JPH0469163B2 - - Google Patents

Info

Publication number
JPH0469163B2
JPH0469163B2 JP16238383A JP16238383A JPH0469163B2 JP H0469163 B2 JPH0469163 B2 JP H0469163B2 JP 16238383 A JP16238383 A JP 16238383A JP 16238383 A JP16238383 A JP 16238383A JP H0469163 B2 JPH0469163 B2 JP H0469163B2
Authority
JP
Japan
Prior art keywords
polybutadiene
reaction
acid
ring
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16238383A
Other languages
Japanese (ja)
Other versions
JPS6053511A (en
Inventor
Osamu Hayashi
Hideo Kurihara
Yukio Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP16238383A priority Critical patent/JPS6053511A/en
Publication of JPS6053511A publication Critical patent/JPS6053511A/en
Publication of JPH0469163B2 publication Critical patent/JPH0469163B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、高分子量の−ポリブタゞ゚ン
を、その䞍飜和二重結合に察する高分子反応によ
り倉性しお、ポリマヌ構造䞭に䞍飜和二重結合を
有する、新芏な芪氎性ポリマヌを補造する方法に
関するものである。 埓来より、氎溶性高分子には皮々のものが知ら
れおいる。䟋えば、倩然系高分子ずしおは、アル
ギン酞アルギン酞゜ヌダ、カルボキシメチル
セルロヌスCMC、メチルセルロヌス〔MC
セルロヌスのメチル゚ヌテル化物25〜32〕
などの糖類、倚糖類、及びその化孊倉性物が挙げ
られ、さらには埮生物による氎溶性倚糖類ずしお
プルラン、デキストラン、ザンタンガムなども挙
げるこずができる。合成高分子ずしおは、ポリビ
ニルアルコヌルポバヌル、ポリ゚チレンオキ
シド、ポリアクリル酞゜ヌダ、ポリアクリルアミ
ドなどが挙げるこずができる。 䞊蚘氎溶性高分子はその各々の性状の特城を掻
かしながら氎溶性高分子材料分野で様々な䜿われ
方がなされおいる。 䟋えば、接着剀、塗料、繊維加工剀、糊材、和
玙、板玙、抄造甚粘剀、乳化剀、凝集材、液䜓の
摩擊抵抗枛少剀、増粘剀、アスフアルト乳化剀、
蟲薬の展着剀、顔料分散剀、ラテツクス増粘剀、
土壌改良剀、捺染剀などの産業分野の他にも、ア
むスクリヌム添加剀、食品加工、医薬、化粧品、
ビヌル泡持続安定剀、ダむ゚ツトフヌズ、医薬錠
剀、血挿増量剀などの生䜓関連分野にも倚量に䜿
甚されおいる。 これらの氎溶性高分子材料分野における氎溶性
高分子の䜿甚量は、トヌタル数十䞇トン幎日
本に達しおおり、たすたす特殊な特城ある氎溶
性高分子が求められおいる。 䞀方、䞍飜和二重結合を有するゞ゚ン系ポリマ
ヌの芪氎性化も電着塗料などをめざしお詊みられ
おいる。 本来、ポリブタゞ゚ンに代衚されるゞ゚ン系ポ
リマヌは、氎、アルコヌル類など極性の高い溶媒
には䞍溶のものであるが、これらのポリマヌを
氎、アルコヌルなどに溶解させるこずができれば
数倚くの甚途分野に䜿甚するこずができる。 そこで、ゞ゚ン系ポリマヌを氎溶性にするため
に、皮々の方法が倚数報告されおおり、それらは
次の通り倧別される。 (1) ポリブタゞ゚ンのマレむン化、或いはそのマ
レむン化物をさらに反応させお芪氎性を高める
方法 (2) ブタゞ゚ンず他のビニルモノマヌずの共重
合、或いはブタゞ゚ンモノマヌの反応でブタゞ
゚ン誘導䜓を合成しおその特殊なモノマヌを重
合するこずにより芪氎性を付䞎する方法 (3) ポリブタゞ゚ンを゚ポキシ化し、次いでオキ
シラン環をカルボン酞、第アミンたたはゞア
ミンにより開環させおポリマヌを芪氎性にする
方法 (4) 䞊蚘(1)〜(3)の方法以倖の化孊的な倉性スル
ホン酞基の付加などによるポリマヌを芪氎性
にする方法 しかしながら、䞊述の公知の方法によ぀お埗ら
れるポリマヌは、文献䞭には、氎溶性、或いは氎
垌釈可胜ず蚘述されおいおも、実際は氎可溶ずは
抂念の異なるラテツクス状であ぀たり、倚量のセ
ロ゜ルブ類などの氎ず盞溶性のある有機溶剀の共
存䞋で氎垌釈可胜なものであ぀たりするするもの
が倧郚分であり、真に氎溶性であるものは少な
い。 たた、䞊述の公知の方法においお、化孊倉性す
る察象ずしお䜿甚しおいるベヌスポリブタゞ゚ン
は、分子量が10000未満の䜎分子量液状のポ
リブタゞ゚ンが倧郚分であり、分子量が10000以
䞊の高分子量のポリマヌを䜿甚しおいる堎合は少
ない。 本発明者らは、䞍飜和二重結合を有する高分子
量のゞ゚ン系ポリマヌの芪氎性化を目的ずしお鋭
意研究した結果、高分子量の−ポリブタゞ
゚ンの䞍飜和二重結合を特定の割合で゚ポキシ化
し、次いで第アミン及びカルボン酞の存圚䞋に
加熱するこずによ぀お、芪氎性のゞ゚ン系ポリマ
ヌが埗られるこずを知芋し、本発明に到達した。 本発明は、䞊蚘知芋に基づきなされたもので、
䞍飜和二重結合の85以䞊が−結合で䞔぀
分子量が10000以䞊の−ポリブタゞ゚ンを、
その䞍飜和二重結合の〜60モルを゚ポキシ化
し、次いで第アミン及びカルボン酞の存圚䞋に
加熱しお゚ポキシ環の開環を行うこずを特城ずす
る芪氎性ポリマヌの補造方法を提䟛するもので、
本発明の補造方法によ぀お埗られる新芏な倉性ポ
リマヌは、芪氎性堎合により氎溶性で䞔぀ポ
リマヌ構造䞭に䞍飜和二重結合を有する高分子量
のポリマヌであり、氎溶性高分子の埓来公知の甚
途分野に限らず、䞍飜和二重結合を有する特城
感光性、ゎム的性質の付䞎、熱架橋による硬化
などを掻かしお䜿甚するこずができる。 以䞋に本発明の芪氎性ポリマヌの補造方法に぀
いお、その実斜態様に基づき詳述する。 本発明においお芪氎性化の察象ずしお䜿甚する
−ポリブタゞ゚ンは、−結合の含量
シス−−結合ずトランス−−結合
の含量の和が85以䞊で䞔぀平均分子量が
10000以䞊の高分子量の−ポリブタゞ゚ン
である。 而しお、本発明は、䞊蚘−ポリブタゞ゚
ンを、−ポリブタゞ゚ンの郚分゚ポキシ化
第段反応及び゚ポキシ化ポリブタゞ゚ンの
゚ポキシ環の開環第段反応の二段階の反応
を行うこずにより倉性しお芪氎性化するものであ
る。 先ず、第段反応の−ポリブタゞ゚ンの
郚分゚ポキシ化に぀いお説明する。 この第段反応においお重芁なこずは、䞊蚘
−ポリブタゞ゚ンの郚分゚ポキシ化によ぀
お゚ポキシ化される−ポリブタゞ゚ンの䞍
飜和二重結合の割合゚ポキシ化率を党䞍飜和
二重結合に察し〜60モル、奜たしくは15〜45
モルにするこずである。 䞊蚘゚ポキシ化率の䞊限を超えお゚ポキシ化さ
れた−ポリブタゞ゚ンはゲル化したり、次
の第段反応の゚ポキシ環の開環反応段階におい
お溶媒䞍溶ずな぀たりする。 たた、䞊蚘゚ポキシ化率の䞋限より䜎く゚ポキ
シ化された−ポリブタゞ゚ンは次の第段
反応の゚ポキシ環の開環を行぀おも芪氎性になら
なか぀たり、或いは芪氎性が䞍充分なものにな
る。 本発明においおは、−ポリブタゞ゚ンを
゚ポキシ化する方法は特に限定されるものではな
く、クロルヒドリン法、盎接酞化法、過酞化氎玠
法、アルキルヒドロペルオキシド法、過酞法など
の、䞍飜和二重結合を有する化合物を゚ポキシ化
する方法ずしお埓来公知の方法を甚いお行うこず
ができる。 䟋ずしお、過酞法in−situ−過酞法による
−ポリブタゞ゚ンの゚ポキシ化に぀いお以
䞋に説明する。 過酞法による−ポリブタゞ゚ンの゚ポキ
シ化は、−ポリブタゞ゚ンの䞍掻性有機溶
媒溶液に、有機酞及び過酞化氎玠を添加しお行う
もので、反応匏で瀺すず次の通りである。 RCO2HH2O2RCO3HH2O (1) 即ち、有機酞が過酞化氎玠ず反応しお過酞ずな
り、これが−ポリブタゞ゚ンの䞍飜和二重
結合に䜜甚しお−ポリブタゞ゚ンを゚ポキ
シ化する。䞊蚘反応匏(2)で生じた有機酞は䞊蚘反
応匏(1)および(2)ず同様の反応を繰り返すず考えら
れる。 䞊蚘有機酞ずしおは蟻酞、安息銙酞、酢酞など
を䜿甚するこずができ、特に過酞生成速床の速い
こずから蟻酞を䜿甚するこずが奜たしい。 たた、−ポリブタゞ゚ンの䞍掻性有機溶
媒ずしおは、−ポリブタゞ゚ンを溶解し、
䞔぀氎に難溶性で過酞化氎玠或いは過酞に察
しお䞍掻性なもの、䟋えば、ベンれン、トル゚
ン、キシレン、シクロヘキサンのような炭化氎
玠クロロホルム、四塩化炭玠、クロルベンれン
のようなハロゲン化炭化氎玠などを単独でたたは
二皮以䞊混合しお䜿甚するこずができる。 たた、−ポリブタゞ゚ンの䞍掻性有機溶
媒溶液は、−ポリブタゞ゚ンを䞍掻性有機
溶媒に添加し、通垞〜80℃、奜たしくは20〜60
℃で分間から時間撹拌混合しおポリブタゞ゚
ンを䞍掻性有機溶媒に溶解させる方法、或いは
−ポリブタゞ゚ン重合溶液に氎、塩酞など
の重合停止剀を添加し、氎掗などにより脱灰凊理
する方法などによ぀お埗られる。 䞊蚘の−ポリブタゞ゚ンの䞍掻性有機溶
媒溶液の−ポリブタゞ゚ンの濃床、これに
添加する有機酞及び過酞化氎玠の量、及びそれら
の添加方法などの゚ポキシ化の反応条件は、䜿甚
する有機酞の皮類や目暙ずする゚ポキシ化率など
によ぀お異なるので限定されないが、䟋えば、有
機酞ずしお蟻酞を䜿甚する過酞法による堎合に
は、通垞、次のような反応条件が採甚される。 −ポリブタゞ゚ンの䞍掻性有機溶媒溶液
の−ポリブタゞ゚ンの濃床は、玄〜30重
量、蟻酞の添加量は−ポリブタゞ゚ン
100圓たり0.01〜モルが奜たしく、過酞化氎
玠の添加量は−ポリブタゞ゚ン100圓た
り0.1〜モルが奜たしい。これらの、蟻酞及び
過酞化氎玠の添加量は目暙ずする゚ポキシ化率に
よ぀お䞊蚘範囲内で倉えられる。 たた、過酞化氎玠は20〜60重量の過酞化氎玠
氎ずしお−ポリブタゞ゚ンの䞍掻性有機溶
媒溶液に添加するのが奜たしい。 −ポリブタゞ゚ンの䞍掻性有機溶媒溶液
に蟻酞及び過酞化氎玠を添加する方法には特に制
限はないが、−ポリブタゞ゚ンの䞍掻性有
機溶媒溶液に蟻酞を添加し、混合しお埗られた溶
液に、該溶液を〜80℃に保ちながら䞊蚘範囲内
の濃床の過酞化氎玠氎を埐々に添加する方法が奜
たしい。 䞊蚘の−ポリブタゞ゚ンの䞍掻性有機溶
媒溶液に䞊蚘所定量内の、蟻酞及び過酞化氎玠を
添加した埌、この混合液を〜80℃、奜たしくは
20〜60℃で、奜たしくは10分間〜10時間撹拌混合
しお、−ポリブタゞ゚ンを゚ポキシ化す
る。 ゚ポキシ化の反応枩床が䞊蚘䞋限より䜎いず、
−ポリブタゞ゚ンぱポキシ化しにくく、
たた、䞊蚘䞊限より高いず、過酞化氎玠や過酞が
分解しやすく危険である。 尚、第段反応の゚ポキシ化反応系䞭、或いは
埌述の第段反応の゚ポキシ環の開環反応系䞭に
は、ポリブタゞ゚ンの安定のために少量の安定
剀、䟋えば−ゞ−タヌシダル−ブチル−
−クレゟヌルBHTなどを添加するこずがで
き、このような安定剀の添加は奜たしい方法であ
る。 䞊述の第段反応の゚ポキシ化が終了したら、
゚ポキシ化されたポリブタゞ゚ン゚ポキシ化ポ
リブタゞ゚ンを、反応生成液から分離しおから
第段反応に移行させるのが奜たしいが、反応生
成液から分離せずにそのたた゚ポキシ化の反応に
匕き続いお第段反応に移行させおもよい。 䞊蚘゚ポキシ化ポリブタゞ゚ンの分離は、埓来
公知の分離方法、䟋えば、゚ポキシ化しお埗られ
た䞊蚘反応生成液を、比范的䜎枩で氎掗した埌、
倚量の、メチルアルコヌルのような゚ポキシ化ポ
リブタゞ゚ンの難溶性有機溶媒䞭に投入しお、ゎ
ム状の゚ポキシ化ポリブタゞ゚ンを析出させお分
離する方法や、䞊蚘反応生成液を氎掗した埌、氎
蒞気蒞溜するこずにより、反応生成液䞭の䞍掻性
有機溶媒、蟻酞有機酞などの䜎沞点物を蒞発
陀去しお゚ポキシ化ポリブタゞ゚ンを析出させお
分離する方法などにより行うこずができる。 尚、第段反応は埌述の劂く比范的高枩40〜
160℃で行われ、過酞化氎玠や蟻酞が倚量に残
存するず、堎合により反応䞭、ポリマヌがゲル化
するこずがあるので、゚ポキシ化ポリブタゞ゚ン
を分離しないで第段反応に移行させる堎合に
も、できれば䞊蚘反応生成液を比范的䜎枩で氎掗
しお過酞化氎玠や蟻酞の倧郚分を陀去するこずが
奜たしい。 次に、第段反応の、゚ポキシ化ポリブタゞ゚
ンの゚ポキシ環の開環反応に぀いお説明する。 この第段反応の゚ポキシ環の開環反応は、前
蚘第段反応によりその䞍飜和二重結合の〜60
モルが゚ポキシ化された−ポリブタゞ゚
ン゚ポキシ化ポリブタゞ゚ンを第アミン及
びカルボン酞の存圚䞋に加熱し、反応させお゚ポ
キシ環を開環させるもので、この第段反応を経
るこずにより目的ずする芪氎性ポリマヌが埗られ
る。尚、本発明でいう芪氎性の抂念は、氎溶性に
限定されず、メチルアルコヌル、゚チルアルコヌ
ルなどの䜎玚アルコヌル類に可溶なものたで含
む。 本発明の第段反応で䜿甚する第アミンは、
単独で、或いは必芁に応じ他の第アミンたたは
第アミン以倖のポリマヌの溶媒ず混合するこず
により、宀枩或いは加熱時゚ポキシ化ポリブタゞ
゚ンを溶解するこずができるものである。 䞊蚘第アミンずしおは、䟋えば、ピリゞン、
−クロルピリゞンの劂きピリゞン類α−β
−γ−の各ピコリン類−ルチゞン、
−ルチゞンの劂きルチゞン類゚チルピリ
ゞン類−コリゞンの劂きコリゞン
類キノリン類、む゜キノリン類、−メチルむ
ミダゟヌルの劂きアルキルむミダゟヌル類、−
メチルカルバゟヌル、ピラゞンの劂き耇玠環タむ
プの第アミントリ゚チルアミン、トリプロピ
ルアミン、トリブチルアミン、ゞ゚チルブチルア
ミンの劂き脂肪族第アミントリ゚タノヌルア
ミン、トリプロパノヌルアミン、トリブタノヌル
アミンの劂きトリアルカノヌルアミン−
ゞメチルアニリン、−ゞ゚チルアニリン、
ベンゞル−ゞメチルアミンの劂き芳銙環を
有する第アミン或いは−メチルピペリゞ
ン、−゚チルピペリゞンの劂き−アルキルピ
ペリゞンN′−ゞメチルピペラゞン、−
メチルモルホリンなどの第アミンを挙げるこず
ができる。 これらの第アミンの䞭でも氎に溶解するも
の、或いは氎ず盞互溶解床の高いものなどの芪氎
性のある第アミンが、より奜たしい芪氎性ポリ
マヌを埗る䞊で奜たしい。即ち、かかる第アミ
ンを䜿甚した堎合では反応䞭に倉性ポリマヌが析
出するこずが少なく、均䞀溶液で反応を行うこず
ができるからである。 たた、反応条件によ぀おも圱響されるが、窒玠
原子のたわりの立䜓障害の少ない第アミンが゚
ポキシドに察する第アミンの窒玠原子の求栞攻
撃が有利で反応が速く、䞔぀より奜たしい芪氎性
ポリマヌが埗られるので奜たしい。 このような芪氎性で立䜓障害の少ない第アミ
ンずしおは、ピリゞン類、ピコリン類、ルチゞン
類、キノリン類、む゜キノリン類、アルキルむミ
ダゟヌル類、ピラゞン及びそれらの誘導䜓が挙げ
られる。 たた、本発明の第段反応で䜿甚するカルボン
酞は、カルボキシ基を個乃至数個有する化合物
であればよいが、より奜たしい芪氎性ポリマヌを
埗る䞊で、特に䞋蚘に䟋瀺する炭玠数10以䞋のカ
ルボン酞の䞭の脂肪族飜和酞が奜たしく、特に脂
肪族飜和モノカルボン酞が奜たしい。 蟻酞、酢酞、プロピオン酞、−酪酞、む゜酪
酞、吉草酞、カプロン酞の劂き脂肪酞グリコヌ
ル酞、乳酞、ヒドロアクリル酞、−ヒドロキシ
酪酞、グリセリン酞、グルコン酞の劂きヒドロキ
シ酞フルオル酢酞、クロル酢酞、クロルプロピ
オン酞、クロル酪酞、トリクロ酪酞、トリクロル
酢酞の劂きハロゲノ酞グリオキサル酞の劂きア
ルデヒド酞ピルビン酞、アセト酢酞、レブリン
酞の劂きケト酞安息銙酞、−トルむル酞、
−クロル安息銙酞、サリチル酞、−ヒドロキシ
安息銙酞、−ヒドロキシ安息銙酞の劂き眮換安
息銙酞、没食子酞、マンデル酞、プニル酢酞の
劂き芳銙環を持぀カルボン酞蓚酞、マロン酞、
コハク酞、酒石酞、リンゎ酞、フタル酞、ク゚ン
酞の劂き倚塩基酞。 而しお、第段反応の゚ポキシ化ポリブタゞ゚
ンの゚ポキシ環の開環反応は次のようにしお行
う。 第段反応反応終了埌反応生成液から゚ポキシ
化ポリブタゞ゚ンを分離した堎合は、先ず、該゚
ポキシ化ポリブタゞ゚ンを第アミンに、たたは
第アミンを含む溶媒に溶解する。 䞊蚘溶媒ずしおは、特に限定されるものではな
いが、第段反応で䜿甚した、炭化氎玠、ハロゲ
ン化炭化氎玠などの䞍掻性有機溶媒を䜿甚する方
がプロセス系が耇雑にならないので奜たしい。 䞊蚘溶媒を䜿甚せずに、第アミンに溶媒を兌
甚させお反応させる堎合、゚ポキシ化ポリブタゞ
゚ンを分離した時に䜿甚したメチルアルコヌルな
どの難溶性有機溶媒が残存しおいおも、少量であ
