JPH0469012A - Protective method and device for superconducting coil - Google Patents

Protective method and device for superconducting coil

Info

Publication number
JPH0469012A
JPH0469012A JP2169887A JP16988790A JPH0469012A JP H0469012 A JPH0469012 A JP H0469012A JP 2169887 A JP2169887 A JP 2169887A JP 16988790 A JP16988790 A JP 16988790A JP H0469012 A JPH0469012 A JP H0469012A
Authority
JP
Japan
Prior art keywords
superconducting coil
current
power supply
power source
disconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2169887A
Other languages
Japanese (ja)
Inventor
Sakutaro Yamaguchi
作太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2169887A priority Critical patent/JPH0469012A/en
Priority to DE4117677A priority patent/DE4117677C2/en
Priority to US07/707,326 priority patent/US5210674A/en
Publication of JPH0469012A publication Critical patent/JPH0469012A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/67
    • Y02E40/68

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To protect a superconducting coil quickly by providing a single pole power supply to be connected across the superconducting coil through a disconnector, another power supply to be connected in parallel with the superconducting coil, and at least one protective resistor and a circuit opening means thereby eliminating a power switch for continuously feeding a large current. CONSTITUTION:A disconnector DS is normally closed to feed power from a single pole power supply E1 to a superconducting coil L thus exciting the superconducting coil L. Immediately upon quenching of the superconducting coil L, a first ON switch SW1 is closed to bring the voltage of the single pole power supply E1 to zero. Consequently, a thyristor Th is closed to bring the current of the power supply E1 quickly to zero. Current of the superconducting coil L is thereby commutated automatically to SW1-Ly-F. When the fuse F is blown out by the current commutated thereto, the current is interrupted and commutated to a protective resistor Rd1 which absorbs magnetic energy of the superconducting coil L thus protecting the superconducting coil L.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超伝導コイルにクエンチが起きる時に超伝
導コイルを保護するための保護方法および保護装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a protection method and a protection device for protecting a superconducting coil when quenching occurs in the superconducting coil.

[従来の技術] 第3図(^)〜(D)は、例えば電気学会から昭和57
年12月に発行された電気学会論文誌B、第102巻第
12号、第73〜79ページに掲載された論文「超電導
マグネットのクエンチ保護用並列抵抗回昂の改良Jの図
1〜図4に示された回路図である。
[Prior art] Figures 3 (^) to (D) are, for example, published by the Institute of Electrical Engineers of Japan in 1982.
Figures 1 to 4 of the paper ``Improvement J of parallel resistance regeneration for quench protection of superconducting magnets'' published in IEEJ Transactions B, Vol. 102, No. 12, pages 73 to 79, published in December 2013. FIG.

第3図(^)に示す従来の並列抵抗型保護装置では、ク
ライオスタットCRは、超伝導コイルしおよびこの超伝
導コイルLに発生する常伝導部分の抵抗R(t)から成
る。なお、この抵抗R(t)は時間が経過するにつれて
その抵抗値が増加する。クライオスタットCRの両端間
には電源スィッチSを介して電源例えば単極性電源Eが
接続されると共に、クライオスタットCRと並列に保護
抵抗R,が接続されている。
In the conventional parallel resistance type protection device shown in FIG. 3(^), the cryostat CR consists of a superconducting coil and a resistance R(t) of a normal conductive portion generated in the superconducting coil L. Note that the resistance value of this resistance R(t) increases as time passes. A power source, for example, a unipolar power source E, is connected between both ends of the cryostat CR via a power switch S, and a protection resistor R is connected in parallel with the cryostat CR.

第3図(B)のドナルドソン([1onaldson)
氏によって提案された保護装置であり、第3図(^)に
示した保護抵抗RDの代わりにダイオードDを用いると
共に、2個のスイッチS1およびs2並びに3個の抵抗
器R,,R2およびR3を用い、結局、並列抵抗を多段
に組み合わせたものである。
Donaldson ([1onaldson) in Figure 3 (B)
This is a protection device proposed by Mr. K., which uses a diode D instead of the protection resistor RD shown in Figure 3 (^), and also uses two switches S1 and s2 and three resistors R, , R2 and R3. In the end, it is a combination of parallel resistors in multiple stages.

