JPH046906B2 - - Google Patents

Info

Publication number
JPH046906B2
JPH046906B2 JP5126085A JP5126085A JPH046906B2 JP H046906 B2 JPH046906 B2 JP H046906B2 JP 5126085 A JP5126085 A JP 5126085A JP 5126085 A JP5126085 A JP 5126085A JP H046906 B2 JPH046906 B2 JP H046906B2
Authority
JP
Japan
Prior art keywords
silver
exchange membrane
membrane
electrode
silver chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5126085A
Other languages
Japanese (ja)
Other versions
JPS61209351A (en
Inventor
Jinkichi Myai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Tosoh Corp
Original Assignee
DKK Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Tosoh Corp filed Critical DKK Corp
Priority to JP5126085A priority Critical patent/JPS61209351A/en
Publication of JPS61209351A publication Critical patent/JPS61209351A/en
Publication of JPH046906B2 publication Critical patent/JPH046906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、PH等の測定用電極に用いられる銀−
塩化銀系電極体に関するものである。 従来の技術 単能形又は複合形のPH電極を用いて被検液のPH
を測定する場合、ガラス膜に発生するPHに応じた
電位EGと参照電極側の検出電位ERとの差、EG
ER=EPHなる電気化学的出力から被検液のPHを求
めること周知の通りである。 発明が解決しようとする問題点 ガラス電極におけるガラス膜が汚れていない場
合には、ガラス膜に生じた電位は直に被検液のPH
に対応したものとなり、又、銀−塩化銀系の基準
電極においては、内部液として通常濃厚な塩化カ
リウム溶液が用いられるので、内部液中の塩素イ
オン濃度に対応して電位が定まる。 而して塩化カリウム溶液中においては塩化銀
(AgCl)は、一定の温度等の条件の下において
AgClAg++Cl-、Ag++2Cl-[AgCl2-
Ag++3Cl-[AgCl3--等の錯生成平衡過程を
経て溶解が進む。即ち、AgはAg+なる陽イオン
とクロロ銀錯体なる陰イオンの形態をとつて溶解
する。 PH測定用電極は長期に亙つて検出電位の安定性
が保たれることが望ましいが、実際の使用状態に
おいては、温度の不規則な変動が繰り返し電極に
加えられ、比較的高温時には塩化銀の溶解度積が
下つて内部液中の塩化銀が不足するため、銀−塩
化銀電極における塩化銀が、そのときの温度にお
ける塩化銀の溶解平衡に達するまで溶出すること
となる。 このように塩化銀(AgCl)が銀イオン(Ag+
及びクロロ銀錯イオン([AgCl2-)として内部
液中に溶出することによつて次のような問題を生
ずる。 即ち、塩化銀の内部液への溶出の繰り返しによ
つて、最終的には銀−塩化銀電極における塩化銀
が消滅して単なる銀棒に変質し、これが内部液の
酸化還元電位を感知して検出電位の不正常なずれ
を生ずることとなる。 又、塩化銀の内部液への溶出によつて銀−塩化
銀電極が単なる銀棒に変質する以前の段階におい
ても、溶出した銀イオン及びクロロ銀錯イオンが
温度低下に応じて塩化銀として電極内部又は液絡
部の近傍に析出沈着し、液絡部の目詰り等を生じ
て内部液と被検液との間に異常な液間電位差を発
生せしめ、被検液の正確なPH測定を妨げることと
なる。 塩化銀の内部液への溶出によつて液絡部の目詰
りを生ずるに到る現象は、被検液中にヒドラジン
又はハイドロキノン等の還元剤或いは硫化水素ガ
ス等が存在する場合には更に顕著に現われる。 即ち、内部液中に溶出した銀イオンが液絡部接
触界面において被検液中の還元剤に接触すると、
Ag+→Agなる還元反応により銀粒子となつて液
絡部に目詰りを生ぜしめ、又、被検液中に硫化水
素ガスが存在する場合には、2Ag++S-→Ag2
なる反応により難溶性の沈殿物が液絡部に生成さ
れて矢張り目詰り等を生ずる。 更に、ガラス電極においても内部基準電極を銀
−塩化銀電極を以て形成した場合には、内部液中
に溶出した銀イオンが長い間に塩化銀となつて感
応ガラス膜の内壁面に沈着し、ガラス膜に生ずる
電位を正常値からずらせる原因となる。 上記の各現象は、塩化銀の溶解、銀イオン及び
クロロ銀錯イオンとしての移動という形をとるた
め、このような現象による測定誤差の発生を防ぐ
ために、従来は次のような対策がとられている。 即ち、例えば内部液中に錯形成化合物を混入し
て内部液中に溶出した銀イオンと反応せしめ、結
晶として容易に沈澱しない可溶性錯体を形成せし
める方法がとられているが、可溶性錯体といえど
も一定の溶解平衡作用を呈するから、銀イオン濃
度が高くなつた場合には沈澱のおそれがある。 又、銀イオン及びクロロ銀錯イオンが液絡部又
はガラス膜に到達し難い構造を有する障壁を、銀
−塩化銀電極と液絡部又はガラス膜との間に設け
る方法も用いられているが、この方法においても
溶出した銀イオン及びクロロ銀錯イオンの移動を
完全に防ぐことは不可能である。 問題点を解決するための手段 本発明は、従来のように内部液に溶出した銀イ
オン及びクロロ銀錯イオンに対して移動沈着を防
止する対策を講ずるものとは異なり、温度変化等
による銀イオン及びクロロ銀錯イオンの内部液中
への溶出自体を阻止する根本的な対策を講ずるこ
とによつて従来の欠点を一掃し、極めて寿命の長
い電極を実現することを目的とする。 陽イオン交換膜は陽イオンを透過せしめるが、
通常の状態においては陽イオンの透過を阻止し、
陰イオン交換膜は陰イオンを透過せしめるが、通
常の状態においては陽イオンの透過を阻止するこ
とは周知の通りであるが、本発明は、このような
イオン交換膜の性質に着目してなされたもので、
銀棒の表面に付着せしめた塩化銀膜の表面を陰イ
オン交換膜及び陽イオン交換膜を以て二重に被覆
するか、陰イオン交換膜又は陽イオン交換膜のみ
を以て被覆するように構成したものである。 作 用 上記のように構成することにより、塩化銀膜の
表面において溶解した銀イオン及びクロロ銀錯イ
オンの外部への溶出、即ち、内部液中への溶出を
陰イオン交換膜及び陽イオン交換膜によつて阻止
するか、又は、少なくとも銀イオン或いはクロロ
銀錯化した銀イオンの外部への溶出を阻止するこ
ととなる。 尚、実際には塩化銀膜とイオン交換膜との間に
存在する微小空〓に保持される銀イオン及びクロ
ロ銀錯イオンの濃度と、イオン交換膜の外側のイ
オン濃度との間における濃度差に応じてイオン交
換膜の内外間に生ずる浸透圧によつて若干のイオ
ン流出を生ずるおそれがあると思われるが、実用
上は無視し得る程度に過ぎないことを明らかにす
ることが出来た。 又、イオン交換膜は各種何れも本来親水性であ
るため、イオン交換膜を介在せしめることによつ
て銀−塩化銀電極と内部液間を電気的に絶縁する
ことなく、良好な電気的導通を保ち得るので、電
位差検出系の作動に悪影響を及ぼすおそれは全く
ない。 実施例 第1図は、本発明の一実施例を示す図で、1及
び2は銀−塩化銀電極を形成する銀棒及び塩化銀
膜で、例えば外径ほぼ0.5mmの銀棒1を加熱して
塩化銀の結晶中に挿入することにより、塩化銀膜
2を銀棒1の先端部における適宜軸長範囲の表面
に付着せしめてある。尚、塩化銀膜2を銀棒1の
表面に付着せしめるには、上記従来と同様の方法
の外、従来公知の方法の中、適宜の方法によつて
付着せしめて差支えない。3は陰イオン交換膜
で、例えば内径ほぼ0.6mmに陰イオン交換膜チユ
ーブ内に銀棒1を挿入して塩化銀膜2の表面部分
を覆つてある。4は陽イオン交換膜で、例えば内
径ほぼ0.9mmの陽イオン交換膜チユーブより成り、
陰イオン交換膜3の表面を覆うように設けられて
ある。5は密封剤で、例えばシリコン接着剤より
成り、陽イオン交換膜4の上端と銀棒1間を密封
すると共に、陽イオン交換膜4の下端部を密封
し、更に、必要に応じて内部液と接触するおそれ
のある銀棒1の部分の表面を覆つてある。 このように形成した電極体を実際に使用する内
部液と同じ濃度の塩化カリウム(KCl)溶液に浸
漬しておくことにより、塩化カリウム溶液がイオ
ン交換膜4及び3を介して塩化銀膜2の表面にま
で浸潤して内極としての機能を備えるに到る。 陰イオン交換膜3の外側に陽イオン交換膜4を
設ける代りに、最外側に陰イオン交換膜を設けて
もよく、陰イオン交換膜3及び陽イオン交換膜4
を各多重に設けてもよい。この場合、陰イオン交
換膜を多重に設け、その外側又は内側に多重陽イ