れば開環反応時の劚害ずはならず、たた、蟻酞や
過酞化氎玠も少量であれば残存しおいおも差し支
えない。䜆し、倚量にメチルアルコヌルが残存し
おいる時はその沞点以䞊に反応枩床が䞊がらな
い。その時は反応に先だちメチルアルコヌルの倧
郚分を溜去すればよい。 次に、゚ポキシ化ポリブタゞ゚ンを、第アミ
ン、たたは第アミンを含む溶媒に溶解させた溶
液に、カルボン酞を添加し、加熱撹拌しお反応さ
せるこの反応により゚ポキシ環が開環する。 反応枩床は40℃以䞊160℃以䞋が奜たしい。反
応枩床が䞊蚘枩床より䜎枩では反応速床が遅く、
実質的に反応しおいない。たた、䞊蚘枩床より高
枩ではポリマヌが反応䞭にゲル化するこずがあ
る。 たた、反応時間は反応条件によ぀おも異なる
が、10分間以䞊10時間以内で実斜するこずができ
る。 尚、第段反応終了埌反応生成液から゚ポキシ
化ポリブタゞ゚ンを分離しないで第段反応を行
う堎合は、その反応生成液䞭に盎接、第アミン
及びカルボン酞を添加し、分離した堎合ず同様な
反応条件䞋に加熱撹拌すればよい。 たた、カルボン酞ずしおヒドロキシカルボン酞
を䜿甚する堎合、ヒドロキシカルボン酞の䞭には
グルコン酞、グリセリン酞の劂き50〜90重量の
氎溶液ずしお垂販されおいるものもある。倚量の
氎が反応系䞭に存圚するず゚ポキシ化ポリブタゞ
゚ンは溶媒に溶解しないので、䞊蚘のようなヒド
ロキシカルボン酞氎溶液を䜿甚する堎合は、゚ポ
キシ化ポリブタゞ゚ンの溶液に添加する前に予
め、該ヒドロキシカルボン酞氎溶液を氎ず共沞可
胜な第アミンに添加しお加熱するこずにより氎
ず第アミンを共沞陀去しお氎を陀いおおくずよ
く、たた、添加しおからも析出ポリマヌ共存䞋に
枛圧䞋共沞氎陀去すればポリマヌの均䞀溶液にす
るこずができる。 䞊蚘第段反応により゚ポキシ化ポリブタゞ゚
ンの゚ポキシ環をすべお反応開環させる必芁
はなく、開環を、奜たしくぱポキシ化する前の
−ポリブタゞ゚ンの䞍飜和二重結合を基準
ずしお〜60モル、より奜たしくは15〜45モル
行う。即ち、䟋えば、モルしか゚ポキシ化
されおいない堎合には、党郚開環させる必芁があ
るが、60モルが゚ポキシ化されおいる堎合に
は、党郚開環させおもよいし、゚ポキシ化する前
の−ポリブタゞ゚ンの䞍飜和二重結合を基
準ずしおモル開環させおもよい。 第段反応終了埌のポリマヌ䞭の゚ポキシ環の
残存量は 1H−NMRで抂算できる。即ち、ポリ
マヌを重氎D2O溶媒〔或いは重メタノヌル
CD3OD〕に溶解しお 1H−NMRを枬定し、第
段反応前埌の゚ポキシドプロトン
The present invention is a method for producing a novel hydrophilic polymer having unsaturated double bonds in its polymer structure by modifying high molecular weight 1,4-polybutadiene by a polymer reaction on its unsaturated double bonds. It is related to. Various types of water-soluble polymers have been known so far. For example, natural polymers include alginic acid (sodium alginate), carboxymethylcellulose (CMC), and methylcellulose [MC:
Methyl etherified cellulose (25-32%)]
Examples include saccharides, polysaccharides, and chemically modified products thereof, and further examples of water-soluble polysaccharides produced by microorganisms include pullulan, dextran, and xanthan gum. Examples of synthetic polymers include polyvinyl alcohol (poval), polyethylene oxide, sodium polyacrylate, and polyacrylamide. The above-mentioned water-soluble polymers are used in various ways in the field of water-soluble polymer materials, taking advantage of their respective property characteristics. For example, adhesives, paints, fiber processing agents, sizing materials, Japanese paper, paperboard, adhesives for papermaking, emulsifiers, flocculants, liquid frictional resistance reducers, thickeners, asphalt emulsifiers,
Spreading agents for agricultural chemicals, pigment dispersants, latex thickeners,
In addition to industrial fields such as soil conditioners and printing agents, we also use ice cream additives, food processing, pharmaceuticals, cosmetics,
It is also used in large quantities in biological fields such as beer foam sustaining stabilizers, diet foods, pharmaceutical tablets, and plasma expanders. The amount of water-soluble polymers used in the field of water-soluble polymer materials has reached a total of several hundred thousand tons/year (in Japan), and water-soluble polymers with special characteristics are increasingly being sought after. On the other hand, attempts have also been made to make diene polymers having unsaturated double bonds hydrophilic for use in electrodeposition coatings and the like. Originally, diene polymers such as polybutadiene are insoluble in highly polar solvents such as water and alcohols, but if these polymers can be dissolved in water and alcohols, they can be used in many fields of application. can do. Therefore, a large number of various methods have been reported for making diene polymers water-soluble, and they can be broadly classified as follows. (1) Maleation of polybutadiene or further reaction of the maleated product to increase hydrophilicity. (2) Copolymerization of butadiene with other vinyl monomers, or synthesis of butadiene derivatives by reaction of butadiene monomers and their special properties. A method of imparting hydrophilicity by polymerizing a monomer (3) A method of making the polymer hydrophilic by epoxidizing polybutadiene and then opening the oxirane ring with a carboxylic acid, secondary amine or diamine (4) A method of imparting hydrophilicity to the polymer by polymerizing the above ( Methods of making polymers hydrophilic by chemical modification (addition of sulfonic acid groups, etc.) other than methods 1) to (3) However, in the literature, polymers obtained by the above-mentioned known methods are Even if it is described as water-soluble or water-dilutable, it may actually be in the form of a latex, which is a different concept from water-soluble, or it can be diluted with water in the coexistence of a large amount of water-compatible organic solvents such as cellosolves. Most of them are water-soluble, and very few are truly water-soluble. In addition, in the above-mentioned known method, the base polybutadiene used for chemical modification is mostly low molecular weight (liquid) polybutadiene with a molecular weight of less than 10,000, and high molecular weight polymers with a molecular weight of 10,000 or more are used. There are few cases where it is used. As a result of intensive research aimed at making high molecular weight diene polymers having unsaturated double bonds hydrophilic, the present inventors discovered that the unsaturated double bonds of high molecular weight 1,4-polybutadiene were reduced in a specific proportion. The present invention was achieved based on the finding that a hydrophilic diene polymer can be obtained by epoxidizing and then heating in the presence of a tertiary amine and a carboxylic acid. The present invention was made based on the above findings, and
1,4-polybutadiene in which 85% or more of the unsaturated double bonds are 1,4-bonds and the molecular weight is 10,000 or more,
Provided is a method for producing a hydrophilic polymer, which comprises epoxidizing 5 to 60 mol% of its unsaturated double bonds, and then heating in the presence of a tertiary amine and a carboxylic acid to open the epoxy ring. to do,
The novel modified polymer obtained by the production method of the present invention is a high molecular weight polymer that is hydrophilic (in some cases water-soluble) and has an unsaturated double bond in the polymer structure, and is similar to conventional water-soluble polymers. It can be used not only in known fields of application but also by taking advantage of the characteristics of having an unsaturated double bond (photosensitivity, imparting rubbery properties, curing by thermal crosslinking, etc.). The method for producing a hydrophilic polymer of the present invention will be described in detail below based on its embodiments. The 1,4-polybutadiene used for hydrophilization in the present invention has a 1,4-bond content (sum of cis-1,4-bond and trans-1,4-bond content) of 85% or more. and the average molecular weight is
It is 1,4-polybutadiene with a high molecular weight of 10,000 or more. Therefore, the present invention processes the above-mentioned 1,4-polybutadiene in two steps: partial epoxidation of the 1,4-polybutadiene (first stage reaction) and opening of the epoxy ring of the epoxidized polybutadiene (second stage reaction). It is modified and made hydrophilic by carrying out the following reaction. First, the partial epoxidation of 1,4-polybutadiene in the first stage reaction will be explained. What is important in this first stage reaction is to reduce the proportion of unsaturated double bonds (epoxidation rate) in the 1,4-polybutadiene to be epoxidized by the partial epoxidation of the 1,4-polybutadiene to total unsaturation. 5 to 60 mol% based on double bonds, preferably 15 to 45