第3図(C)および<1))は上述した論文において中
野倫明氏等によって提案された保護装置であり、前者は
保護抵抗RDの代りに直列接続された2個の保護抵抗R
aおよびRbを用いると共に保護抵抗Rbと並列にコン
デンサCを接続したものであり、後者は、更に、保護抵
抗Raと並列にインダクタLsおよび抵抗Rsがら成る
直列回路を接続したものである。
Figure 3 (C) and <1)) are the protection devices proposed by Michiaki Nakano et al. in the paper mentioned above, and the former consists of two protection resistors R connected in series instead of the protection resistor RD.
a and Rb, and a capacitor C is connected in parallel with the protective resistor Rb, and the latter further has a series circuit consisting of an inductor Ls and a resistor Rs connected in parallel with the protective resistor Ra.

第3図(^)〜(1))に示されかつ上述したように精
成された保護装置は全て、この発明と比べると、基本的
に同じ欠点を持っているので、簡単のため、以下に第3
図(^)の保護装置の動作だけを説明する。
The protective devices shown in Figures 3(^)-(1)) and refined as described above all have basically the same drawbacks when compared to the present invention, so for the sake of simplicity they are described below. 3rd to
Only the operation of the protection device shown in Figure (^) will be explained.

通常運転時には、電源スィッチSを閉じることにより電
源Eからの電流は、その大部分が超伝導コイルしに流れ
るが、保護抵抗RDにはその抵抗値が大きいので殆ど流
れない。
During normal operation, when the power switch S is closed, most of the current from the power source E flows through the superconducting coil, but almost no current flows through the protective resistor RD due to its large resistance value.

しかしながら、超伝導コイルLがクエンチを起こすと、
この部分でエネルギーを損失するようになるため温度が
上昇して、超伝導コイルLを破損させる。このため、超
伝導コイルLの蓄積エネルギーを超伝導コイルLからす
みやかに取り出してやる必要がある。そのために電源E
の電圧を下げると共に、電源スィッチSを開く。そうす
ると、電源スィッチSの両端には大電圧Vcが発生し、
これは保護抵抗RDにも印加され、超伝導コイルしに流
れていた電流が矢印1cで示すように流れ始める6そう
すると、超伝導コイルしにあった磁気エネルギーが保護
抵抗R9にょって熱エネルギーに変換され、クライオス
タットの外に放出されるので、超伝導コイルしは保護さ
れる。
However, when the superconducting coil L quenches,
Since energy is lost in this part, the temperature rises and the superconducting coil L is damaged. Therefore, it is necessary to quickly extract the energy stored in the superconducting coil L from the superconducting coil L. For that purpose, power supply E
While lowering the voltage, open the power switch S. Then, a large voltage Vc is generated across the power switch S,
This is also applied to the protective resistor RD, and the current flowing through the superconducting coil begins to flow as shown by arrow 1c.6 Then, the magnetic energy in the superconducting coil is converted into thermal energy by the protective resistor R9. The superconducting coils are protected as they are converted and released outside the cryostat.

[発明が解決しようとする課題] 従来の保護装置では、電源スィッチに常時、超伝導コイ
ルに流れる大電流が流れ、クエンチ時には高い電圧でそ
の電流をしゃ断しなければならなかった。実際、文部省
核融合科学研究所で予定されている超伝導プラズマ実験
装! (LIDと呼ばれる)ては、常時20〜30に^
の電流を流し、しゃ断時には〜6kVの電圧が発生する
ようなパラメータで設計が進められている。このような
定格を有する電源スィッチは極めて大型となると同時に
高価であるという問題点があった。
[Problems to be Solved by the Invention] In conventional protection devices, a large current flowing through the superconducting coil always flows through the power switch, and the current had to be cut off with a high voltage when quenching. In fact, a superconducting plasma experimental device is being planned at the Ministry of Education's Institute for Fusion Science! (called LID) is always between 20 and 30 ^
The design is proceeding with parameters such that a current of 100 volts will flow and a voltage of 6 kV will be generated when the circuit is cut off. A power switch having such a rating has the problem of being extremely large and expensive.