オン交換膜を設けてもよく、陰イオン交換膜と陽
イオン交換膜とを交互に配設してもよい。 更に、陰イオン交換膜と陽イオン交換膜とを別
個に形成する代りに、共通の単膜内に陰イオン交
換基及び陽イオン交換基を各々層状に導入して1
枚の膜によつて陰イオン交換機能及び陽イオン交
換機能を呈し得るように形成したイオン交換膜を
以て塩化銀膜の表面を覆うように構成してもよ
い。 尚、銀イオンのみを捕捉する目的で、陰イオン
交換膜のみを以て塩化銀膜の表面を覆うか、クロ
ロ錯体化した銀イオンを捕捉する目的で塩化銀膜
の表面を陽イオン交換膜のみを以て覆うようにし
てもよく、これらの場合には、イオンの溶出阻止
効果は多少低下するが、従来に較べるときはイオ
ンの溶出移動に因る悪影響を遥かに効果的に抑え
ることが出来る。 第2図は、本発明電極体を用いて構成したPH測
定用電極の一例を示す断面図で、6は第1図に示
した電極体、7はガラス管、8は液絡部、9は内
部液である。 発明の効果 本発明においては、塩化銀膜の表面をイオン交
換膜により覆うことによつてイオンの内部液中へ
の溶出自体を阻止するように構成してあるので、
内部液中に溶出したイオンに対する対策を講じた
従来のものに比し、イオンによる悪影響を遥かに
効果的に除くことが出来る。 次に、第1図に示した本発明電極体の試作品に
よつて本発明者が行つた実験結果を示す。 実験 1 直径ほぼ0.5mmの銀棒の表面に、ほぼ20mmの軸
長に亙つて塩化銀膜を付着せしめた電極体におい
ては、塩化銀膜に含まれる銀の量がほぼ2.3mgで
あることが重量測定によつて明らかになし得た
が、この電極体の中、塩化銀膜の表面を陰イオン
交換膜及び陽イオン交換膜の二重膜並にシリコン
接着剤で覆うと共に、塩化銀膜を付着せしめてい
ない銀棒の部分をシリコン接着剤で覆つた電極体
を、3Mの塩化カリウム溶液30mlを入れたビーカ
ー内に投入し、又、塩化銀膜の表面を陰イオン交
換膜で覆うことなく、銀棒の部分のみをシリコン
接着剤で覆つた電極体を、前記と同様3Mの塩化
カリウム溶液30mlを入れたビーカー内に投入し、
両ビーカーをホツトプレート上で7時間煮沸した
後、各ビーカー内における塩化カリウム溶液中の
銀イオン濃度を原子吸光装置によつて測定した結
果、塩化銀膜を露出した電極体においては、塩化
銀膜に含まれる銀のほぼ20%に当る0.47mgの銀が
塩化カリウム溶液中に溶出したが、塩化銀膜の表
面をイオン交換膜で覆つた電極体においては、ほ
ぼ1.7%に当る0.04mgの銀が溶出したに過ぎず、
本発明の効果の大なることを示している。 実験 2 前記と同様、塩化銀膜の表面を二重のイオン交
換膜及びシリコン接着剤で覆うと共に、銀棒の部
分をシリコン接着剤で覆つた電極体を1Mの塩化
カリウム溶液中に浸し、イオン交換膜の外表面と
銀棒間の電気抵抗を測定した結果、600Ω/cmで
本発明電極体を電位差測定系に使用しても何等問
題のないことが明らかとなつた。 実験 3 第3図は、本発明電極体をガラス管に内装した
第2図示の電極と、従来のダブルジヤンクシヨン
形比較電極とを3Mの塩化カリウム溶液に浸し、
従来の比較電極電位を基準として電位測定を行つ
た結果を示すもので、横軸は経過時間T(単位、
日)、縦軸は検出電位E(単位、mV)で、図から
明らかなように、ほぼ1ヵ月に亙つて検出電位は
極めて安定に保たれた。 実験 4 第1図に示した本発明電極体を、ダブルジヤン
クシヨン形比較電極に内極として比較電極を構成
し、従来のダブルジヤンクシヨン形比較電極を基
準として各種サンプル液の電位測定を行つた結果
は、次表の通りである。
Industrial Field of Application The present invention is directed to silver-based metals used in electrodes for measuring pH, etc.
This invention relates to a silver chloride-based electrode body. Conventional technology The PH of the test liquid is measured using a single-function or composite PH electrode.
When measuring, the difference between the potential E G generated on the glass membrane depending on the PH and the detected potential E R on the reference electrode side, E G
It is well known that the pH of the test liquid is determined from the electrochemical output E R = EPH. Problems to be Solved by the Invention If the glass membrane in the glass electrode is not contaminated, the potential generated on the glass membrane will directly increase the pH of the test liquid.
Furthermore, in silver-silver chloride based reference electrodes, a concentrated potassium chloride solution is usually used as the internal solution, so the potential is determined depending on the chloride ion concentration in the internal solution. Therefore, in potassium chloride solution, silver chloride (AgCl) is dissolved under certain conditions such as temperature.
AgClAg + +Cl - , Ag + +2Cl - [AgCl 2 ] - ,
Dissolution proceeds through a complex formation equilibrium process such as Ag + +3Cl - [AgCl 3 ] -- . That is, Ag dissolves in the form of a cation of Ag + and an anion of a chlorosilver complex. It is desirable that the detection potential of the electrode for PH measurement be maintained over a long period of time, but in actual use, irregular fluctuations in temperature are repeatedly applied to the electrode, and at relatively high temperatures, silver chloride Since the solubility product decreases and silver chloride becomes insufficient in the internal solution, silver chloride at the silver-silver chloride electrode is eluted until the solubility equilibrium of silver chloride at the current temperature is reached. In this way, silver chloride (AgCl) becomes silver ion (Ag + )