It is to make it into mol%. 1,4-polybutadiene that has been epoxidized in excess of the upper limit of the epoxidation rate may gel or become insoluble in the solvent in the ring-opening reaction step of the epoxy ring in the second stage reaction. In addition, 1,4-polybutadiene that has been epoxidized to a lower limit than the lower limit of the epoxidation rate may not become hydrophilic even after the epoxy ring is opened in the second stage reaction, or the hydrophilicity may be insufficient. Become something. In the present invention, the method for epoxidizing 1,4-polybutadiene is not particularly limited, and may include unsaturated A conventionally known method can be used to epoxidize a compound having a heavy bond. As an example, epoxidation of 1,4-polybutadiene by an in-situ peracid method will be described below. Epoxidation of 1,4-polybutadiene by the peracid method is carried out by adding an organic acid and hydrogen peroxide to a solution of 1,4-polybutadiene in an inert organic solvent, and the reaction formula is as follows. be. RCO 2 HH 2 O 2 RCO 3 HH 2 O (1) That is, an organic acid reacts with hydrogen peroxide to form a peracid, which acts on the unsaturated double bonds of 1,4-polybutadiene to epoxidize the 1,4-polybutadiene. It is thought that the organic acid produced in the above reaction formula (2) repeats the same reactions as in the above reaction formulas (1) and (2). As the organic acid, formic acid, benzoic acid, acetic acid, etc. can be used, and it is particularly preferable to use formic acid because of its high peracid production rate. In addition, as an inert organic solvent for 1,4-polybutadiene, 1,4-polybutadiene is dissolved,
and those that are poorly soluble in water and inert to hydrogen peroxide (or peracid), such as hydrocarbons such as benzene, toluene, xylene, and cyclohexane; halogenated substances such as chloroform, carbon tetrachloride, and chlorobenzene. Hydrocarbons and the like can be used alone or in combination of two or more. In addition, a solution of 1,4-polybutadiene in an inert organic solvent is prepared by adding 1,4-polybutadiene to an inert organic solvent, usually at 0 to 80°C, preferably at 20 to 60°C.
A method of dissolving polybutadiene in an inert organic solvent by stirring and mixing at ℃ for 1 minute to 1 hour, or adding a polymerization terminator such as water or hydrochloric acid to the 1,4-polybutadiene polymerization solution and deashing by washing with water etc. Obtained by other methods. The reaction conditions for epoxidation, such as the concentration of 1,4-polybutadiene in the inert organic solvent solution of 1,4-polybutadiene, the amount of organic acid and hydrogen peroxide added thereto, and the method of adding them, Although the reaction conditions are not limited as they vary depending on the type of organic acid to be used and the target epoxidation rate, for example, in the case of a peracid method using formic acid as the organic acid, the following reaction conditions are usually adopted. Ru. The concentration of 1,4-polybutadiene in the inert organic solvent solution of 1,4-polybutadiene is about 1 to 30% by weight, and the amount of formic acid added is about 1,4-polybutadiene.
The amount of hydrogen peroxide added is preferably 0.01 to 2 mol per 100 g, and the amount of hydrogen peroxide added is preferably 0.1 to 4 mol per 100 g of 1,4-polybutadiene. The amounts of formic acid and hydrogen peroxide added can be varied within the above range depending on the target epoxidation rate. Further, hydrogen peroxide is preferably added to a solution of 1,4-polybutadiene in an inert organic solvent as a 20 to 60% by weight hydrogen peroxide solution. There are no particular restrictions on the method of adding formic acid and hydrogen peroxide to a solution of 1,4-polybutadiene in an inert organic solvent, but formic acid may be added to a solution of 1,4-polybutadiene in an inert organic solvent and mixed. A preferred method is to gradually add aqueous hydrogen peroxide having a concentration within the above range to the obtained solution while maintaining the solution at a temperature of 0 to 80°C. After adding formic acid and hydrogen peroxide in the above predetermined amounts to the above inert organic solvent solution of 1,4-polybutadiene, the mixed solution is heated to 0 to 80°C, preferably
The 1,4-polybutadiene is epoxidized by stirring and mixing at 20 to 60°C, preferably for 10 minutes to 10 hours. When the reaction temperature of epoxidation is lower than the above lower limit,
1,4-polybutadiene is difficult to epoxidize,
Moreover, when it is higher than the above upper limit, hydrogen peroxide and peracid are easily decomposed and it is dangerous. In addition, a small amount of a stabilizer such as 2,6-di- Tertiary-butyl-P
-Cresol (BHT) etc. can be added, and the addition of such stabilizers is a preferred method. Once the epoxidation of the first stage reaction described above is completed,
It is preferable to separate the epoxidized polybutadiene (epoxidized polybutadiene) from the reaction product liquid and then transfer it to the second stage reaction. It is also possible to proceed to a step reaction. The epoxidized polybutadiene can be separated by a conventionally known separation method, for example, by washing the reaction product liquid obtained by epoxidation with water at a relatively low temperature.
A method of pouring into a large amount of an organic solvent in which epoxidized polybutadiene is poorly soluble, such as methyl alcohol, to precipitate and separate rubber-like epoxidized polybutadiene, or washing the reaction product liquid with water and then steam distilling it. The epoxidized polybutadiene can be separated by precipitating and separating epoxidized polybutadiene by evaporating and removing low-boiling substances such as an inert organic solvent and formic acid (organic acid) in the reaction product solution. Note that the second stage reaction is performed at a relatively high temperature (40 to 40℃) as described below.
(160℃), and if a large amount of hydrogen peroxide or formic acid remains, the polymer may gel during the reaction. If possible, it is preferable to wash the reaction product liquid with water at a relatively low temperature to remove most of the hydrogen peroxide and formic acid. Next, the ring-opening reaction of the epoxy ring of the epoxidized polybutadiene, which is the second stage reaction, will be explained. The ring-opening reaction of the epoxy ring in this second stage reaction is carried out by the first stage reaction.
1,4-polybutadiene (epoxidized polybutadiene) in which mol% of 1,4-polybutadiene has been epoxidized is heated in the presence of a tertiary amine and a carboxylic acid to cause the reaction to open the epoxy ring, which undergoes this second stage reaction. By doing this, the desired hydrophilic polymer can be obtained. Note that the concept of hydrophilicity as used in the present invention is not limited to water-soluble, but also includes those soluble in lower alcohols such as methyl alcohol and ethyl alcohol. The tertiary amine used in the second stage reaction of the present invention is