この発明は、このような間圧点を解決するためになされ
たもので、極めて大型で高価な電源スィッチを用いず、
超伝導コイルがらの電流を素早く転流させることができ
る超伝導コイルの保護方法および保護装置を得ることを
目的とする。
This invention was made to solve this pressure point, and it does not use an extremely large and expensive power switch.
The object of the present invention is to provide a method and device for protecting a superconducting coil that can quickly commutate current through the superconducting coil.

[課題を解決するための手段] この発明に係る超伝導コイルの保護装置は、超伝導コイ
ルの両端間に断路器を介して接続される単極性電源と、
前記超伝導コイルと並列に接続される別電源、少なくと
も1個の保護抵抗および回路開放手段とを設けたもので
ある。
[Means for Solving the Problems] A superconducting coil protection device according to the present invention includes a unipolar power source connected between both ends of the superconducting coil via a disconnector,
A separate power source, at least one protective resistor, and circuit opening means are provided, which are connected in parallel with the superconducting coil.

[作 用] この発明においては、通常運転時には単極性電源から電
流を超伝導コイルに流すが回路開放手段には流さず、超
伝導コイルにクエンチが起きると前記単極性の電圧をゼ
ロにすると同時に別電源を動作させて前記単極性電源の
電流をゼロにすると共に、前記超伝導コイルに流れてい
る電流を前記回路開放手段に転流させ、その後電流ゼロ
点で前記断路器を開きがっ前記回路開放手段を開いて転
流させられた電流をしゃ断し、その結果として前記超伝
導コイル電流を保護抵抗に再転流させ、もって前記超伝
導コイルに蓄積された磁気エネルギーを前記保護抵抗に
吸収させる6 [実施例] 以下、この発明の一実施例を図について説明する。第1
図はこの発明に係る超伝導コイルの保護方法および保護
装置の一実施例を説明するための回路図であり、図にお
いて超伝導コイルLの両端間には電源例えば単極性電源
E1が常開断路器DSを介して接続される。保護抵抗R
8lは第1ONスイツチS W +およびインダクタL
Pから成る直列回路を介して超伝導コイルLと並列に接
続されるが、保護抵抗R8lの抵抗値が通常大きいので
保護抵抗RD1は超伝導コイルしに直接並列接続されて
も良い。保護抵抗RD、と並列に回路開放手段の一例と
してのヒユーズFが接続されている。
[Function] In this invention, during normal operation, current is passed from the unipolar power source to the superconducting coil, but not to the circuit opening means, and when the superconducting coil is quenched, the unipolar voltage is reduced to zero, and at the same time A separate power source is operated to make the current of the unipolar power source zero, and the current flowing through the superconducting coil is commutated to the circuit opening means, and then the disconnector is opened at the zero current point. The circuit opening means is opened to cut off the commutated current, and as a result, the superconducting coil current is commutated again to the protective resistor, thereby causing the magnetic energy accumulated in the superconducting coil to be absorbed by the protective resistor. 6 [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a circuit diagram for explaining an embodiment of the superconducting coil protection method and protection device according to the present invention. connected via the device DS. Protection resistance R
8l is the first ON switch SW + and inductor L
The protective resistor R8l is connected in parallel with the superconducting coil L through a series circuit consisting of P, but since the resistance value of the protective resistor R8l is usually large, the protective resistor RD1 may be directly connected in parallel with the superconducting coil. A fuse F, which is an example of circuit opening means, is connected in parallel with the protective resistor RD.

また、図示のように充電されたコンデンサC2、インダ
クタL2およびサイリスタThから成る直列rgJFI
@は別電源E2を形成し、この別電源E2も超伝導コイ
ルLと並列に接続されている。
Also, as shown in the figure, a series rgJFI consisting of a charged capacitor C2, an inductor L2, and a thyristor Th
@ forms a separate power source E2, and this separate power source E2 is also connected in parallel with the superconducting coil L.

通常運転時には、まず断路器DSを閉じて単極性電源E
1から超伝導コイルしに通電を行い、所定の電流iを矢
印の方向に流して超伝導コイルLを励磁する。この時、
第1ONスイッチSW、を開いておくので、ヒユーズF
には電流が流れない。
During normal operation, first close the disconnector DS and disconnect the unipolar power supply E.
1, the superconducting coil L is energized, and a predetermined current i is passed in the direction of the arrow to excite the superconducting coil L. At this time,
Since the first ON switch SW is open, fuse F
No current flows through.