The following problems occur due to the elution into the internal solution as chlorosilver complex ions ([AgCl 2 ] - ). That is, by repeating the elution of silver chloride into the internal solution, the silver chloride at the silver-silver chloride electrode eventually disappears and transforms into a simple silver rod, which senses the redox potential of the internal solution and This results in an abnormal shift in the detection potential. Furthermore, even before the silver-silver chloride electrode transforms into a mere silver rod due to the elution of silver chloride into the internal solution, the eluted silver ions and chlorosilver complex ions change to the electrode as silver chloride as the temperature decreases. Precipitation may occur inside or near the liquid junction, causing clogging of the liquid junction and creating an abnormal liquid-to-liquid potential difference between the internal liquid and the test liquid, making it difficult to accurately measure the pH of the test liquid. It will be a hindrance. The phenomenon of clogging of the liquid junction due to the elution of silver chloride into the internal solution is even more pronounced when a reducing agent such as hydrazine or hydroquinone or hydrogen sulfide gas is present in the test solution. appears in That is, when the silver ions eluted into the internal liquid come into contact with the reducing agent in the test liquid at the liquid junction contact interface,
Ag + →Ag becomes silver particles through the reduction reaction, clogging the liquid junction, and if hydrogen sulfide gas is present in the test liquid, 2Ag + +S - →Ag 2 S
Due to this reaction, a hardly soluble precipitate is generated at the liquid junction, causing clogging. Furthermore, when the internal reference electrode of a glass electrode is formed using a silver-silver chloride electrode, the silver ions eluted into the internal solution become silver chloride over a long period of time and deposit on the inner wall surface of the sensitive glass membrane. This causes the potential generated in the membrane to deviate from its normal value. Each of the above phenomena takes the form of silver chloride dissolution and movement as silver ions and chlorosilver complex ions. Conventionally, the following measures have been taken to prevent measurement errors caused by such phenomena. ing. That is, for example, a method has been used in which a complex-forming compound is mixed into the internal solution and reacted with the silver ions eluted into the internal solution to form a soluble complex that does not easily precipitate as a crystal. Since it exhibits a certain dissolution equilibrium effect, there is a risk of precipitation if the silver ion concentration becomes high. Additionally, a method is used in which a barrier is provided between the silver-silver chloride electrode and the liquid junction or glass membrane, with a structure that makes it difficult for silver ions and chlorosilver complex ions to reach the liquid junction or glass membrane. Even with this method, it is impossible to completely prevent the movement of eluted silver ions and chlorosilver complex ions. Means for Solving the Problems The present invention differs from conventional methods that take measures to prevent silver ions and chlorosilver complex ions eluted into the internal solution from migrating and depositing. By taking fundamental measures to prevent the elution of chlorosilver complex ions into the internal solution, the present invention aims to eliminate the conventional drawbacks and realize an electrode with an extremely long life. Cation exchange membranes allow cations to pass through, but
Under normal conditions, it blocks the permeation of cations,
It is well known that anion exchange membranes allow anions to permeate, but under normal conditions they block the permeation of cations; however, the present invention was made by focusing on the properties of such ion exchange membranes. With something that