It is capable of dissolving epoxidized polybutadiene at room temperature or when heated, either alone or by mixing with another tertiary amine or a solvent for a polymer other than the tertiary amine as necessary. Examples of the tertiary amine include pyridine,
Pyridines such as 2-chloropyridine; α-, β
-, γ- picolines; 3,5-lutidine,
Lutidines such as 2,4-lutidine; ethylpyridines; collidines such as 2,4,6-collidine; quinolines, isoquinolines, alkylimidazoles such as N-methylimidazole, N-
Heterocyclic type tertiary amines such as methylcarbazole, pyrazine; aliphatic tertiary amines such as triethylamine, tripropylamine, tributylamine, diethylbutylamine; trialkanolamines such as triethanolamine, tripropanolamine, tributanolamine; N, N-
dimethylaniline, N,N-diethylaniline,
Tertiary amines having an aromatic ring such as benzyl N,N-dimethylamine; or N-alkylpiperidines such as N-methylpiperidine, N-ethylpiperidine; N,N'-dimethylpiperazine, N-
Mention may be made of tertiary amines such as methylmorpholine. Among these tertiary amines, hydrophilic tertiary amines such as those soluble in water or those having high mutual solubility with water are preferred in order to obtain a more preferable hydrophilic polymer. That is, when such a tertiary amine is used, the modified polymer is less likely to precipitate during the reaction, and the reaction can be carried out in a homogeneous solution. Although it is also influenced by the reaction conditions, tertiary amines with less steric hindrance around the nitrogen atom have an advantageous nucleophilic attack of the nitrogen atom of the tertiary amine on the epoxide, resulting in faster reaction and more favorable hydrophilicity. This is preferred because a polymer can be obtained. Examples of such tertiary amines that are hydrophilic and have little steric hindrance include pyridines, picolines, lutidines, quinolines, isoquinolines, alkylimidazoles, pyrazines, and derivatives thereof. In addition, the carboxylic acid used in the second stage reaction of the present invention may be a compound having one to several carboxy groups, but in order to obtain a more preferable hydrophilic polymer, in particular, compounds with 10 carbon atoms as exemplified below are preferred. Among the following carboxylic acids, aliphatic saturated acids are preferred, and aliphatic saturated monocarboxylic acids are particularly preferred. fatty acids such as formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, caproic acid; hydroxy acids such as glycolic acid, lactic acid, hydroacrylic acid, 3-hydroxybutyric acid, glyceric acid, gluconic acid; fluoroacetic acid, Halogeno acids such as chloroacetic acid, chloropropionic acid, chlorobutyric acid, triclobutyric acid, trichloroacetic acid; aldehydic acids such as glyoxalic acid; keto acids such as pyruvic acid, acetoacetic acid, levulinic acid; benzoic acid, p-toluic acid, m
- Substituted benzoic acids such as chlorobenzoic acid, salicylic acid, m-hydroxybenzoic acid, and p-hydroxybenzoic acid; carboxylic acids with aromatic rings such as gallic acid, mandelic acid, and phenylacetic acid; oxalic acid, malonic acid,
Polybasic acids such as succinic acid, tartaric acid, malic acid, phthalic acid, and citric acid. The ring-opening reaction of the epoxy ring of the epoxidized polybutadiene in the second stage reaction is carried out as follows. When the epoxidized polybutadiene is separated from the reaction product liquid after the completion of the first stage reaction, first, the epoxidized polybutadiene is dissolved in a tertiary amine or a solvent containing a tertiary amine. The above-mentioned solvent is not particularly limited, but it is preferable to use an inert organic solvent such as a hydrocarbon or a halogenated hydrocarbon used in the first stage reaction because the process system will not be complicated. When reacting by using a tertiary amine as a solvent without using the above solvent, even if a poorly soluble organic solvent such as methyl alcohol used when separating the epoxidized polybutadiene remains, a small amount will cause the tertiary amine to react. There is no problem even if formic acid and hydrogen peroxide remain as long as they do not interfere with the ring reaction and a small amount of formic acid and hydrogen peroxide remain. However, if a large amount of methyl alcohol remains, the reaction temperature will not rise above its boiling point. In that case, most of the methyl alcohol may be distilled off prior to the reaction. Next, a carboxylic acid is added to a solution in which epoxidized polybutadiene is dissolved in a tertiary amine or a solvent containing a tertiary amine, and the mixture is heated and stirred to react, thereby opening the epoxy ring. The reaction temperature is preferably 40°C or higher and 160°C or lower. When the reaction temperature is lower than the above temperature, the reaction rate is slow;
Not really responding. Further, at temperatures higher than the above temperature, the polymer may gel during the reaction. Further, although the reaction time varies depending on the reaction conditions, the reaction can be carried out for 10 minutes or more and less than 10 hours. In addition, when performing the second stage reaction without separating the epoxidized polybutadiene from the reaction product liquid after the first stage reaction, it is possible to add the tertiary amine and carboxylic acid directly to the reaction product liquid and separate the epoxidized polybutadiene. It may be heated and stirred under similar reaction conditions. When hydroxycarboxylic acids are used as the carboxylic acids, some hydroxycarboxylic acids such as gluconic acid and glyceric acid are commercially available as 50 to 90% by weight aqueous solutions. If a large amount of water is present in the reaction system, epoxidized polybutadiene will not dissolve in the solvent, so when using the above-mentioned hydroxycarboxylic acid aqueous solution, add the hydroxycarboxylic acid in advance to the epoxidized polybutadiene solution. It is best to remove water by azeotropically removing water and the tertiary amine by adding an aqueous solution to a tertiary amine that can be azeotroped with water and heating it. By removing azeotropic water under reduced pressure, a homogeneous solution of the polymer can be obtained. It is not necessary to react (ring-open) all the epoxy rings of the epoxidized polybutadiene in the second stage reaction, and the ring-opening is preferably performed based on the unsaturated double bonds of the 1,4-polybutadiene before epoxidation. ~60 mol%, more preferably 15-45 mol%. That is, for example, if only 5 mol% is epoxidized, it is necessary to open the entire ring, but if 60 mol% is epoxidized, it is possible to open the entire ring, or the epoxidized The ring may be opened by 5 mol% based on the unsaturated double bonds of the 1,4-polybutadiene before the ring opening. The amount of epoxy rings remaining in the polymer after the completion of the second stage reaction can be roughly estimated by 1 H-NMR. That is, the polymer was dissolved in a heavy water (D 2 O) solvent [or heavy methanol (CD 3 OD)] and 1 H-NMR was measured, and the epoxide protons before and after the second stage reaction were measured.