次に超伝導コイルしにクエンチが生じると、これを検出
してただちに第1ONスイツチSW1を閉じると共に、
単極性電源E1の電圧をゼロにする。しかしながら、こ
のような超伝導コイルLの回路では抵抗値が低いので、
電流はすぐには第1ONスイツチSW1→インダクタL
y→ヒユーズFから成る直列回路に転流しない、そこで
サイリスクThを閉じると電流がコンデンサC2従って
別電源E2から流れ出て単極性電源E1の電流をすみや
かにゼロにする。この時、Elは単極性電源なのでその
電流が逆方向に流れない、そうすると、超伝導コイルL
の電流は自動的にSW+−Ly→Fに転流される。この
時、電流ゼロ点で断路器DSを開く。このようにすれば
、@路器DSの開開は常に電流ゼロ点で行われることに
なり、従来例のような大型の電源スィッチSは不要であ
る。
Next, when a quench occurs in the superconducting coil, this is detected and the first ON switch SW1 is immediately closed, and
The voltage of the unipolar power supply E1 is set to zero. However, since the resistance value is low in such a circuit of superconducting coil L,
The current flows immediately from the first ON switch SW1 to the inductor L.
There is no commutation in the series circuit consisting of y→fuse F, so when the cyrisk Th is closed, the current flows out of the capacitor C2 and therefore from the separate power supply E2, immediately bringing the current of the unipolar power supply E1 to zero. At this time, since El is a unipolar power supply, the current does not flow in the opposite direction, so the superconducting coil L
The current is automatically commutated to SW+-Ly→F. At this time, the disconnector DS is opened at the current zero point. In this way, the opening/closing of the circuit device DS is always performed at the current zero point, and the large power switch S as in the conventional example is not required.

次にしゃ断動作を行う。すなわちヒユーズFに転流され
た電流によってヒユーズFは溶断され、これにより電流
がしゃ断される。そうすると、電流は保護抵抗Rd、に
更に転流され、ここで超伝導コイルLの磁気エネルギー
が吸収されて超伝導コイルしは保護される。
Next, a shutoff operation is performed. That is, the fuse F is blown by the current commutated to the fuse F, thereby cutting off the current. Then, the current is further commutated to the protective resistor Rd, where the magnetic energy of the superconducting coil L is absorbed and the superconducting coil is protected.

第2図はこの発明の他の実施例を説明するための回路図
であり、図において保護抵抗RDIは第1ONスイツチ
SW1を介して超伝導コイルLと並列に接続される。保
護抵抗RD1と並列に回路開放手段の他の例としての直
流しゃ断器DCMは、ヒユーズFおよびしゃ断器CBか
ら成る第1直列回路を含むと共に、この第1直列回路と
並列に接続されて予め図示の極性に充電されているコン
デンサC1、このコンデンサC1から流出する電流の時
定数調整用インダクタL、および第2ONスイッチSW
、から成る第2直列回路を含む、なお、直流しゃ断器D
CMは、上述した精成のもの以外に、例えば昭和63年
2月28日に電気学会から発行された電気工学ハンドブ
ックの第811ページの表5に示された多くの例である
。また保護抵抗Ro1と並列に他の保護でいるR+]2
および第3ONスイツチS W sから成る直列回路が
接続される。
FIG. 2 is a circuit diagram for explaining another embodiment of the present invention, in which a protective resistor RDI is connected in parallel with a superconducting coil L via a first ON switch SW1. A DC breaker DCM as another example of circuit opening means is connected in parallel with the protective resistor RD1, and includes a first series circuit consisting of a fuse F and a breaker CB, and is connected in parallel with the first series circuit as shown in the figure in advance. A capacitor C1 charged with the polarity of , an inductor L for adjusting the time constant of the current flowing out from the capacitor C1, and a second ON switch SW.
, including a second series circuit consisting of a DC breaker D
In addition to the above-mentioned refined CMs, there are many examples of CMs shown in Table 5 on page 811 of the Electrical Engineering Handbook published by the Institute of Electrical Engineers of Japan on February 28, 1985. Also, R+]2 is connected in parallel with the protective resistor Ro1 for other protection.
and a third ON switch S W s are connected.