It is constructed so that the surface of the silver chloride film attached to the surface of the silver rod is coated double with an anion exchange membrane and a cation exchange membrane, or only with an anion exchange membrane or a cation exchange membrane. be. Effect By configuring as above, the anion exchange membrane and the cation exchange membrane prevent silver ions and chlorosilver complex ions dissolved on the surface of the silver chloride membrane from being eluted to the outside, that is, to the internal solution. or at least prevent the elution of silver ions or chlorosilver-complexed silver ions to the outside. In reality, there is a difference in concentration between the concentration of silver ions and chlorosilver complex ions held in the microscopic cavities that exist between the silver chloride membrane and the ion exchange membrane, and the ion concentration outside the ion exchange membrane. Although there is a possibility that some ion outflow may occur due to the osmotic pressure generated between the inside and outside of the ion-exchange membrane depending on the temperature, it has been shown that this is negligible in practical terms. In addition, since all types of ion exchange membranes are inherently hydrophilic, by interposing the ion exchange membrane, good electrical continuity can be achieved between the silver-silver chloride electrode and the internal liquid without electrical isolation. Therefore, there is no risk of adversely affecting the operation of the potential difference detection system. Embodiment FIG. 1 is a diagram showing an embodiment of the present invention, in which 1 and 2 are a silver rod and a silver chloride film forming a silver-silver chloride electrode. For example, a silver rod 1 with an outer diameter of approximately 0.5 mm is heated. By inserting it into a silver chloride crystal, the silver chloride film 2 is attached to the surface of the tip of the silver rod 1 in an appropriate axial length range. Incidentally, in order to attach the silver chloride film 2 to the surface of the silver rod 1, in addition to the conventional method described above, any suitable method among conventionally known methods may be used. Reference numeral 3 denotes an anion exchange membrane, for example, a silver rod 1 is inserted into an anion exchange membrane tube having an inner diameter of approximately 0.6 mm, and the surface portion of the silver chloride membrane 2 is covered. 4 is a cation exchange membrane, for example, consisting of a cation exchange membrane tube with an inner diameter of approximately 0.9 mm;
It is provided so as to cover the surface of the anion exchange membrane 3. A sealant 5 is made of silicone adhesive, for example, and seals between the upper end of the cation exchange membrane 4 and the silver rod 1, as well as the lower end of the cation exchange membrane 4, and further seals the internal liquid as necessary. The surface of the silver rod 1 that is likely to come into contact with is covered. By immersing the electrode body thus formed in a potassium chloride (KCl) solution having the same concentration as the internal solution actually used, the potassium chloride solution flows through the ion exchange membranes 4 and 3 to the silver chloride film 2. It penetrates to the surface and functions as an inner pole. Instead of providing the cation exchange membrane 4 on the outside of the anion exchange membrane 3, an anion exchange membrane may be provided on the outermost side, and the anion exchange membrane 3 and the cation exchange membrane 4
may be provided in each multiplex. In this case, anion exchange membranes may be provided in multiple layers, and multiple cation exchange membranes may be provided on the outside or inside of the anion exchange membranes, or anion exchange membranes and cation exchange membranes may be provided alternately. Furthermore, instead of forming an anion exchange membrane and a cation exchange membrane separately, an anion exchange group and a cation exchange group are each introduced in layers into a common single membrane.