【匏】の枛少量から算出できる。 第段反応終了埌、埗られた本発明に係る倉性
ポリマヌ芪氎性ポリマヌの反応液からの回収
及び粟補は次のようにしお行うこずができる。 䟋えば、第段反応終了埌、倚量の−ヘキサ
ン䞭ぞ反応液を投入するか、たたは反応液の液枩
を宀枩付近たで䜎䞋させ、−ヘキサンなどの貧
溶剀を反応液䞭に添加するこずによ぀お、倉性ポ
リマヌを析出沈柱させる。この時、反応液䞭の倉
性ポリマヌの濃床が垌薄すぎる堎合は、䞊蚘貧溶
剀を添加しおも癜濁するだけでポリマヌが析出し
ない堎合がある。この堎合は、反応液を枛圧䞋に
濃瞮しお第アミンなどの溶剀の䞀郚を陀去埌、
䞊蚘貧溶剀を添加するこずでポリマヌを析出でき
る。 次いで、析出沈柱したポリマヌを宀枩或いは加
枩しお枛圧䞋に溶剀を溜去するこずによ぀お、倉
性ポリマヌを回収するこずができる。 䞊蚘倉性ポリマヌは、第アミンやカルボン酞
ずの芪和性が高く、反応の組合せや反応率によ぀
おは䞀床の析出沈柱ではこれらを充分に陀去する
こずができない堎合が倚い。かかる堎合は、必芁
に応じ、さらに、回収した倉性ポリマヌを熱
む゜プロパノヌルに溶解しお−ヘキサンで析出
沈柱などの再沈を組合せるこずによ぀お粟補する
こずができ、これにより実質䞊第アミンなどの
溶剀を含たない固䜓の倉性ポリマヌを埗るこずが
できる。尚、若干の溶剀を含んだたたでも塗料甚
など、䜿甚できる分野は倚い。 䞊述の劂くしお埗られる本発明に係る倉性ポリ
マヌは、也燥埌はゎム状のポリマヌで、ポリマヌ
の反応率、䜿甚する第アミンの皮類及びカルボ
ン酞の皮類などにより芪氎性の皋床に差異はある
が、氎、或いはメチルアルコヌル、゚チルアルコ
ヌルの党おにたたはいずれかには宀枩で溶解し、
たた、ピリゞンなど第アミンの倚くに宀枩或い
は加枩時に溶解し、さらに、−プロパノヌル、
む゜プロパノヌル、む゜ブチルアルコヌル、タヌ
シダルブチルアルコヌル、む゜アミルアルコヌ
ル、ゞ゚チレングリコヌル、ベンゞルアルコヌル
にも宀枩或いは加枩時に溶解する、芪氎性ポリマ
ヌである。 しかし、䞊蚘の本発明に係る芪氎性ポリマヌ
は、ベンれン、トル゚ン、キシレン、−ヘキサ
ン䞀般詊薬は−ヘキサンを䞻䜓ずする脂肪族
C6炭化氎玠の混合物が倚い、−ヘプタン、石
油゚ヌテルミネラルスピリツト、ナフサ、シ
クロヘキサンなどの芳銙族、脂肪族、脂環匏の各
炭化氎玠化合物、クロロホルム、クロルベンれン
などのハロゲン化炭化氎玠の他、ゞ゚チル゚ヌテ
ル、メチルむ゜ブチルケトン、アセトンなどには
䞍溶である。即ち、氎玠結合性の匱い溶剀或いは
䞭皋床の溶剀には䞍溶である。 本発明の補造方法によ぀お埗られる新芏な倉性
ポリマヌは、䞊述の劂く芪氎性堎合により氎溶
性で䞔぀ポリマヌ構造䞭に䞍飜和二重結合を有
する高分子量のポリマヌであり、氎溶性接着剀、
氎溶性塗料、吞氎性材料、再湿性接着剀、電着塗
料、繊維、玙ぞの応甚垯電防止、吞氎、吞湿加
工、抄造甚粘材他などの分野に䜿甚するこがで
き、しかも埓来公知の氎溶性高分子にはない特殊
な特城感光性、ゎム的性質の付䞎、熱架橋によ
る硬化性などを生かしお䜿甚するこずができ
る。 以䞋に本発明の実斜䟋を比范䟋ず共に挙げ、本
発明の効果をさらに具䜓的に説明する。 尚、実斜䟋及び比范䟋においお䜿甚した
−ポリブタゞ゚ンのミクロ構造−結合の
含量は赀倖吞収スペクトルIR或いは栞磁
気共鳎スペクトルNMRで枬定し算出した。 たた、゚ポキシ化ポリブタゞ゚ンの゚ポキシ化
率反応前の−ポリブタゞ゚ンの党䞍飜和
二重結合のうち゚ポキシ構造に倉換されおいる割
合モルぱポキシ化ポリブタゞ゚ンを重ク
ロロホルムに溶解し、NMRで枬定するこずによ
぀お算出した。 たた、゚ポキシ環の開環反応によ぀お埗られた
倉性ポリマヌの構造は、このポリマヌを重メタノ
ヌルCD3OD或いは重氎D2Oに溶解しお
1H−NMRで枬定するこずにより調べた。 たた、ポリマヌの溶解性は、溶媒玄mlを入れ
た詊隓管䞭にポリマヌ玄0.1を投入しお䞀倜攟
眮玄12時間しお刀定したものである。 実斜䟋  ゚ポキシ化 撹拌機、枩床蚈、滎䞋ロヌト、コンデンサヌを
備えた300ml容量の぀口フラスコに、トル゚ン
150mlを入れ、次いで、これに−ポリブタ
ゞ゚ンずしおUBEPOL 150シス−−
結合97.4、トランス−−結合1.3、
−結合 1.3〔η〕2.1数平均分子量 箄
20䞇宇郚興産補10.820.2モル モノマヌ
ナニツトを加え、45℃で100分間撹拌混合しお
溶解させた。 この溶液に、液枩を45℃に保ちながら蟻酞2.02
0.044モルを加えお混合した。次いで、埗
られた溶液に、液枩を45℃に保ちながら30重量
の過酞化氎玠氎48過酞化氎玠0.42モル含有
を20分間で滎䞋した。埗られた混合液を45℃で
時間撹拌混合しお、−ポリブタゞ゚ンを゚
ポキシ化した。 反応終了埌、反応生成液を氎掗し、氎掗した反
応生成液を1000mlのメチルアルコヌル䞭に投入
し、゚ポキシ化ポリブタゞ゚ンを析出沈柱させお
分離した。 分離した゚ポキシ化ポリブタゞ゚ンをテトラヒ
ドロフランTHFに再溶解し、メチルアルコ
ヌルに沈柱させ、次いで枛圧也燥宀枩、日
間しお粟補した。この粟補は、分析のために
䞍玔物を培底陀去する必芁があるので行぀たもの
であり、次の第段反応のためには必芁ない。 NMRから算出した゚ポキシ化ポリブタゞ゚ン
の゚ポキシ化率は31モルであ぀た。 ゚ポキシ環の開環反応 ゚ポキシ化反応終了埌、析出沈柱させお分離し
た゚ポキシ化ポリブタゞ゚ン粟補、也燥しおい
ない粗のり゚ツト物を固圢物換算で玄をピ
リゞン150mlに溶解し、撹拌䞋90℃に昇枩し、衚
−に瀺すカルボン酞0.1モルを添加埌時間反
応させた。 次いで、宀枩たで冷华した埌、−ヘキサン
500ml䞭に投入しお゚ポキシ環の開環した倉性ポ
リブタゞ゚ンを析出沈柱させた。これをむ゜プロ
ピルアルコヌルIPAに再溶解し、−ヘキサ
ン沈柱を繰り返しお倉性ポリブタゞ゚ンを粟補
し、枛圧䞋宀枩で日間以䞊也燥しお開環ポリマ
ヌ本発明品−〜−を埗た。 本発明品−〜−を 1H−NMRで枬定
したずころ、いずれも、゚ポキシメチンプロトン
は消滅しおおり、゚ポキシ環は完党に開環しおい
るこずを確認した。 実斜䟋  ゚ポキシ化反応時に蟻酞0.0066モル及び30重量
の過酞化氎玠氎0.66モルを䜿甚した以倖は実斜
䟋ず同様に実斜しお゚ポキシ化率51モルの゚
ポキシ化ポリブタゞ゚ンを埗た。 この゚ポキシ化ポリブタゞ゚ンを甚いお実斜䟋
ず同様に゚ポキシ環の開環反応を行぀お開環ポ
リマヌ本発明品−〜−を埗た。尚、
゚ポキシ環の開環反応時に䜿甚したカルボン酞は
衚−に瀺した。 本発明品−〜−を 1H−NMRで枬定
したずころ、いずれも、゚ポキシメチンプロトン
は消滅しおおり、゚ポキシ環は完党に開環しおい
るこずを確認した。 実斜䟋  ゚ポキシ化反応時に蟻酞0.0108モル及び30重量
の過酞化氎玠氎0.108モルを䜿甚した以倖は実
斜䟋ず同様に実斜しお゚ポキシ化率モルの
゚ポキシ化ポリブタゞ゚ンを埗た。 この゚ポキシ化ポリブタゞ゚ンを甚いお実斜䟋
ず同様に゚ポキシ環の開環反応を行぀お開環ポ
リマヌ本発明品−〜−を埗た。尚、
゚ポキシ環の開環反応時に䜿甚したカルボン酞は
衚−に瀺した。 本発明品〜〜−を 1H−NMRで枬定
したずころ、いずれも、゚ポキシメチンプロトン
は消滅しおおり、゚ポキシ環は完党に開環しおい
るこずを確認した。 比范䟋  ゚ポキシ化反応時に蟻酞0.0108モル及び30重量
の過酞化氎玠氎0.06モルを䜿甚した以倖は実斜
䟋ず同様に実斜しお゚ポキシ化率モルの゚
ポキシ化ポリブタゞ゚ンを埗た。 この゚ポキシ化ポリブタゞ゚ンを甚いお実斜䟋
ず同様に゚ポキシ環の開環反応を行぀お開環ポ
リマヌ比范品−−を埗た。尚、゚
ポキシ環の開環反応時に䜿甚したカルボン酞は衚
−に瀺した。 比范䟋  ゚ポキシ化反応時に蟻酞0.2モル及び30重量
の過酞化氎玠氎0.66モルをを䜿甚しお10時間゚ポ
キシ化を行぀た以倖は実斜䟋ず同様に実斜し
た。 也燥埌、埗られたポリマヌはゲル化詊みた玄
10皮の溶媒にいずれも䞍溶しおおり、元玠分析
を行い、その酞玠含量から、酞玠が党お゚ポキシ
ド由来ずしお算出するず、゚ポキシ化率は63モル
であ぀た。 実斜䟋  ポリブタゞ゚ンずしおDiene35Rシス−
−結合38.1、トランス−−結合52.2、
ビニル−結合9.7〔η〕2.0数平均分子量玄
15䞇重量平均分子量玄40䞇旭化成補を䜿甚
し、゚ポキシ化反応時に蟻酞0.088モル及び30重
量の過酞化氎玠氎0.42モルを䜿甚した以倖は実
斜䟋ず同様に実斜しお゚ポキシ化率29モルの
゚ポキシ化ポリブタゞ゚ンを埗た。 この゚ポキシ化ポリブタゞ゚ンを甚いお実斜䟋
ず同様に゚ポキシ環の開環反応を行぀お開環ポ
リマヌ本発明品−〜−を埗た。尚、
゚ポキシ環の開環反応時に䜿甚したカルボン酞は
衚−に瀺した。 本発明品−〜−を 1H−NMRで枬定
したずころ、いずれも、゚ポキシメチンプロトン
は消滅しおおり、゚ポキシ環は完党に開環しおい
るこずを確認した。 実斜䟋〜で埗られた本発明品、比范䟋で
埗られた比范品、実斜䟋で䜿甚したベヌスポリマ
ヌUBEPOL 150察照品、及び実斜䟋
で䜿甚したベヌスポリマヌDiene35R察照
品に぀いおの皮々の溶媒に察する溶解性詊隓
の結果を衚−にたずめお瀺す。
It can be calculated from the amount of decrease in [Formula]. After the completion of the second stage reaction, the obtained modified polymer (hydrophilic polymer) according to the present invention can be recovered and purified from the reaction solution as follows. For example, after the second stage reaction is completed, the reaction solution is poured into a large amount of n-hexane, or the temperature of the reaction solution is lowered to around room temperature, and a poor solvent such as n-hexane is added to the reaction solution. Possibly, the modified polymer is precipitated. At this time, if the concentration of the modified polymer in the reaction solution is too dilute, even if the poor solvent is added, the solution may only become cloudy and the polymer may not precipitate. In this case, after concentrating the reaction solution under reduced pressure to remove a portion of the solvent such as the tertiary amine,
By adding the above-mentioned poor solvent, the polymer can be precipitated. Next, the modified polymer can be recovered by distilling the precipitated polymer at room temperature or heating it and distilling off the solvent under reduced pressure. The above-mentioned modified polymer has a high affinity with tertiary amines and carboxylic acids, and depending on the combination of reactions and reaction rates, it is often not possible to sufficiently remove these with a single precipitation. In such a case, if necessary, the recovered modified polymer may be further heated (heated).
It can be purified by combining reprecipitation such as dissolution in isopropanol and precipitation with n-hexane, thereby obtaining a solid modified polymer substantially free of solvents such as tertiary amines. . There are many fields in which it can be used, such as paints, even if it contains a small amount of solvent. The modified polymer according to the present invention obtained as described above is a rubber-like polymer after drying, and the degree of hydrophilicity varies depending on the reaction rate of the polymer, the type of tertiary amine used, the type of carboxylic acid, etc. However, it is soluble in water and/or methyl alcohol and ethyl alcohol at room temperature.
In addition, it dissolves in many tertiary amines such as pyridine at room temperature or when heated, and further dissolves in n-propanol,
It is a hydrophilic polymer that dissolves in isopropanol, isobutyl alcohol, tertiary butyl alcohol, isoamyl alcohol, diethylene glycol, and benzyl alcohol at room temperature or when heated. However, the above-mentioned hydrophilic polymer according to the present invention does not contain benzene, toluene, xylene, or n-hexane (the general reagent is an aliphatic polymer mainly composed of n-hexane).
Aromatic , aliphatic, and alicyclic hydrocarbon compounds such as n-heptane, petroleum ether (mineral spirits), naphtha, and cyclohexane; and halogenated compounds such as chloroform and chlorobenzene. In addition to hydrocarbons, it is insoluble in diethyl ether, methyl isobutyl ketone, acetone, etc. That is, it is insoluble in solvents with weak or moderate hydrogen bonding properties. As mentioned above, the novel modified polymer obtained by the production method of the present invention is a high molecular weight polymer that is hydrophilic (in some cases water-soluble) and has an unsaturated double bond in the polymer structure, and has a water-soluble adhesive. agent,