なお、断路器DSの挿入位置が第2図では第1図と異な
るが、これは何ら本質的な変更ではなく、実施態様の一
つにすぎない。同様に第2図にはインダクタLlが示さ
れていないが、これはコンデンサC2からの電流を、ヒ
ユーズFを含む回路部分と単極性電源E1にうまく分流
するために用いられるものであり、配線等によってそれ
が含まれている場合には、第3図のように特に必要はな
い。
Although the insertion position of the disconnector DS in FIG. 2 is different from that in FIG. 1, this is not an essential change, but is just one embodiment. Similarly, although the inductor Ll is not shown in Fig. 2, it is used to effectively shunt the current from the capacitor C2 to the circuit section including the fuse F and the unipolar power supply E1, and the wiring etc. If it is included, as shown in FIG. 3, it is not particularly necessary.

通常運転時には、まず断路器DSを閉じて単極性電源E
1から超伝導コイルしに通電を行い、第1ONスイツチ
SW1を開いておくので、直流しゃ断器DCHのし勺断
部例えば上述した第1直列回路には電流が流れない。ま
た、しヤ断器CBは閉じておき、コンデンサC1は図示
の極性に予め充電しておき(断路器DS、第1ONスイ
ツチSWおよび第2ONスイツチSW2を閉じインダク
タL、を通して)、そして第2ONスイツチS W 2
および第3ONスイッチSW、は開いておく。
During normal operation, first close the disconnector DS and disconnect the unipolar power supply E.
Since the superconducting coil is energized from 1 and the first ON switch SW1 is kept open, no current flows through the cutoff section of the DC breaker DCH, for example, the first series circuit described above. In addition, the disconnector CB is closed, the capacitor C1 is charged in advance to the polarity shown in the figure (by closing the disconnector DS, the first ON switch SW, and the second ON switch SW2, and passing through the inductor L), and then S W 2
and the third ON switch SW are left open.

次に超伝導コイルしにクエンチが生じると、これを検出
してただちに第1ONスイツチSWIを閉じると共に、
単極性電源E1の電圧をゼロにする。そうすると、超伝
導コイルLの電流が少し減少し始めると同時に、単極性
電源E1の電流も減少し、第1ONスイツチSW1→し
ゃ断器CB→ヒユーズFから成る直列回路の電流は増大
する。
Next, when a quench occurs in the superconducting coil, this is detected and the first ON switch SWI is immediately closed, and
The voltage of the unipolar power supply E1 is set to zero. Then, at the same time as the current in the superconducting coil L starts to decrease a little, the current in the unipolar power source E1 also decreases, and the current in the series circuit consisting of the first ON switch SW1→breaker CB→fuse F increases.

しかしながら、電流はすぐには第1ONスイッチSW、
−L勺断器CB→ヒユーズFから成る直列回路に転流し
ない。そこで、サイリスタThを閉じると電流がコンデ
ンサC2から従って別電源E2から流れ出て単極性電源
E1の電流をすみやかにゼロにする。そうすると、超伝
導コイルLの電流は全て自動的に上述した直列回路に転
流される。
However, the current does not immediately flow to the first ON switch SW.
- There is no commutation in the series circuit consisting of L-breaker CB and fuse F. Therefore, when the thyristor Th is closed, current flows from the capacitor C2 and therefore from the separate power source E2, quickly reducing the current of the unipolar power source E1 to zero. Then, all the current in the superconducting coil L is automatically commutated to the above-mentioned series circuit.

この時、電流ゼロ点で断路器DSを開く。これによって
単極性電源Elは超伝導コイルLおよび上述した直列回
路から電気的に切り離される。
At this time, the disconnector DS is opened at the current zero point. This electrically disconnects the unipolar power source El from the superconducting coil L and the series circuit described above.

次に、しゃ断動作を行う。すなわち、第2ONスイツチ
SW2を閉しることによりコンデンサC1からの電流が
インダクタL1および第2ONスイツチSW2を通って
流れ、しゃ断器CBの電流を急激に減少させ、最終的に
ゼロにする。そこでしゃ断器CBを開くと、しゃ断器C
Bの電極間にアークを発生せずに電流のしゃ断が行われ
る。
Next, a shutoff operation is performed. That is, by closing the second ON switch SW2, the current from the capacitor C1 flows through the inductor L1 and the second ON switch SW2, causing the current in the breaker CB to rapidly decrease and eventually become zero. Then, when breaker CB is opened, breaker C
The current is interrupted without generating an arc between the electrodes of B.