The surface of the silver chloride membrane may be covered with an ion exchange membrane formed so that two membranes can exhibit an anion exchange function and a cation exchange function. In addition, the surface of the silver chloride membrane may be covered with only an anion exchange membrane for the purpose of capturing only silver ions, or the surface of the silver chloride membrane may be covered with only a cation exchange membrane for the purpose of capturing chloro-complexed silver ions. In these cases, the effect of inhibiting ion elution is somewhat reduced, but when compared to the conventional method, the adverse effects caused by ion elution and movement can be suppressed much more effectively. FIG. 2 is a sectional view showing an example of an electrode for pH measurement constructed using the electrode body of the present invention, in which 6 is the electrode body shown in FIG. 1, 7 is a glass tube, 8 is a liquid junction, and 9 is a It is an internal fluid. Effects of the Invention In the present invention, the surface of the silver chloride membrane is covered with an ion exchange membrane to prevent the elution of ions into the internal liquid.
Compared to conventional methods that take measures against ions eluted into the internal liquid, the adverse effects of ions can be removed far more effectively. Next, the results of experiments conducted by the present inventor using the prototype electrode assembly of the present invention shown in FIG. 1 will be shown. Experiment 1 In an electrode body in which a silver chloride film was attached to the surface of a silver rod with a diameter of approximately 0.5 mm over an axial length of approximately 20 mm, the amount of silver contained in the silver chloride film was approximately 2.3 mg. This was clearly achieved by weight measurement, but in this electrode body, the surface of the silver chloride membrane was covered with a double membrane of an anion exchange membrane and a cation exchange membrane, as well as a silicone adhesive, and the silver chloride membrane was covered with a silicone adhesive. The electrode body, in which the part of the silver rod that is not attached is covered with silicone adhesive, is placed in a beaker containing 30 ml of 3M potassium chloride solution, and the surface of the silver chloride film is not covered with an anion exchange membrane. , put the electrode body with only the silver rod part covered with silicone adhesive into a beaker containing 30ml of 3M potassium chloride solution as above,
After boiling both beakers on a hot plate for 7 hours, the silver ion concentration in the potassium chloride solution in each beaker was measured using an atomic absorption spectrometer. 0.47mg of silver, which is approximately 20% of the silver contained in the solution, was eluted into the potassium chloride solution, but in the electrode body in which the surface of the silver chloride film was covered with an ion exchange membrane, 0.04mg of silver, which is approximately 1.7%, was eluted into the potassium chloride solution. only eluted,
This shows that the effects of the present invention are great. Experiment 2 In the same way as above, the surface of the silver chloride membrane was covered with a double ion exchange membrane and silicone adhesive, and the electrode body, in which the silver rod was covered with silicone adhesive, was immersed in a 1M potassium chloride solution, and ions were removed. As a result of measuring the electrical resistance between the outer surface of the exchange membrane and the silver rod, it was found that there was no problem at all even if the electrode body of the present invention was used in a potentiometric measurement system at 600Ω/cm. Experiment 3 Figure 3 shows that the electrode shown in Figure 2, in which the electrode body of the present invention is housed in a glass tube, and a conventional double junction type reference electrode are immersed in a 3M potassium chloride solution.
It shows the results of potential measurement based on the conventional comparison electrode potential, and the horizontal axis is the elapsed time T (unit:
The vertical axis is the detection potential E (unit: mV), and as is clear from the figure, the detection potential was kept extremely stable for almost one month. Experiment 4 The electrode body of the present invention shown in Fig. 1 was used as an inner electrode in a double-junction type comparison electrode, and the potentials of various sample liquids were measured using the conventional double-junction type comparison electrode as a reference. The results are shown in the table below.