It can be used in fields such as water-soluble paints, water-absorbing materials, re-wetting adhesives, electrodeposition paints, fibers, and paper applications (antistatic, water-absorbing, moisture-absorbing processing, sticky materials for papermaking, etc.), and it can be used in conventional applications. It can be used by taking advantage of special characteristics not found in known water-soluble polymers (photosensitivity, imparting rubbery properties, curability through thermal crosslinking, etc.). Examples of the present invention will be listed below along with comparative examples, and the effects of the present invention will be explained in more detail. In addition, 1 and 4 used in the examples and comparative examples
- The microstructure (content of 1,4-bonds) of polybutadiene was measured and calculated by infrared absorption spectrum (IR) or nuclear magnetic resonance spectrum (NMR). In addition, the epoxidation rate of epoxidized polybutadiene (ratio of all unsaturated double bonds in 1,4-polybutadiene before reaction converted to epoxy structure: mol%) is determined by dissolving epoxidized polybutadiene in deuterated chloroform, Calculated by measuring with NMR. Furthermore, the structure of the modified polymer obtained by the ring-opening reaction of the epoxy ring can be changed by dissolving this polymer in heavy methanol (CD 3 OD) or heavy water (D 2 O).
It was investigated by measuring with 1 H-NMR. The solubility of the polymer was determined by putting about 0.1 g of the polymer into a test tube containing about 5 ml of solvent and leaving it overnight (about 12 hours). Example 1 Epoxidation Toluene was added to a 300 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel, and condenser.
Then add UBEPOL #150 (cis-1,4-polybutadiene) to this as 1,4-polybutadiene.
97.4% bond, 1.3% trans-1,4-bond, 1,
2-bond 1.3%; [η] 2.1; Number average molecular weight approx.
200,000 (manufactured by Ube Industries) was added, and 10.82 g (0.2 mol monomer unit) was added, and the mixture was stirred and mixed at 45°C for 100 minutes to dissolve. Add 2.02 g of formic acid to this solution while keeping the liquid temperature at 45℃.
g (0.044 mol) and mixed. Next, 30% by weight was added to the resulting solution while keeping the liquid temperature at 45°C.
48g of hydrogen peroxide (contains 0.42 moles of hydrogen peroxide)
was added dropwise over 20 minutes. The resulting mixture was heated at 45℃ for 5 minutes.
The mixture was stirred and mixed for a period of time to epoxidize the 1,4-polybutadiene. After the reaction was completed, the reaction product solution was washed with water, and the water-washed reaction product solution was poured into 1000 ml of methyl alcohol to precipitate and separate the epoxidized polybutadiene. The separated epoxidized polybutadiene was purified by redissolving it in tetrahydrofuran (THF), precipitating it in methyl alcohol, and then drying under reduced pressure (room temperature, 2 days). (This purification was performed because it was necessary to thoroughly remove impurities for analysis, and is not necessary for the next second stage reaction.) The epoxidation rate of epoxidized polybutadiene calculated from NMR is It was 31 mol%. Ring-opening reaction of epoxy ring After the completion of the epoxidation reaction, about 6 g of the epoxidized polybutadiene (crude wet material that has not been purified or dried) separated by precipitation was dissolved in 150 ml of pyridine and stirred for 90 minutes. The temperature was raised to .degree. C., and 0.1 mol of the carboxylic acid shown in Table 1 was added, followed by a reaction for 5 hours. Then, after cooling to room temperature, n-hexane
The modified polybutadiene with the epoxy ring opened was precipitated by pouring it into 500 ml of the solution. This was redissolved in isopropyl alcohol (IPA) and the modified polybutadiene was purified by repeating n-hexane precipitation, and dried under reduced pressure at room temperature for 2 days or more to obtain ring-opened polymers (products of the present invention 1-1 to 1-6). I got it. When products 1-1 to 1-6 of the present invention were measured by 1 H-NMR, it was confirmed that the epoxymethine protons had disappeared and the epoxy rings were completely opened. Example 2 Epoxidized polybutadiene with an epoxidation rate of 51 mol% was obtained in the same manner as in Example 1, except that 0.0066 mol of formic acid and 0.66 mol of 30% by weight hydrogen peroxide solution were used during the epoxidation reaction. Using this epoxidized polybutadiene, the ring-opening reaction of the epoxy ring was performed in the same manner as in Example 1 to obtain ring-opened polymers (products of the present invention 2-1 to 2-5). still,
The carboxylic acids used in the ring-opening reaction of the epoxy ring are shown in Table-1. When products 2-1 to 2-5 of the present invention were measured by 1 H-NMR, it was confirmed that the epoxymethine protons had disappeared and the epoxy rings were completely opened. Example 3 Epoxidized polybutadiene with an epoxidation rate of 8 mol% was obtained in the same manner as in Example 1, except that 0.0108 mol of formic acid and 0.108 mol of 30% by weight hydrogen peroxide solution were used during the epoxidation reaction. Using this epoxidized polybutadiene, the ring-opening reaction of the epoxy ring was carried out in the same manner as in Example 1 to obtain ring-opened polymers (products of the present invention 3-1 to 3-3). still,
The carboxylic acids used in the ring-opening reaction of the epoxy ring are shown in Table-1. When products 3-1 to 3-3 of the present invention were measured by 1 H-NMR, it was confirmed that the epoxymethine proton had disappeared and the epoxy ring had completely opened. Comparative Example 1 Epoxidized polybutadiene with an epoxidation rate of 3 mol % was obtained in the same manner as in Example 1, except that 0.0108 mol of formic acid and 0.06 mol of 30% by weight hydrogen peroxide solution were used during the epoxidation reaction. Using this epoxidized polybutadiene, the epoxy ring was subjected to a ring-opening reaction in the same manner as in Example 1 to obtain ring-opened polymers (comparative products 1-1 and 1-2). The carboxylic acids used in the ring-opening reaction of the epoxy ring are shown in Table 1. Comparative Example 2 Formic acid 0.2 mol and 30% by weight during epoxidation reaction
The procedure of Example 1 was repeated except that epoxidation was carried out for 10 hours using 0.66 mol of hydrogen peroxide solution. After drying, the resulting polymer gelled (approximately
The epoxidation rate was calculated to be 63 mol % based on the oxygen content calculated based on the assumption that all oxygen was derived from epoxide. Example 4 Diene35R (cis-1,4
-bond 38.1%, trans-1,4-bond 52.2%,
Vinyl bond 9.7%; [η] 2.0; Number average molecular weight approx.
Epoxy Epoxidized polybutadiene with a conversion rate of 29 mol% was obtained. Using this epoxidized polybutadiene, the ring-opening reaction of the epoxy ring was carried out in the same manner as in Example 1 to obtain ring-opened polymers (products of the present invention 4-1 to 4-5). still,
The carboxylic acids used in the ring-opening reaction of the epoxy ring are shown in Table-1. When products 4-1 to 4-5 of the present invention were measured by 1 H-NMR, it was confirmed that the epoxymethine protons had disappeared and the epoxy rings were completely opened. Products of the present invention obtained in Examples 1 to 4, comparative products obtained in Comparative Example 1, base polymer (UBEPOL #150) (control product 1) used in Examples, and base polymer used in Example 4 The results of solubility tests on (Diene35R) (Control Product 2) in various solvents are summarized in Table 1.