なお、このようにすれば、しゃ断器CBが電流のしゃ断
に失敗したとしても、ヒユーズFでしゃ断。
By doing so, even if breaker CB fails to cut off the current, fuse F will cut it off.

することが可能であるから、ヒユーズFはしゃ断器CB
のバック・アップになっているとも云える。
Therefore, fuse F is connected to breaker CB.
It can be said that it serves as a backup for

その結果、超伝導コイルLからの電流は第1ONスイツ
チSW1→保護抵抗R6,を通って流れ、超伝導コイル
Lのエネルギーは保護抵抗R01によって吸収される。
As a result, the current from the superconducting coil L flows through the first ON switch SW1→protective resistor R6, and the energy of the superconducting coil L is absorbed by the protective resistor R01.

この時、電流をよりゆっくり減衰させたければ、第3O
NスイッチSW、を閉じて保護抵抗RD2にも一部の電
流が流れるようにしても良い。このようにして超伝導コ
イルしは保護される。
At this time, if you want the current to decay more slowly, the third O
The N switch SW may be closed so that a part of the current also flows through the protective resistor RD2. In this way the superconducting coils are protected.

[発明の効果] 以上、詳しく説明したように、この発明は、超伝導コイ
ルの両端間に断路器を介して接続される単極性電源と、
前記超伝導コイルと並列に接続される別電源、少なくと
も1個の保護抵抗および回路開放手段とを備えているの
で、常時、大電流を通電するための電源スィッチ(連続
定格)が不要になり、また転流をスムーズに行えるので
超伝導コイルを素早く保護できるという効果を奏する。
[Effects of the Invention] As explained in detail above, the present invention provides a unipolar power source connected between both ends of a superconducting coil via a disconnector,
Since it is equipped with a separate power supply connected in parallel with the superconducting coil, at least one protective resistor, and a circuit opening means, a power switch (continuous rating) for constantly supplying a large current is not required, Furthermore, since commutation can be performed smoothly, the superconducting coil can be quickly protected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための回路図、
第2図は他の実施例を説明するための回路図、第3図(
^)〜(D)は従来の保護装置を示す回路図である。 図において、Lは超伝導コイル、Elは単極性電源、R
2は別電源、RolとR92は保護抵抗、Fはヒユーズ
、CBはしゃ断器、DCMは直流しゃ断器である。 なお、図中、同一符号は同一5又は相当部分を示す。 代  理  人   曾  我  道  照DS:断路
器 E I ’、 ?#−3:!十生づiン涼E2:写’1
電V全 RDI:併λ引邸九 F:じユース゛′ L−Aヱイミ専コイル 追2図 RD2  イ呆↓tE\才六−
FIG. 1 is a circuit diagram for explaining one embodiment of the present invention,
Figure 2 is a circuit diagram for explaining another embodiment, Figure 3 (
^) to (D) are circuit diagrams showing conventional protection devices. In the figure, L is a superconducting coil, El is a unipolar power supply, and R
2 is a separate power supply, Rol and R92 are protective resistors, F is a fuse, CB is a breaker, and DCM is a DC breaker. In addition, in the drawings, the same reference numerals indicate the same 5 or corresponding parts. Agent Zeng Ga Do Teru DS: Disconnector EI', ? #-3:! Juuzuin Ryo E2: Photo'1
Electric V all RDI: combined λbikitei 9th floor: same use゛' L-A Eimi special coil addition 2 figure RD2 ↓tE\Sairoku-

Claims (2)