【表】 表から明らかなように、水道水、各種PH標準液
はもとより、高アルカリ液及び高酸液に対しても
検出電位はほとんど変化することなく、本発明電
極体を用いて構成した比較電極の性能は優れたも
のがある。 以上の説明から明らかなように、本発明電極体
は、塩化銀膜の表面を陰イオン交換膜及び陽イオ
ン交換膜で覆つて銀イオン及びクロロ銀錯イオン
の内部液中への溶出自体を阻止するように構成し
た場合、又は塩化銀膜の表面を陰イオン交換膜の
み、或いは陽イオン交換膜のみを以て覆つて銀イ
オンの溶出のみを阻止するか、或いはクロロ錯体
化した銀イオンの溶出のみを阻止するように構成
した場合の何れにおいても、従来除き得なかつた
イオンの溶出移動に因る悪影響をほぼ完全に抑え
得ると共に、基準電極としての条件も十分に備
え、かつ、寿命も長いもので、PHの他、各種イオ
ン濃度、酸化還元電位、酸素濃度等の測定用電極
として用いて効果甚だ大である。
[Table] As is clear from the table, there was almost no change in the detection potential not only for tap water and various PH standard solutions, but also for highly alkaline and highly acidic solutions, compared to the electrode assembly constructed using the electrode assembly of the present invention. Some electrodes have excellent performance. As is clear from the above description, the electrode body of the present invention covers the surface of the silver chloride membrane with an anion exchange membrane and a cation exchange membrane to prevent silver ions and chlorosilver complex ions from elution into the internal solution. or the surface of the silver chloride membrane is covered with only an anion exchange membrane or only a cation exchange membrane to prevent only the elution of silver ions, or to prevent only the elution of chloro-complexed silver ions. In either case, the negative effects caused by the elution and movement of ions, which could not be removed in the past, can be almost completely suppressed, and the electrode also satisfies the requirements for a reference electrode and has a long life. It is extremely effective when used as an electrode for measuring various ion concentrations, oxidation-reduction potential, oxygen concentration, etc. in addition to pH.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す断面図、第
2図は、本発明電極体を内装したPH測定用電極の
一例を示す断面図、第3図は、本発明電極体の特
性を示す曲線図で、1……銀棒、2……塩化銀
膜、3……陰イオン交換膜、4……陽イオン交換
膜、5……密封剤、6……本発明電極体、7……
ガラス管、8……液絡部、9……内部液である。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an example of an electrode for pH measurement incorporating the electrode body of the present invention, and FIG. 3 is a characteristic of the electrode body of the present invention. A curve diagram showing 1... silver rod, 2... silver chloride membrane, 3... anion exchange membrane, 4... cation exchange membrane, 5... sealant, 6... electrode body of the present invention, 7 ……
Glass tube, 8...liquid junction, 9...internal liquid.