【衚】【table】

【衚】 実斜䟋  実斜䟋で䜿甚した蟻酞及び過酞化氎玠からで
きる過蟻酞の代わりに、゚ポキシ化剀ずしお垂販
の−クロル過安息銙酞アルドリツヒより入
手、玔床玄80を0.09モル䜿甚しお30℃で゚
ポキシ化した以倖は実斜䟋ず同様に実斜しお゚
ポキシ化率32モルの゚ポキシ化ポリブタゞ゚ン
を埗た。 この゚ポキシ化ポリブタゞ゚ンを甚い、カルボ
ン酞ずしお衚−に瀺すカルボン酞を䜿甚した以
倖は実斜䟋ず同様に゚ポキシ環の開環反応を行
぀お開環ポリマヌ本発明品−〜−を
埗た。 本発明品−〜−を 1H−NMRで枬定
したずころ、いずれも、゚ポキシメチンプロトン
は消滅しおおり、゚ポキシ環は完党に開環しおい
るこずを確認した。 実斜䟋及び実斜䟋 ゚ポキシ環の開環反応時に、実斜䟋で䜿甚し
たピリゞンの代わりに、それぞれα−ピコリン
150ml実斜䟋、む゜キノリン150ml実斜䟋
を䜿甚し、カルボン酞ずしお衚−に瀺すカ
ルボン酞を䜿甚した以倖は実斜䟋ず同様に実斜
しお開環ポリマヌ本発明品−−
−−を埗た。 本発明品−−−−を
1H−NMRで枬定したずころ、いずれも、゚ポキ
シメチンプロトンは消滅しおおり、゚ポキシ環は
完党に開環しおいるこずを確認した。 実斜䟋  ゚ポキシ環の開環反応時に、実斜䟋で䜿甚し
たピリゞンの代わりにピリゞン75mlずトル゚ン75
mlずの混合物を䜿甚し、この混合物に゚ポキシ化
ポリブタゞ゚ンを溶解させ、カルボン酞ずしお衚
−に瀺すカルボン酞を䜿甚しお100℃で時間
加熱撹拌した以倖は実斜䟋ず同様に実斜しお開
環ポリマヌ本発明品−−を埗た。 本発明品−−を 1H−NMRで枬定
したずころ、いずれも、゚ポキシメチンプロトン
は消滅しおおり、゚ポキシ環は完党に開環しおい
るこずを確認した。 比范䟋 〜 ゚ポキシ環の開環反応時に、実斜䟋で䜿甚し
たピリゞンの代わりに、それぞれ、トル゚ン150
ml比范䟋、ゞオキサン150ml比范䟋、
−ゞクロルベンれン150ml比范䟋、トル゚
ン150ml及び゚ポキシ開環觊媒ずしお第四アンモ
ニりム塩トリ゚チルベンゞルアンモニりムクロ
ラむド0.3比范䟋を䜿甚し、カルボン
酞ずしお酢酞を䜿甚し、90℃で時間比范䟋
たたは160℃で時間比范䟋
加熱した以倖は実斜䟋ず同様に実斜した。 比范䟋及びにより埗られたポリマヌ
比范品及びを回収しお 1H−NMRで
枬定したずころ、゚ポキシ環は党く開環せずに残
぀おいた。 比范䟋においおは、加熱しはじめお玄時間
で反応系に流動性がなくなり、粘床も䞊昇しおゲ
ル化した。反応物溶媒を含むを数皮の溶媒に
溶かしおみようずしたが䞍溶であり、ゲル化ず刀
断した。 実斜䟋  ゚ポキシ環の開環反応時に、実斜䟋で䜿甚し
たピリゞンの代わりに−メチル−−ピロリド
ン150mlを䜿甚し、これに゚ポキシ化ポリブタゞ
゚ンを溶解し、第アミンずしおトリ゚タノヌル
アミン100ml、及びカルボン酞ずしお酢酞0.1モル
を䜿甚しお120℃で時間加熱撹拌した以倖は実
斜䟋ず同様に実斜しお開環ポリマヌ本発明品
を埗た。 本発明品を 1H−NMRで枬定しずころ、゚
ポキシ環の開環は確認できたが、トリ゚タノヌル
アミンのシグナルず重な぀おおり、゚ポキシ環の
開環率を正確に算出するこずはできなか぀た。 比范䟋  トリ゚タノヌルアミンを䜿甚しない以倖は実斜
䟋ず同様に実斜した。 埗られたポリマヌ比范品を回収しお 1H
−NMRで枬定したずころ、゚ポキシ環は党く開
環せずに残぀おいた。 実斜䟋〜で埗られた本発明品、及び比范䟋
及びで埗られた比范品に぀いおの
皮々の溶媒に察する溶解性詊隓の結果を衚−に
たずめお瀺す。
[Table] Example 5 Instead of performic acid made from formic acid and hydrogen peroxide used in Example 1, commercially available m-chloroperbenzoic acid (obtained from Aldrich, purity: about 80%) was used as an epoxidizing agent at 0.09%. Epoxidized polybutadiene with an epoxidation rate of 32 mol % was obtained in the same manner as in Example 1, except that the epoxidation was performed at 30° C. using mol. Using this epoxidized polybutadiene, the ring-opening reaction of the epoxy ring was carried out in the same manner as in Example 1, except that the carboxylic acids shown in Table 2 were used as the carboxylic acids. 3) was obtained. When products 5-1 to 5-3 of the present invention were measured by 1 H-NMR, it was confirmed that the epoxymethine protons had disappeared and the epoxy rings were completely opened. Examples 6 and 7 During the ring-opening reaction of the epoxy ring, α-picoline was used instead of the pyridine used in Example 1.
The ring-opened polymer (inventive product 6 -1,6-2,7
-1,7-2) were obtained. Invention products 6-1, 6-2, 7-1, 7-2
When measured by 1 H-NMR, it was confirmed that the epoxymethine proton had disappeared in all cases, and the epoxy ring was completely opened. Example 8 During the ring-opening reaction of the epoxy ring, 75 ml of pyridine and 75 ml of toluene were used instead of the pyridine used in Example 1.
ml, epoxidized polybutadiene was dissolved in this mixture, and the carboxylic acid shown in Table 2 was used as the carboxylic acid. Ring-opened polymers (products of the present invention 8-1 and 8-2) were obtained. When products 8-1 and 8-2 of the present invention were measured by 1 H-NMR, it was confirmed that the epoxymethine proton had disappeared and the epoxy ring was completely opened. Comparative Examples 3 to 6 During the ring-opening reaction of the epoxy ring, 150 toluene was used instead of the pyridine used in Example 1.
ml (Comparative Example 3), dioxane 150ml (Comparative Example 4),
Using 150 ml of o-dichlorobenzene (Comparative Example 5), 150 ml of toluene, and 0.3 g of quaternary ammonium salt (triethylbenzylammonium chloride) (Comparative Example 6) as the epoxy ring-opening catalyst, using acetic acid as the carboxylic acid, 90 ℃ for 5 hours (Comparative Examples 3, 4, 6) or 160℃ for 1 hour (Comparative Example 5)
The same procedure as in Example 1 was carried out except that heating was performed. When the polymers obtained in Comparative Examples 3, 4, and 6 (Comparative Products 3, 4, and 6) were collected and measured by 1 H-NMR, the epoxy rings remained without being opened at all. In Comparative Example 5, the reaction system lost fluidity about 1 hour after the heating started, and the viscosity increased and gelatinized. I tried to dissolve the reactant (including the solvent) in several types of solvents, but it was insoluble, so I judged it to be gelation. Example 9 During the ring-opening reaction of the epoxy ring, 150 ml of N-methyl-2-pyrrolidone was used in place of the pyridine used in Example 1, epoxidized polybutadiene was dissolved in this, and 100 ml of triethanolamine was added as the tertiary amine. A ring-opened polymer (Product 9 of the present invention) was obtained in the same manner as in Example 1, except that 0.1 mol of acetic acid was used as the carboxylic acid, and the mixture was heated and stirred at 120° C. for 7 hours. When product 9 of the present invention was measured by 1 H-NMR, ring opening of the epoxy ring was confirmed, but the signal overlapped with the triethanolamine signal, making it impossible to accurately calculate the ring opening rate of the epoxy ring. Nakatsuta. Comparative Example 7 The same procedure as Example 9 was carried out except that triethanolamine was not used. The obtained polymer (comparative product 7) was collected and incubated for 1 H.
- When measured by NMR, the epoxy ring remained without being opened at all. Table 2 summarizes the results of solubility tests in various solvents for the products of the present invention obtained in Examples 5 to 9 and the comparative products obtained in Comparative Examples 3, 4, 6, and 7.