【特許請求の範囲】[Claims] (1)超伝導コイルの両端間に断路器を介して接続され
る単極性電源、並びに前記超伝導コイルと並列に接続さ
れる別電源、少なくとも1個の保護抵抗および回路開放
手段を備えたものにおいて、通常運転時には前記断路器
を閉じて単極性電源から電流を前記超伝導コイルに流す
が前記回路開放手段には流さず、前記超伝導コイルにク
エンチが起きると前記単極性電源の電圧をゼロにすると
同時に前記別電源を動作させて前記単極性電源の電流を
ゼロにすると共に前記超伝導コイルに流れている電流を
前記回路開放手段に転流させ、その後電流ゼロ点で前記
断路器を開きかつ前記回路開放手段を開いて転流させら
れた電流をしや断し、その結果として前記超伝導コイル
電流を前記保護抵抗に再転流させ、もって前記超伝導コ
イルに蓄積された磁気エネルギーを前記保護抵抗に吸収
させることを特徴とする超伝導コイルの保護方法。
(1) A device equipped with a unipolar power source connected between both ends of the superconducting coil via a disconnector, a separate power source connected in parallel with the superconducting coil, at least one protective resistor, and circuit opening means. During normal operation, the disconnector is closed to allow current to flow from the unipolar power source to the superconducting coil, but not to the circuit opening means, and when the superconducting coil is quenched, the voltage of the unipolar power source is zeroed. At the same time, the separate power supply is operated to make the current of the unipolar power supply zero, and the current flowing through the superconducting coil is commutated to the circuit opening means, and then the disconnector is opened at the zero current point. and opens the circuit opening means to interrupt the commutated current, thereby causing the superconducting coil current to re-commute to the protective resistor, thereby transferring the magnetic energy stored in the superconducting coil to the A method of protecting a superconducting coil characterized by absorbing it into a protective resistor.
(2)超伝導コイルの両端間に断路器を介して接続され
る単極性電源と、前記超伝導コイルと並列に接続される
別電源、少なくとも1個の保護抵抗および回路開放手段
とを備えたことを特徴とする超伝導コイルの保護装置。
(2) A unipolar power source connected between both ends of the superconducting coil via a disconnector, a separate power source connected in parallel with the superconducting coil, at least one protective resistor, and circuit opening means. A superconducting coil protection device characterized by:
JP2169887A 1990-05-31 1990-06-29 Protective method and device for superconducting coil Pending JPH0469012A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2169887A JPH0469012A (en) 1990-06-29 1990-06-29 Protective method and device for superconducting coil
DE4117677A DE4117677C2 (en) 1990-05-31 1991-05-29 Arrangement for protecting a superconducting coil
US07/707,326 US5210674A (en) 1990-05-31 1991-05-29 Superconducting coil protective system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169887A JPH0469012A (en) 1990-06-29 1990-06-29 Protective method and device for superconducting coil

Publications (1)

Publication Number Publication Date
JPH0469012A true JPH0469012A (en) 1992-03-04

Family

ID=15894800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169887A Pending JPH0469012A (en) 1990-05-31 1990-06-29 Protective method and device for superconducting coil

Country Status (1)

Country Link
JP (1) JPH0469012A (en)

Similar Documents

Publication Publication Date Title
CA1292553C (en) Solid state current limiting circuit interrupter
US3697860A (en) Dc static switch circuit with a main switch device and a power sharing circuit portion
US5210674A (en) Superconducting coil protective system
AU716799B2 (en) A circuit for the protected power supply of an electrical load
JPS61153905A (en) Arc extinguisher
JPH0586052B2 (en)
JPS61114509A (en) Superconductive coil device
JP2560155B2 (en) DC cutoff device
JPH0469012A (en) Protective method and device for superconducting coil
US4636906A (en) Solid state circuit interruption employing a stored charge power transistor
JPH0581973A (en) Dc circuit breaker
JPH0438119A (en) Protective method and device for superconducting coil
JPH0469011A (en) Protective method and device for superconducting coil
JPS59169549A (en) Power supply device for electric precipitator
RU2254655C2 (en) Current limiter
JP2768796B2 (en) Superconducting device
JPH06325933A (en) System stabilizing superconducting energy accumulating device and operating method thereof
SU982137A1 (en) Device for protection of three-phase electric motor
JP2691106B2 (en) Superconducting coil quench protection method and circuit using iron core reactor
JPH0837732A (en) Method for protecting superconducting device
GB2225164A (en) Current limiting device
Buchanan et al. Study of feasibility of solid-state electric switch gear for aircraft and spacecraft
SU550713A1 (en) Device for transformer neutral grounding
JPS6336206B2 (en)
JPH05288815A (en) Composite short-circuit tester for circuit breaker with resistor