Claims (1)

【特許請求の範囲】 1 銀棒の表面に付着せしめた塩化銀膜の表面を
イオン交換膜を以て覆つたことを特徴とするPH等
の測定用電極体。 2 イオン交換膜が陰イオン交換膜及び陽イオン
交換膜を重ねた二重膜より成る特許請求の範囲第
1項記載のPH等の測定用電極体。 3 イオン交換膜が陰イオン交換膜及び陽イオン
交換膜を三重以上に重ねた多重膜より成る特許請
求の範囲第1項記載のPH等の測定用電極体。 4 イオン交換膜が共通の単膜に陰イオン交換基
及び陽イオン交換基を各々層状に導入して成る特
許請求の範囲第1項記載のPH等の測定用電極体。 5 イオン交換膜が陰イオン交換膜より成る特許
請求の範囲第1項記載のPH等の測定用電極体。 6 イオン交換膜が陽イオン交換膜より成る特許
請求の範囲第1項記載のPH等の測定用電極体。
[Claims] 1. An electrode body for measuring pH, etc., characterized in that the surface of a silver chloride film adhered to the surface of a silver rod is covered with an ion exchange membrane. 2. The electrode assembly for measuring PH, etc. according to claim 1, wherein the ion exchange membrane is a double membrane consisting of an anion exchange membrane and a cation exchange membrane stacked together. 3. The electrode assembly for measuring PH, etc. as set forth in claim 1, wherein the ion exchange membrane is a multilayer membrane in which an anion exchange membrane and a cation exchange membrane are stacked three or more times. 4. The electrode body for measuring PH, etc. according to claim 1, wherein the ion exchange membrane is formed by introducing an anion exchange group and a cation exchange group in layers into a common single membrane. 5. The electrode assembly for measuring pH, etc. according to claim 1, wherein the ion exchange membrane is an anion exchange membrane. 6. The electrode assembly for measuring pH, etc. according to claim 1, wherein the ion exchange membrane is a cation exchange membrane.
JP5126085A 1985-03-14 1985-03-14 Electrode body for measuring ph and the like Granted JPS61209351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5126085A JPS61209351A (en) 1985-03-14 1985-03-14 Electrode body for measuring ph and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5126085A JPS61209351A (en) 1985-03-14 1985-03-14 Electrode body for measuring ph and the like