【衚】 比范䟋  ゚ポキシ環の開環反応時にカルボン酞を添加し
ない以倖は実斜䟋ず同様に実斜した。 埗られたポリマヌ比范品を回収しお 1H
−NMRで枬定したずころ、゚ポキシ環は消費さ
れずに残぀おいた。 実斜䟋 10 ゚ポキシ環の開環反応時にカルボン酞ずしお乳
酞を䜿甚しお60℃で時間加熱撹拌した以倖は実
斜䟋ず同様に実斜しお開環ポリマヌ本発明品
10を埗た。 本発明品10を 1H−NMRで枬定したずころ、
゚ポキシ環の玄50モル、即ち最初のポリブタゞ
゚ンの党䞍飜和二重結合の玄15モルが゚ポキシ
構造ずしお残぀おおり、玄16モルが開環しおい
た。 実斜䟋 11 ゚ポキシ環の開環反応時にカルボン酞ずしお乳
酞を䜿甚しお90℃で時間加熱撹拌した以倖は実
斜䟋ず同様に実斜しお開環ポリマヌ本発明品
11を埗た。 本発明品11を 1H−NMRで枬定したずころ、
゚ポキシ環の玄25モル、即ち最初のポリブタゞ
゚ンの党䞍飜和二重結合の玄モルが゚ポキシ
構造ずしお残぀おおり、玄23モルが開環しおい
た。 実斜䟋 12 ゚ポキシ化反応時にポリブタゞ゚ン
UBEPOL 1505.04、蟻酞0.022モル及び
30重量の過酞化氎玠氎0.22モルを䜿甚した以倖
は実斜䟋ず同様に実斜しおポリブタゞ゚ンを゚
ポキシ化した芏暡が異なる他は実斜䟋ず同様
であり、゚ポキシ化率は31モルず考えられる。 ゚ポキシ化反応終了埌、反応生成液を氎掗し、
゚ポキシ化ポリブタゞ゚ンを単離せずに䞊蚘の氎
掗した反応生成液䞭にピリゞン75ml及び酢酞0.1
モルを添加し、撹拌䞋100℃で時間かけお開環
反応を行぀た以倖は実斜䟋ず同様に実斜しお開
環ポリマヌ本発明品12を埗た。 本発明品12を 1H−NMRで枬定したずころ、
゚ポキシメチンプロトンは消滅しおおり、゚ポキ
シ環は完党に開環しおいるこずを確認した。 実斜䟋10〜12で埗られた本発明品、及び比范䟋
で埗られた比范品に぀いおの皮々の溶媒に察す
る溶解性詊隓の結果を衚−にたずめお瀺す。
[Table] Comparative Example 8 The same procedure as in Example 1 was carried out except that no carboxylic acid was added during the ring-opening reaction of the epoxy ring. The obtained polymer (comparative product 8) was collected and incubated for 1 H.
-As measured by NMR, the epoxy ring remained unconsumed. Example 10 A ring-opened polymer (inventive product
10). When product 10 of the present invention was measured by 1 H-NMR,
About 50 mole percent of the epoxy rings, ie, about 15 mole percent of the total unsaturated double bonds in the original polybutadiene, remained as epoxy structures, and about 16 mole percent were open. Example 11 A ring-opened polymer (inventive product
11). When product 11 of the present invention was measured by 1 H-NMR,
Approximately 25 mole percent of the epoxy rings, ie, approximately 8 mole percent of the total unsaturated double bonds in the original polybutadiene, remained as epoxy structures and about 23 mole percent were open. Example 12 During the epoxidation reaction, 5.04 g of polybutadiene (UBEPOL #150), 0.022 mol of formic acid and
Polybutadiene was epoxidized in the same manner as in Example 1 except that 0.22 mol of 30% by weight hydrogen peroxide solution was used. it is conceivable that). After the epoxidation reaction is completed, the reaction product liquid is washed with water,
Without isolating the epoxidized polybutadiene, add 75 ml of pyridine and 0.1 acetic acid to the reaction product solution washed with water.
A ring-opened polymer (product 12 of the present invention) was obtained in the same manner as in Example 1, except that the ring-opening reaction was carried out at 100° C. for 7 hours under stirring. When product 12 of the present invention was measured by 1 H-NMR,
It was confirmed that the epoxymethine proton had disappeared and the epoxy ring was completely opened. Table 3 summarizes the results of solubility tests in various solvents for the products of the present invention obtained in Examples 10 to 12 and the comparative product obtained in Comparative Example 8.

【衚】 刀定、及び、、、
、及びで瀺す溶
媒はすべお衚−の堎合ず同様である
。
※‥゚ポキシ化率(モル)
実斜䟋 13 ゚ポキシ環の開環反応時にカルボン酞ずしお蓚
酞を䜿甚した以倖は実斜䟋ず同様に実斜した。
開環反応系は反応開始埌20分でポリマヌがゎム状
に析出し䞍均䞀ずな぀た。この時点で開環反応を
停止し、析出したポリマヌを実斜䟋ず同様に粟
補・也燥した。埗られたポリマヌ本発明品13
の溶解性を評䟡したずころ、氎溶性であ぀た。 本発明品13を 1H−NMRで枬定したずころ、
゚ポキシメチンプロトンは消滅しおおり、゚ポキ
シ環は完党に開環しおいるこずを確認した。
[Table] Judgment, and *1, *2, *3, *5
, *7 and *8
All media are the same as in Table 1.
*Epoxidation rate (mol%)
Example 13 The same procedure as in Example 1 was carried out except that oxalic acid was used as the carboxylic acid during the ring-opening reaction of the epoxy ring.
The ring-opening reaction system became non-uniform as the polymer precipitated in a rubbery state 20 minutes after the start of the reaction. At this point, the ring-opening reaction was stopped, and the precipitated polymer was purified and dried in the same manner as in Example 1. Obtained polymer (invention product 13)
When the solubility of the compound was evaluated, it was found to be water-soluble. When product 13 of the present invention was measured by 1 H-NMR,
It was confirmed that the epoxymethine proton had disappeared and the epoxy ring was completely opened.

Claims (1)

【特蚱請求の範囲】  䞍飜和二重結合の85以䞊が−結合で
䞔぀分子量が10000以䞊の−ポリブタゞ゚
ンを、その䞍飜和二重結合の〜60モルを゚ポ
キシ化し、次いで第アミン及びカルボン酞の存
圚䞋に加熱しお゚ポキシ環の開環を行うこずを特
城ずする芪氎性ポリマヌの補造方法。  ゚ポキシ環の開環を、゚ポキシ化する前の
−ポリブタゞ゚ンの䞍飜和二重結合を基準
ずしお〜60モル行う特蚱請求の範囲第項蚘
茉の芪氎性ポリマヌの補造方法。  カルボン酞が炭玠数10以䞋のカルボン酞であ
る特蚱請求の範囲第項蚘茉の芪氎性ポリマヌの
補造方法。  第アミンが、ピリゞン類、ピコリン類、ル
チゞン類、キノリン類、む゜キノリン類、アルキ
ルむミダゟヌル類、ピラゞン及びそれらの誘導䜓
からなる矀から遞択される䞀皮又は二皮以䞊の混
合物である特蚱請求の範囲第項蚘茉の芪氎性ポ
リマヌの補造方法。
[Claims] 1. 1,4-polybutadiene in which 85% or more of the unsaturated double bonds are 1,4-bonds and the molecular weight is 10,000 or more, and 5 to 60 mol% of the unsaturated double bonds are epoxy 1. A method for producing a hydrophilic polymer, which comprises curing the epoxy ring by heating in the presence of a tertiary amine and a carboxylic acid to open the epoxy ring. 2. The method for producing a hydrophilic polymer according to claim 1, wherein the epoxy ring is opened in an amount of 5 to 60 mol% based on the unsaturated double bonds of 1,4-polybutadiene before epoxidation. 3. The method for producing a hydrophilic polymer according to claim 1, wherein the carboxylic acid is a carboxylic acid having 10 or less carbon atoms. 4 Claims in which the tertiary amine is one or a mixture of two or more selected from the group consisting of pyridines, picolines, lutidines, quinolines, isoquinolines, alkylimidazoles, pyrazines, and derivatives thereof. 2. A method for producing a hydrophilic polymer according to item 1.
JP16238383A 1983-09-03 1983-09-03 Production of hydrophilic polymer Granted JPS6053511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16238383A JPS6053511A (en) 1983-09-03 1983-09-03 Production of hydrophilic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16238383A JPS6053511A (en) 1983-09-03 1983-09-03 Production of hydrophilic polymer

Publications (2)

Publication Number Publication Date
JPS6053511A JPS6053511A (en) 1985-03-27
JPH0469163B2 true JPH0469163B2 (en) 1992-11-05

Family

ID=15753533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16238383A Granted JPS6053511A (en) 1983-09-03 1983-09-03 Production of hydrophilic polymer

Country Status (1)

Country Link
JP (1) JPS6053511A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055004A (en) * 1983-09-05 1985-03-29 Ube Ind Ltd Production of hydrophilic polymer
US5264480A (en) * 1992-04-03 1993-11-23 Shell Oil Company Hydroxyl functional derivatives of epoxidized diene polymers and process for making them
US5242989A (en) * 1992-04-03 1993-09-07 Shell Oil Company Hydroxyl functional derivatives of epoxidized diene polymers and process for making them
US5262496A (en) * 1992-04-03 1993-11-16 Shell Oil Company Hydroxyl functional derivatives of epoxidized diene polymers and process for making them

Also Published As

Publication number Publication date
JPS6053511A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
US4528340A (en) Process for producing hydrophilic polymers
CN107188802B (en) Method for catalyzing alcohol to depolymerize 3-hydroxybutyrate by using double-acid ionic liquid
CN110498915B (en) Simple and controllable synthesis method of alpha-carboxyl-omega-hydroxyl polyether
WO2018058816A1 (en) Method for manufacturing polyoxazoline chain extending agent
Tsuda Schotten‐baumann esterification of poly (vinyl alcohol). I.
WO2021068443A1 (en) Preparation method for and application of tung oil-based polymer, and preparation method for tung oil-based polymer derivatives
Mahajan et al. Greener approach for synthesis of N, N, N-trimethyl chitosan (TMC) using ternary deep eutectic solvents (TDESs)
JPH0469163B2 (en)
JPH0469164B2 (en)
CN107915847B (en) Preparation method of anti-aging moisture-curing vinyl resin
CN111440280B (en) Ketone-aldehyde resin-based reactive anionic emulsifier and preparation method thereof
JPS6055004A (en) Production of hydrophilic polymer
CN109265695A (en) A kind of preparation method and application thickening modified xantham gum
JPH0714963B2 (en) Method for producing hydrophilic polymer
Supeno et al. The Synthesis of a Macro-initiator from Cellulose in a Zinc-Based Ionic Liquid.
CN114044839A (en) Preparation method of controllable/active polymerization chain transfer agent and polyacrylamide with molecular weight of 100-500 ten thousand
CN111100230B (en) Polyvinyl alcohol with excellent water solubility and preparation method thereof
WO2017195735A1 (en) Vinyl alcohol-vinyl acetate copolymer
US2927100A (en) Method of preparing a water soluble polymer from a water insoluble conjugated diene polymer
US4444692A (en) Process for making hydroxyl terminated liquid polymers
JPH052686B2 (en)
JPH0649729B2 (en) Method for producing hydrophilic diene-based modified polymer
CN111154097A (en) Preparation method of polybutyrolactam
JPS60248783A (en) Pressure-sensitive adhesive
CN109517108A (en) Prepare maleimide/alpha olefin copolymer method