyl chloride monomer was added.
Charge 100 parts (440Kg) and stir under specified stirring conditions.
Suspension polymerization was started by raising the temperature to .degree. C., and unreacted monomers were collected when the internal pressure decreased by 0.5 Kg/ cm.sup.2 from the steady pressure (polymerization time: 6 hours). Polymerization conversion rate is 75%,
The minimum temperature of the jacket during polymerization was 47°C, and the amount of scale adhering inside the can was 0.07% (based on the amount of monomer charged) in the wet state. The obtained PVC had an average particle size of 110 Όm, and a unique dispersant film was observed on the particle surface. this
A post-chlorination reaction was carried out in the same manner as in Example 1 without pulverizing the PVC powder to obtain CPVC. As shown in Table 1, the obtained CPVC had poor gelling properties and initial coloring properties.

【衚】【table】

【衚】 発明の効果 本発明に甚いる方法によりPVCを補造するず、
粒子衚面に分散剀皮膜がなく、基本粒子の凝集䜓
からなるPVC粒状粒子を、重合噚内ぞの付着ス
ケヌル量が少なく、陀熱が容易な状態でうるこず
ができ、乳化重合法によるばあいのように塩析を
する必芁がないので䞍玔物含量の少ないPVCが
えられる。 本発明の方法ではこのようなPVCを埌塩玠化
しおCPVCを補造するため、ゲル化性が良奜で、
初期着色性が優れ、熱安定性の良奜なCPVCを塩
析を行なうこずなく、倧芏暡に補造しうるため、
工業的䟡倀はすこぶる倧きいものである。
[Table] [Effects of the invention] When PVC is produced by the method used in the present invention,
PVC granules, which do not have a dispersant film on the particle surface and consist of aggregates of basic particles, can be obtained in a state where the amount of scale adhering to the inside of the polymerization vessel is small and heat can be easily removed. Since there is no need for salting out, PVC with low impurity content can be obtained. In the method of the present invention, such PVC is post-chlorinated to produce CPVC, so it has good gelling properties and
CPVC, which has excellent initial colorability and good thermal stability, can be manufactured on a large scale without salting out.
The industrial value is enormous.

Claims (1)

【特蚱請求の範囲】  塩化ビニル単量䜓たたはこれず共重合しうる
他の単量䜓ずの混合物を氎性媒䜓䞭で、氎溶性過
硫酞塩を重合開始剀ずしお乳化剀䞍存圚䞋で重合
を開始し、重合途䞭で氎難溶性無機リン酞塩を添
加しおえられる塩化ビニル系暹脂を埌塩玠化する
こずを特城ずする塩玠化塩化ビニル系暹脂の補造
方法。  氎溶性過硫酞塩が過硫酞カリりムたたは過硫
酞アンモニりムである特蚱請求の範囲第項蚘茉
の補造方法。  氎難溶性無機リン酞塩がリン酞のカルシりム
塩、ストロンチりム塩、バリりム塩、マグネシり
ム塩、アルミニりム塩、鉛塩たたは亜鉛塩である
特蚱請求の範囲第項蚘茉の補造方法。  氎難溶性無機リン酞塩の添加時期が、重合転
化率で〜50重量の範囲である特蚱請求の範囲
第項蚘茉の補造方法。
[Claims] 1. Polymerization of a vinyl chloride monomer or a mixture with other monomers copolymerizable with it in an aqueous medium in the absence of an emulsifier using a water-soluble persulfate as a polymerization initiator. 1. A method for producing a chlorinated vinyl chloride resin, which comprises starting the polymerization and adding a poorly water-soluble inorganic phosphate during polymerization to post-chlorinate the obtained vinyl chloride resin. 2. The manufacturing method according to claim 1, wherein the water-soluble persulfate is potassium persulfate or ammonium persulfate. 3. The manufacturing method according to claim 1, wherein the poorly water-soluble inorganic phosphate is a calcium salt, strontium salt, barium salt, magnesium salt, aluminum salt, lead salt or zinc salt of phosphoric acid. 4. The manufacturing method according to claim 1, wherein the slightly water-soluble inorganic phosphate is added at a time of 5 to 50% by weight in terms of polymerization conversion.
JP22949185A 1985-10-15 1985-10-15 Production of chlorinated vinyl chloride resin Granted JPS6289703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22949185A JPS6289703A (en) 1985-10-15 1985-10-15 Production of chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22949185A JPS6289703A (en) 1985-10-15 1985-10-15 Production of chlorinated vinyl chloride resin

Publications (2)

Publication Number Publication Date
JPS6289703A JPS6289703A (en) 1987-04-24
JPH0469644B2 true JPH0469644B2 (en) 1992-11-06

Family

ID=16892997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22949185A Granted JPS6289703A (en) 1985-10-15 1985-10-15 Production of chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPS6289703A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045611A (en) * 1990-06-25 1991-09-03 Xerox Corporation Processes for the preparation of polymers
JP4323926B2 (en) * 2002-11-19 2009-09-02 キダノン株匏䌚瀟 Image forming apparatus
JP5680924B2 (en) * 2010-09-28 2015-03-04 積氎化孊工業株匏䌚瀟 Hollow vinyl chloride resin particles and method for producing the same

Also Published As

Publication number Publication date
JPS6289703A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
SU656531A3 (en) Method of obtaining vinyl chloride copolymers
US4388442A (en) Stabilizer or dispersing agent for use in a suspension polymerization of a vinyl compound comprising a modified and partially hydrolyzed anionic polyvinyl alcohol
KR101198530B1 (en) Manufacturing Method of Bulk Polymerization of PVC Polymer and PVC Copolymer Using Organic Base Material As pH Control Agent
JP3053595B2 (en) Latex of vinyl chloride copolymer containing two groups of particles having different average particle sizes, method for producing the same, and use thereof
JP3437022B2 (en) Method for producing vinyl chloride polymer
JPH0469644B2 (en)
US5872155A (en) Latex based on vinyl chloride copolymers with a specific structure, process for the manufacture thereof and applications thereof
WO2018043945A1 (en) Method for preparing chlorinated vinyl chloride resin
JP4151419B2 (en) Vinyl chloride polymer latex for paste, method for producing the same, and method for producing vinyl chloride resin for paste processing comprising the same
JPH06211909A (en) Production of vinyl chloride polymer, and composition comprising the same
JPH05271313A (en) Production of vinyl chloride polymer
JPS6291503A (en) Production of chlorinated vinyl chloride resin
US4732953A (en) Novel polyvinyl chloride suspension polymerization process and product having improved plasticizer absorption
JP3340492B2 (en) Dispersion aid for suspension polymerization of vinyl compounds
JP2962615B2 (en) Method for producing vinyl chloride polymer
JP3385643B2 (en) Method for producing vinyl chloride polymer
JPH0370703A (en) Production of vinyl chloride-based polymer
JP3572371B2 (en) Paste processing polyvinyl chloride resin granules, method for producing the same, and paste processing polyvinyl chloride resin composition comprising the same
CA1250085A (en) Polyvinyl chloride suspension polymerization process and product
JP3239613B2 (en) Method for producing vinyl chloride polymer
JPH06172410A (en) Production of ethylene-vinyl chloride copolymer and its composition
JP3652832B2 (en) Method for producing chlorinated vinyl chloride resin
JP4192508B2 (en) Method for producing vinyl chloride resin for paste processing
JPS5856540B2 (en) Vinyl chloride resin composition
JP2859062B2 (en) Suspension polymerization stabilizer and suspension polymerization method