Publications (2)

Publication Number Publication Date
JPS61209351A JPS61209351A (en) 1986-09-17
JPH046906B2 true JPH046906B2 (en) 1992-02-07

Family

ID=12881975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5126085A Granted JPS61209351A (en) 1985-03-14 1985-03-14 Electrode body for measuring ph and the like

Country Status (1)

Country Link
JP (1) JPS61209351A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927183B2 (en) 2010-01-20 2012-05-09 シャープ株式会社 Electrode for electrochemical measurement, electrode chip for electrochemical measurement, and electrochemical measurement method and analysis method using the same
JP5873701B2 (en) * 2010-12-17 2016-03-01 株式会社堀場製作所 Reference electrode
JP5572201B2 (en) * 2012-11-19 2014-08-13 日機装株式会社 Reference electrode

Also Published As

Publication number Publication date
JPS61209351A (en) 1986-09-17

Similar Documents

Publication Publication Date Title
Cammann Working with ion-selective electrodes: chemical laboratory practice
Cattrall et al. Coated-wire ion-selective electrodes
US4256561A (en) Electrochemical measuring electrode
US5834633A (en) Device for concentrating trace components in a liquid
US3598713A (en) Potassium ion sensitive electrode
US4242191A (en) Ion selective sensor and method of making such sensor
CH654112A5 (en) REFERENCE ELECTRODE WITH INNER DIFFUSION LOCK.
JPS59212757A (en) Flow type ion sensor body
US5445726A (en) Process and device for prolonging the usage time and reducing the temperature dependence of ion-selective polymer membrane electrodes
US20110192722A1 (en) Electrochemical detection cell for liquid chromatography system
US3483112A (en) Anion sensitive electrode
JPH046906B2 (en)
JPH09170998A (en) Reference electrode assembly
Inman et al. The application of the galvanostatic potential—time technique to analysis in molten salts
Craggs et al. Radiotracer studies on calcium ion-selective electrode membranes based on poly (vinyl chloride) matrices
US20050258039A1 (en) Reference electrode
JPS6053842A (en) Circulation type electrolyte cell
Thompson et al. Fast reaction flow system using crystal-membrane ion-selective electrodes
Morawska et al. Application of ionic liquids in ion‐selective electrodes and reference electrodes: A review
US20030209435A1 (en) Reference electrode with non-blocking liquid junction
Yang et al. Continuous flow analysis of lead (II) and mercury (II) with substituted diazacrown ionophore membrane electrodes
Shoukry et al. Diphenhydramine-sensitive membrane electrodes based on poly (vinylchloride) matrices and their use in drug analysis
US3497424A (en) Cation sensitive electrode and process
KR101551652B1 (en) Pollution Prevention For Reference Electrode
JPH0452407B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees