JPH046882B2 - - Google Patents

Info

Publication number
JPH046882B2
JPH046882B2 JP57103849A JP10384982A JPH046882B2 JP H046882 B2 JPH046882 B2 JP H046882B2 JP 57103849 A JP57103849 A JP 57103849A JP 10384982 A JP10384982 A JP 10384982A JP H046882 B2 JPH046882 B2 JP H046882B2
Authority
JP
Japan
Prior art keywords
light
interference fringes
measured
separated
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57103849A
Other languages
Japanese (ja)
Other versions
JPS58221104A (en
Inventor
Yoshitada Oshida
Tetsuya Kamioka
Tsutomu Kuze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10384982A priority Critical patent/JPS58221104A/en
Publication of JPS58221104A publication Critical patent/JPS58221104A/en
Publication of JPH046882B2 publication Critical patent/JPH046882B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Description

【発明の詳細な説明】 本発明は、光源から出射する光を二つに分け、
その一方の光路長を変化していつた時の干渉縞を
利用する表面形状測定方法およびその方法を実施
するための装置に関する。
[Detailed description of the invention] The present invention divides the light emitted from the light source into two,
The present invention relates to a surface shape measuring method that utilizes interference fringes when one of the optical path lengths is changed, and an apparatus for carrying out the method.

従来の干渉測定装置は、フイゾウ型干渉装置に
おいてもトワイマン型干渉装置においても、単に
干渉縞の形状や、参照光または被測定物側の光路
を変化させた時の干渉パターン強度の変化情報を
用いて被測定物の形状を測定していた。このよう
な測定方法では、干渉縞(干渉パターン)に不連
続部分が存在すると、不連続部分により分けられ
た被測定物の複数の部分の相対的面位置関係は分
らなくなつてしまうという不都合があつた。すな
わち、第1図aは一つの面に対して従来の方法に
よつて得られる干渉縞21,22,23を表わ
し、第1図bはその面に対して不連続な表面を有
する他の一つの面に対して同じ方法によつて得ら
れる干渉縞21′,22′,23′,24′を表わ
し、干渉縞の連続曲線は波長λの整数倍(位相差
で2π)、即ち表面の段差では波長λの1/2の整数
倍の不確定数を持つており、第1図aの一つの
縞、例えば干渉縞22が第1図bのいずれに対応
するのか知ることはできず、被測定物全面に亘り
精密測定を行なうことは不可能であつた。
Conventional interference measurement devices, both Fizou type and Twyman type, simply use information about the shape of interference fringes or changes in interference pattern intensity when changing the optical path of the reference light or the measured object. The shape of the object to be measured was measured. This type of measurement method has the disadvantage that if there is a discontinuous part in the interference fringes (interference pattern), the relative surface positional relationship of multiple parts of the measured object separated by the discontinuous part cannot be determined. It was hot. That is, FIG. 1a shows the interference fringes 21, 22, 23 obtained by the conventional method for one surface, and FIG. It represents interference fringes 21', 22', 23', and 24' obtained by the same method for two surfaces, and the continuous curve of the interference fringes is an integral multiple of the wavelength λ (2π phase difference), that is, the step difference on the surface. In this case, there is an uncertain number that is an integer multiple of 1/2 of the wavelength λ, and it is impossible to know which fringe in Figure 1a, for example, the interference fringe 22, corresponds to which of Figure 1b, It was impossible to perform precise measurements over the entire surface of the object to be measured.

したがつて、本発明の目的は、面形状の精密測
定において干渉縞に不連続部分が発生しても精密
に表面形状を測定することを可能にする測定方法
を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a measurement method that enables precise measurement of a surface shape even when discontinuous portions occur in interference fringes.

本発明の第2の目的はそのような表面形状測定
方法を実施することを可能にする装置を提供する
ことである。
A second object of the invention is to provide an apparatus that makes it possible to carry out such a surface profile measurement method.

上記目的を達成するために、本発明による冒頭
に述べた種類の表面形状測定方法は、波長が異な
る複数個の可干渉性光源より出射する光を選択的
に同一光路に導き、ビーム・スプリツタで分離
し、一方を参照光とし、他方を被測定物に照射
し、その反射光または透過光を上記ビーム・スプ
リツタまたは第2のビーム・スプリツタにより再
び同一光路に導き、不連続部分が存在する干渉縞
をそれぞれの波長に対し撮像し、その情報を記憶
するとともに、波長が異なる上記複数の光の1つ
の波長の光を用い、上記参照光と被測定物に照射
する他方の光(物体光)の内の一方の光の光路長
を変化していつたときの干渉縞の変化から被測定
物上に生じる干渉縞の不連続な部分で分離された
被測定物の複数の面の各形状を測定し、他方、不
連続な干渉縞間の関係を上記記憶情報から算出す
ることによつて、干渉縞に不連続部分が生じる被
測定物に対しても、被測定物の測定すべき所望の
面全面に亘つて面形状を測定することを要旨とす
る。
In order to achieve the above object, the surface profile measurement method of the type mentioned at the beginning according to the present invention selectively guides light emitted from a plurality of coherent light sources with different wavelengths into the same optical path, and uses a beam splitter to Interference where there is a discontinuous part is achieved by separating the beams, using one as a reference beam, and irradiating the other beam onto the object to be measured, and guiding the reflected or transmitted beams to the same optical path again by the beam splitter or a second beam splitter. The stripes are imaged for each wavelength, the information is stored, and the reference light and the other light (object light) are irradiated onto the object to be measured using light of one wavelength among the plurality of lights with different wavelengths. Measures the shape of multiple surfaces of the object to be measured separated by discontinuous parts of interference fringes that occur on the object from changes in interference fringes when the optical path length of one of the lights is changed. On the other hand, by calculating the relationship between discontinuous interference fringes from the above-mentioned stored information, it is possible to calculate the desired surface to be measured of the object to be measured, even for objects to be measured in which the interference fringes have discontinuous parts. The gist is to measure the surface shape over the entire surface.

上記第2の目的を達成するために、本発明によ
る表面形状測定装置は、波長が異なる複数個の可
干渉性光源と、該光源から出射する光を所定のビ
ーム径にするためのビーム径調整光学系と、上記
複数個の可干渉性光源から出射する光を選択的に
同一光路に導く光学手段と、上記光をビーム・ス
プリツタにより2分し、一方を参照光路に導き、
他方を被測定物に照射せしめ、被測定物を反射も
しくは透過した光を上記ビーム・スプリツタまた
は第2のビーム・スプリツタにより再び同一光路
に導き、発生する干渉縞をそれぞれの波長の光に
対し別々に撮像する手段と、該撮像手段により得
られた干渉縞の情報を記憶する手段と、参照光路
長または被測定物の光路長の一方を変化せしめる
手段と、上記光路長の変化により生ずる干渉縞の
変化を記憶する手段と、上記干渉縞の変化から被
測定物の面の詳細形状を計算し、上記複数の波長
の光による別々の干渉縞の情報から干渉縞の不連
続部分が生じる被測定物に対しても、被測定物の
測定すべき所望の面全面に亘つて面形状を計算す
る手段とを含むことを要旨とする。
In order to achieve the above second object, the surface profile measuring device according to the present invention includes a plurality of coherent light sources with different wavelengths, and a beam diameter adjustment for making the light emitted from the light sources a predetermined beam diameter. an optical system; an optical means for selectively guiding light emitted from the plurality of coherent light sources to the same optical path; splitting the light into two by a beam splitter and guiding one to a reference optical path;
The other beam is irradiated onto the object to be measured, and the light that has been reflected or transmitted through the object is guided to the same optical path again by the beam splitter or the second beam splitter, and the interference fringes generated are separated for each wavelength of light. means for capturing information on interference fringes obtained by the imaging means; means for changing either the reference optical path length or the optical path length of the object to be measured; and interference fringes produced by the change in the optical path length. means for storing changes in the interference fringes, and calculating the detailed shape of the surface of the object to be measured from the changes in the interference fringes, and calculating the detailed shape of the surface of the object to be measured from which discontinuous portions of the interference fringes occur based on the information of the separate interference fringes caused by the plurality of wavelengths of light. The present invention also includes means for calculating the surface shape of an object over the entire desired surface to be measured.

すなわち、本発明においては、波長が異なる2
個以上の可干渉性光源より出射する光を用いる。
この2個以上の光の光路が同一であれば、得られ
た干渉縞は、第1図a,bに対応する第3図a,
bに示すように、波長λ1に対しては実線で示すよ
うに21,22……25;20′,21′,……2
4′が得られ、波長λ2に対しては点線で示すよう
に201,202……204;200′,20
1′……204′が得られる。第3図に見られるよ
うに、両波長に対し得られる縞はほぼ平行で、縞
のピツチは波長により異なる。二つの波長に対す
る縞が互に近いものに対し、第3図に示すように
その縞間の距離をΔ(λ1の縞からλ2の縞を測り+
j方向を正とする)とし、λ1の光に対する縞ピツ
チをpとする。同様に不連続な第3図bに対して
もΔ′,p′を求め、Δ/pとΔ′/p′がほぼ等しいも
のが互に連続していると見做せる干渉縞であると
判断できる。すなわち第1図の一つの波長の光を
用いた干渉縞では第1図aの縞22と連なる第1
図bの縞は22′か、23′か24′か不明である
が第3図ではaの21と連なるbの縞は21′で
あることが分かる。aとbの面の段差が大きいと
きはさらにもう一つの波長λ3を用いればよい。以
上のようにしてaとbの面の相対関係の概要はつ
かめるが、この方法は面間距離の測定方法として
ブロツクゲージの測定等で既に公知である。本発
明においては、このようにして得られたa,bの
位置関係を基にして、精密にa,bの面の仮想平
面(あるいは仮想二次曲面)からのずれを測定す
ることを可能ならしめている。すなわち第2図に
示すように、一方の波長のみを用い、参照光路中
の楔ガラス6をわずかに移動することにより参照
光の光路長(位相)を変化させ、これに伴い変化
する干渉縞強度を全測定領域に亘り求め、それぞ
れの面での平面からのずれを求める(特願昭55−
28066号)。この結果はaおよびbのそれぞれの面
に対しては精密な測定結果を与えているが、a,
bの相対関係は、縞が不連続なため不明であるの
で、上記の二つ以上の波長を用いる測定結果を用
いることにより、全測定領域(被測定物の全面)
に亘り精密測定を行なうことが可能となる。
That is, in the present invention, two wavelengths different from each other are used.
Light emitted from multiple coherent light sources is used.
If the optical paths of these two or more lights are the same, the obtained interference fringes will be
As shown in b, for wavelength λ 1 , as shown by the solid line, 21, 22...25; 20', 21',...2
4' is obtained, and for wavelength λ 2 , as shown by the dotted line, 201, 202...204; 200', 20
1'...204' are obtained. As seen in FIG. 3, the fringes obtained for both wavelengths are nearly parallel, and the pitch of the fringes differs depending on the wavelength. If the fringes for two wavelengths are close to each other, the distance between the fringes is Δ(Measuring the λ 2 fringes from the λ 1 fringes +
j direction is positive), and the fringe pitch for light of λ 1 is p. Similarly, we find Δ' and p' for the discontinuous Figure 3b, and find that interference fringes where Δ/p and Δ'/p' are almost equal are considered to be mutually continuous. I can judge. In other words, in the interference fringes shown in FIG. 1 using light of one wavelength, the first
It is unclear whether the stripe in Figure b is 22', 23' or 24', but in Figure 3 it can be seen that the stripe in b that is continuous with 21 in A is 21'. When the difference in level between the surfaces a and b is large, yet another wavelength λ 3 may be used. As described above, an outline of the relative relationship between surfaces a and b can be grasped, but this method is already known as a method for measuring the distance between surfaces using a block gauge. In the present invention, it is possible to accurately measure the deviation of the surfaces a and b from the virtual plane (or virtual quadric surface) based on the positional relationship between a and b obtained in this way. It's tight. That is, as shown in Fig. 2, by using only one wavelength and slightly moving the wedge glass 6 in the reference optical path, the optical path length (phase) of the reference beam is changed, and the interference fringe intensity changes accordingly. is calculated over the entire measurement area, and the deviation from the plane on each surface is calculated (Patent application 1983-
No. 28066). This result gives accurate measurement results for each surface of a and b, but
The relative relationship of b is unknown because the fringes are discontinuous, so by using the measurement results using two or more wavelengths mentioned above, the entire measurement area (the entire surface of the object to be measured) can be measured.
It becomes possible to perform precise measurements over a period of time.

以下に実施例を用いて本発明を一層詳細に説明
するが、それらは例示に過ぎず、本発明の枠を越
えることなしにいろいろな改良や変形があり得る
ことは勿論である。
The present invention will be described in more detail below using Examples, but these are merely illustrative, and it goes without saying that various improvements and modifications may be made without going beyond the scope of the present invention.

第2図は本発明の不連続表面形状の測定方法を
説明するための図式図であり、測定装置の構成を
示す。1は不連続表面形状を有する被測定物であ
る。凹形の最上面の2面の全体に亘る平面度を測
定しようとしている。2は干渉パターンを撮像す
る撮像面であり、第4図のごとくi,j番地の撮
像絵素を有する。3および3′はそれぞれ波長λ1
λ2の光源、31,31′はシヤツタ、8,8′はコ
リメータ・レンズ、9は波長選択ビーム・スプリ
ツタであり、λ1は透過、λ2は反射する。4はビー
ム・スプリツタ、5は基準反射鏡である。10は
被測定物をあおる(傾ける)機構である。21は
被測定物を撮像面上に結像する光学系である。6
は楔ガラスであり、矢印で示すように微動され、
参照光の位相が変えられる。撮像面で取り込まれ
た干渉縞の情報は制御記憶および演算処理機能を
有する制御回路7に送られる。
FIG. 2 is a schematic diagram for explaining the method of measuring a discontinuous surface shape according to the present invention, and shows the configuration of the measuring device. Reference numeral 1 indicates an object to be measured having a discontinuous surface shape. We are trying to measure the flatness of the entire two top surfaces of a concave shape. 2 is an imaging surface for imaging an interference pattern, and has imaging pixels at addresses i and j as shown in FIG. 3 and 3' are wavelengths λ 1 and 3', respectively.
A light source of λ 2 , 31 and 31' are shutters, 8 and 8' are collimator lenses, and 9 is a wavelength selective beam splitter, in which λ 1 is transmitted and λ 2 is reflected. 4 is a beam splitter, and 5 is a reference reflector. 10 is a mechanism for fanning (tilting) the object to be measured. 21 is an optical system that forms an image of the object to be measured on the imaging surface. 6
is a wedge glass, which is slightly moved as shown by the arrow,
The phase of the reference light can be changed. Information on interference fringes captured on the imaging plane is sent to a control circuit 7 having control storage and arithmetic processing functions.

第2図の本発明の不連続表面形状の測定装置を
用いた測定方法を以下に示す。
A measuring method using the discontinuous surface shape measuring apparatus of the present invention shown in FIG. 2 will be described below.

シヤツタ31′を閉じ、シヤツタ31を開き、
波長λ1の光を用いる。あおり機構10を調整し、
第3図に示すように、左右の測定領域に3〜10本
程度左右方向に向いた縞が表われるようにする。
縞の最も暗い部分(または明るい部分)の座標を
求める。その座標を(ilon,jlon)とする。ここで
lは1,2、(または1,2……)で波長の種類
を表わしているので、波長λ1の場合は1である。
nは1,2,3……で上から何番目の縞かを表わ
し、mは1,2,3……で分離された測定領域の
何番目かを表わす(第1図、第3図の場合にはa
が1、bが2)。すなわち第3図の波長λ1での左
側の一番上の縞21は(i111,j111)となり、これ
が撮像面上では第4図のごとくになるとすれば、 (i111,j111)={(4,8),(5,8), (6,8),(7,8), (8,8),(9,7), (10,7),(11,7), (12,7),(13,7)} ……(1) となる。つぎにシヤツタ31′を開け、31を閉
じ、波長λ2の光を用いる。あおり機構は上記λ1
の測定と同一条件で、縞の測定を行なう。上記と
同様に(i2on′,j2on′)が得られる。
Close the shutter 31', open the shutter 31,
Light of wavelength λ 1 is used. Adjust the tilt mechanism 10,
As shown in FIG. 3, about 3 to 10 horizontally oriented stripes should appear in the left and right measurement areas.
Find the coordinates of the darkest (or brightest) part of the stripe. Let the coordinates be (i lon , j lon ). Here, l is 1, 2, (or 1, 2...) and represents the type of wavelength, so it is 1 in the case of wavelength λ 1 .
n is 1, 2, 3, etc., representing the number of stripes from the top, and m is 1, 2, 3, etc., representing the number of the separated measurement area (see Figures 1 and 3). In case a
is 1 and b is 2). That is, the uppermost stripe 21 on the left at wavelength λ 1 in Fig. 3 becomes (i 111 , j 111 ), and if this becomes as shown in Fig. 4 on the imaging plane, then (i 111 , j 111 ) ={(4,8), (5,8), (6,8), (7,8), (8,8), (9,7), (10,7), (11,7), (12, 7), (13, 7)} ...(1). Next, shutter 31' is opened, shutter 31 is closed, and light of wavelength λ 2 is used. The tilting mechanism measures the fringes under the same conditions as the measurement at λ 1 above. Similarly to above, (i 2on ′, j 2on ′) is obtained.

(i1on,j1on)および(i2on′,j2on′)が求ま

ば、制御回路7で、(i1o1,j1o1)と(i2o1,j2o1

で符号が正かつ最も近いペアを求める。すなわち
第3図で21と201である。同様に(i1o2
j1o2)と(i2o2,j1o2)で符号が正かつ最も近いペ
アを求める。すなわち第3図で21′と201′で
ある。これが求まれば、つぎの座標を制御回路に
記憶しておく。
Once (i 1on , j 1on ) and (i 2on ′, j 2on ′) are found, the control circuit 7 calculates (i 1o1 , j 1o1 ) and (i 2o1 , j 2o1
)
Find the pair whose sign is positive and closest. That is, they are 21 and 201 in FIG. Similarly (i 1o2 ,
Find the closest pair with a positive sign of j 1o2 ) and (i 2o2 , j 1o2 ). That is, they are 21' and 201' in FIG. Once this is determined, the next coordinate is stored in the control circuit.

A=(i1,o,1,j1,o,1) B=(i2,o,1,j2,o,1) C=(i1,o+1,1,j1,o+1,1) D=(i2,o+1,1,j2,o+1,1) E=(i1,o,2,j1,o,2) F=(i2,o,2,j2,o,2) G=(i1,o+1,2,j1,o+1,2) H=(i2,o+1,2,j2,o+1,2) ……(2) ここでAとE,BとFが連なつた縞であり、A
とB,EとFが最も近いペアである。CとGおよ
びDとHは同じく連なつた縞であり、CとGはA
とEに隣接する波長λ1の縞、DとHはBとFに隣
接する波長λ2の縞である。
A=(i 1,o,1 , j 1,o,1 ) B=(i 2,o,1 , j 2,o,1 ) C=(i 1,o+1,1 , j 1 ,o+1,1 ) D=(i 2,o+1,1 , j 2,o+1,1 ) E=(i 1,o,2 , j 1,o,2 ) F=( i 2,o,2 , j 2,o,2 ) G=(i 1,o+1,2 , j 1,o+1,2 ) H=(i 2,o+1,2 , j 2,o+1,2 ) ...(2) Here, A and E, B and F are consecutive stripes, and A
and B, and E and F are the closest pairs. C and G and D and H are the same continuous stripes, and C and G are A
and E are fringes of wavelength λ 1 adjacent to each other, and D and H are fringes of wavelength λ 2 adjacent to B and F.

つぎに第2図でシヤツタ31′を閉じ、31は
開いてλ1での測定を行なう。この場合あおり機構
10をあおつて縞間隔を可能な限り広くする。楔
ガラス6を一定ピツチで動かしては、撮像面2上
の干渉縞強度Ik(i,j)を取り込む。ここでk
は楔の移動量に対応するので、参照光の位相変調
量となる。つぎに(i,j)番地の強度Ik(i,
j)のうち最も強度が小さくなるkを求める。こ
の求め方はIk(i,j)が最小になるkの値k0
対しk0の前後の2N+1の値すなわちIk-N(i,
j)、Ik-N+1(i,J)……Ik(i,j)……Ik+N-1
(i,j)、Ik+N(i,j)の値を用い内挿により
真の最小値Ik0(i,j)を求める。k′0に対応す
る位相変調量を(i,j)とする。総ての(i,
j)に対し干渉強度が最小となる位相変調量(楔
移動量)(i,j)を求める。この値が0から
2πまでの値である場合(kが1からK(最大))
には隣接する絵素で±2πに近い飛びがある時に
は、位相αとα±2πは同一位相であることに着
目し、(i,j)が滑めらかにつながるように
±2πの和算処理を行なう。このようにして得ら
れた位相値0(i,j)は左および右の測定部分
内ではそれぞれ正しい値であるが、左と右との間
には±2nπの位相差が存在するため、二つの波長
で測定した結果を用いてこのn(整数)を決定す
る。以下その方法を示す。
Next, as shown in FIG. 2, shutter 31' is closed and 31 is opened to perform measurement at λ 1 . In this case, the agitating mechanism 10 is agitated to widen the stripe spacing as much as possible. By moving the wedge glass 6 at a constant pitch, the interference fringe intensity I k (i,j) on the imaging surface 2 is captured. here k
corresponds to the amount of movement of the wedge, so it is the amount of phase modulation of the reference light. Next, the strength of address (i, j) I k (i,
Find k for which the intensity is the smallest among j). This calculation method is for the value k 0 of k that minimizes I k (i, j), 2N+1 values before and after k 0 , that is, I kN (i,
j), I k-N+1 (i, J)...I k (i, j)...I k+N-1
Using the values of (i, j) and I k+N (i, j), find the true minimum value I k0 (i, j) by interpolation. Let the amount of phase modulation corresponding to k′ 0 be (i, j). All (i,
Find the phase modulation amount (wedge movement amount) (i, j) that minimizes the interference intensity for j). This value is from 0 to
If the value is up to 2π (k is 1 to K (maximum))
When there is a jump close to ±2π between adjacent picture elements, it is noted that the phases α and α±2π are the same phase, and the sum of ±2π is calculated so that (i, j) is smoothly connected. Perform calculation processing. The phase value 0 (i, j) obtained in this way is the correct value within the left and right measurement parts, but since there is a phase difference of ±2nπ between the left and right, the two This n (integer) is determined using the results measured at two wavelengths. The method is shown below.

つぎの値Gを最大にするa,b,c,dを求め
る。
Find a, b, c, and d that maximize the next value G.

G= 〓A,B0(i,j)−ai−bj−c}2+ 〓E,F0(i,j)−ai−bj−d}2 + 〓C,D0(i,j)−ai−bj−c+2π}2 + 〓G,H0(i,j)−ai−bj−d+2π}2 ……(3) ただし上式で例えば 〓A,B は(2)式で示される (i,j)の組について和を取ることを示す。
(3)式を求めるにはGをA,B,C,Dについて偏
微分して、その値が0になるようにすれば、a,
b、c,dに関する4元一次方程式となり、これ
を解けばよい。得られたdとcに対し |d−c−2πn|(n=0,±1,±2……)が
最小となるnをn0とすると ′(i,j)=0(i,j) 左測定
0 (i,j)+2n0・π 右測定部 が測定領域全面に亘る面形状を表わしている。
G= 〓 A,B { 0 (i, j)−ai−bj−c} 2 + 〓 E,F { 0 (i, j)−ai−bj−d} 2 + 〓 C,D { 0 (i , j)−ai−bj−c+2π} 2 + 〓 G,H { 0 (i, j)−ai−bj−d+2π} 2 …(3) However, in the above formula, for example, 〓 A, B is the formula (2) Indicates that the sum is calculated for the pair (i, j) shown by .
To find equation (3), partially differentiate G with respect to A, B, C, and D so that the value becomes 0, then a,
This becomes a four-dimensional linear equation regarding b, c, and d, which can be solved. For the obtained d and c, let n 0 be the minimum value of |d-c-2πn| (n=0, ±1, ±2...), then '(i, j)= 0 (i, j ) Left measurement part 0 (i, j) + 2n 0 ·π The right measurement part represents the surface shape covering the entire measurement area.

以上説明したように、左と右のそれぞれの測定
結果に、二つ以上の波長を用いて測定した結果を
用いて計算することにより測定面全面に亘る面形
状の精密測定が可能となる。上記実施例において
左右の分離面の関係を求めるに際し、(2)式で示さ
れる縞情報の総てを用いたが、この一部分を用い
ても、すなわち、A,B〜G,Hの一部のサンプ
ル点のみを用いてもcとdの関係が求めることは
云うまでもない。また参照光を位相変調し、干渉
縞強度、Ik(i,j)の最小値を内挿する方法で、
各点の位相0(i,j)(面形状を表わす)を求
めているが、Ik(i,j)k=1,2……Kを高
速フーリエ変換(FFT)し、その値の絶対値が
最大になる値での位相値から0(i,j)を求め
てもよい。
As explained above, by performing calculations using the results of measurements using two or more wavelengths for each of the left and right measurements, it is possible to accurately measure the surface shape over the entire measurement surface. In the above example, when determining the relationship between the left and right separation planes, all of the fringe information shown in equation (2) was used, but even if only a part of this information was used, that is, part of A, B to G, and H. It goes without saying that the relationship between c and d can be found using only the sample points of . In addition, by phase modulating the reference light and interpolating the minimum value of the interference fringe intensity, I k (i, j),
The phase 0 (i, j) (representing the surface shape) of each point is being determined, but I k (i, j) k = 1, 2...K is fast Fourier transformed (FFT) and the absolute value of that value is calculated. 0 (i, j) may be obtained from the phase value at the maximum value.

第2図の実施例では平面からのずれを測定する
光学系となつているが、ビーム・スプリツタ4と
被測定物1の間に集光レンズ(フオーカス・レン
ズ)を挿入すれば、球面で、二つ以上に分かれて
いる被測定物についても測定可能であることは云
うまでもない。すなわち本発明は、平面.球面.
放物面(一点から出た光を平行光にする)双曲
面、楕円(一点から出る光または一点に集束する
光を他の一点に集光するかまたは他の一点から出
た球面波にする)などの二次曲面に対して適用で
きることは明らかである。また第2図の実施例で
は波長が異なる2種類の光源を用いているが、不
連続に分解される部分間の段差が大きい場合も、
3種以上の波長を用いて形状の精密測定ができる
ことは明らかである。
In the embodiment shown in FIG. 2, the optical system is used to measure deviation from a flat surface, but if a condensing lens (focus lens) is inserted between the beam splitter 4 and the object to be measured 1, it will be a spherical surface. It goes without saying that it is also possible to measure objects that are divided into two or more parts. In other words, the present invention is applicable to flat surfaces. Spherical surface.
Paraboloid (turns light emitted from one point into parallel light), hyperboloid, ellipse (light emitted from one point or light that is focused on one point becomes focused on another point or becomes a spherical wave emitted from another point) It is clear that this method can be applied to quadratic surfaces such as ). Furthermore, in the embodiment shown in Fig. 2, two types of light sources with different wavelengths are used, but even if there is a large step difference between the discontinuously resolved parts,
It is clear that more than two wavelengths can be used to precisely measure shapes.

本発明によれば従来干渉測定による形状測定で
干渉縞に不連続部分があると測定不可能であつた
被測定物に対し、測定領域全体に亘り、精密な面
形状測定が初めて可能になり、その効果は非常に
大である。例えば磁気デイスク・スライダ面は2
〜3本あり、それらは完全に分離した位置にある
ため、従来、各スライダ間の真の面精度は測定不
可能であつたが、本発明により、高精度(λ/
100程度)の測定が全測定面に亘り非接触で可能
となつた。
According to the present invention, for the first time, it is possible to precisely measure the surface shape of an object to be measured over the entire measurement area, which was impossible to measure if there were discontinuous parts in the interference fringes when the shape was conventionally measured by interferometry. The effect is very large. For example, the magnetic disk slider surface is 2
Conventionally, it was impossible to measure the true surface accuracy between each slider because there are ~3 sliders, and they are located at completely separate positions. However, with the present invention, high accuracy (λ/
100) can now be measured without contact over the entire measurement surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の測定で得られる干渉縞、第2図
は本発明の不連続表面形状測定装置の構成図、第
3図は本発明の方法によつて得られる干渉縞を表
わす図、第4図は撮像面上の測定領域と干渉縞位
置を示す図である。 1……不連続表面を有する被測定物、2……干
渉縞を撮像するための撮像面、3,3′……レー
ザ光源、4……ビーム・スプリツタ、5……基準
反射鏡、6……楔ガラス、7……制御回路、8,
8′……ビーム径調節系、9……二つの光路を同
一光路に導く手段である波長選択性ミラー、10
……あおり機構、21……被測定物を撮像面上に
結像する光学系、31,31′……シヤツタ。
FIG. 1 shows interference fringes obtained by conventional measurement, FIG. 2 is a block diagram of the discontinuous surface shape measuring device of the present invention, and FIG. 3 shows interference fringes obtained by the method of the present invention. FIG. 4 is a diagram showing the measurement area and interference fringe positions on the imaging plane. DESCRIPTION OF SYMBOLS 1... Object to be measured having a discontinuous surface, 2... Imaging surface for imaging interference fringes, 3, 3'... Laser light source, 4... Beam splitter, 5... Reference reflector, 6... ...Wedge glass, 7...Control circuit, 8,
8'...Beam diameter adjustment system, 9...Wavelength selective mirror serving as means for guiding two optical paths to the same optical path, 10
...Tilt mechanism, 21...Optical system for forming an image of the object to be measured on the imaging surface, 31, 31'...Shutter.

Claims (1)

【特許請求の範囲】 1 可干渉性光源より出射する波長の異なる光の
各々を分離光学素子にて参照光と物体光とに分離
し、分離された物体光を被測定物に照射し、該被
測定物からの反射光又は透過孔と上記分離された
参照光を参照光路に導くことによつて得られる参
照光とによつて発生する干渉縞を各々の波長の光
に対して撮像手段で検出し、検出された各波長に
よる干渉縞の間の相対的な位置のずれと各波長に
よる干渉縞内のピツチの情報から上記被測定物の
測定すべき所望の面全面の中で発生する干渉縞の
不連続部分で分離される当該被測定物の測定すべ
き所望の部分面間の相対的形状関係を求めて記憶
し、記憶された相対的形状関係と上記被測定物上
の干渉縞の不連続部分で分離される各部分面内で
検出される干渉縞の強度から被測定物の表面形状
を測定することを特徴とする表面形状測定方法。 2 波長が異なる光を出射する可干渉性光源と、
該光源より出射する各波長の異なる光を参照光と
物体光とに分離する分離光学素子と、該分離光学
素子によつて分離された物体光を被測定物に照射
せしめ、被測定物からの反射光又は透過光と上記
分離光学素子によつて分離された参照光を参照光
路に導くことによつて得られる参照光とによつて
発生する干渉縞を各々の波長の光に対して検出す
る撮像手段と、該撮像手段によつて検出された各
波長による干渉縞の間の相対的な位置のずれと各
波長による干渉縞内のピツチの情報から上記被測
定物の測定すべき所望の面全面の中で発生する干
渉縞の不連続部分で分離される当該被測定物の測
定すべき所望の部分面間の相対的形状関係を求め
て記憶する不連続部で分離された面間の相対形状
関係抽出手段と、上記被測定物上の干渉縞の不連
続部分で分離される各部分面内で検出される干渉
縞の強度を検出する干渉縞強度検出手段と、上記
不連続部で分離された面間の相対形状関係抽出手
段から求められて記憶された不連続部で分離され
た面間の相対形状関係と、上記被測定物上の干渉
縞の不連続部分で分離される各部分面内で検出さ
れる干渉縞の強度を検出する干渉縞強度検出手段
から得られる被測定物上の干渉縞の不連続部分で
分離される各部分面内で検出される干渉縞の強度
とから被測定物の所望の表面の形状を測定する測
定手段とを備えたことを特徴とする表面形状測定
装置。
[Claims] 1. Each of the lights of different wavelengths emitted from a coherent light source is separated into a reference light and an object light by a separating optical element, and the separated object light is irradiated onto a measured object. The interference fringes generated by the reflected light from the object to be measured or the transmission hole and the reference light obtained by guiding the separated reference light to the reference optical path are captured by an imaging means for light of each wavelength. The interference occurring within the entire surface of the object to be measured is determined from the relative positional deviation between the detected interference fringes at each wavelength and the pitch information within the interference fringes at each wavelength. The relative shape relationship between the desired partial surfaces of the object to be measured separated by the discontinuous portions of the fringes is determined and memorized, and the memorized relative shape relationship and the interference fringes on the object to be measured are combined. A surface shape measuring method characterized by measuring the surface shape of an object to be measured from the intensity of interference fringes detected within each partial plane separated by a discontinuous portion. 2. A coherent light source that emits light with different wavelengths;
A separation optical element that separates light of different wavelengths emitted from the light source into a reference light and an object light, and a separation optical element that irradiates the object to be measured with the object light separated by the separation optical element. Interference fringes generated by the reflected light or transmitted light and the reference light obtained by guiding the reference light separated by the separation optical element to the reference optical path are detected for each wavelength of light. The desired surface of the object to be measured is determined from information on the relative positional deviation between the imaging means and the interference fringes of each wavelength detected by the imaging means and the pitch within the interference fringes of each wavelength. The relative shape relationship between the desired partial surfaces of the object to be measured, which are separated by the discontinuous portions of interference fringes that occur within the entire surface, is determined and stored.The relative shape between the surfaces separated by the discontinuous portions a shape relationship extraction means; an interference fringe intensity detection means for detecting the intensity of the interference fringes detected within each partial plane separated by the discontinuous portion of the interference fringes on the object to be measured; The relative shape relationship between the surfaces separated by the discontinuous portion obtained and stored by the relative shape relationship extraction means between the surfaces, and each portion separated by the discontinuous portion of the interference fringes on the object to be measured. The intensity of interference fringes detected in each partial plane separated by discontinuous parts of interference fringes on the object obtained from an interference fringe intensity detection means that detects the intensity of interference fringes detected in a plane. 1. A surface shape measuring device comprising: a measuring means for measuring a desired surface shape of an object to be measured.
JP10384982A 1982-06-18 1982-06-18 Method and device for measuring surface shape Granted JPS58221104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10384982A JPS58221104A (en) 1982-06-18 1982-06-18 Method and device for measuring surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10384982A JPS58221104A (en) 1982-06-18 1982-06-18 Method and device for measuring surface shape

Publications (2)

Publication Number Publication Date
JPS58221104A JPS58221104A (en) 1983-12-22
JPH046882B2 true JPH046882B2 (en) 1992-02-07

Family

ID=14364881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10384982A Granted JPS58221104A (en) 1982-06-18 1982-06-18 Method and device for measuring surface shape

Country Status (1)

Country Link
JP (1) JPS58221104A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135708A (en) * 1985-12-10 1987-06-18 Yokogawa Electric Corp Measuring instrument for three-dimensional shape
JPS62204106A (en) * 1986-03-05 1987-09-08 Yokogawa Electric Corp Three-dimensional shape measuring instrument
JPS6325503A (en) * 1986-07-17 1988-02-03 Ee D S:Kk Surface roughness meter
JPS6325502A (en) * 1986-07-17 1988-02-03 Ee D S:Kk Surface roughness meter
GB2242976A (en) * 1990-04-12 1991-10-16 Rank Taylor Hobson Ltd Measuring surface characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953067A (en) * 1972-09-20 1974-05-23
JPS56128407A (en) * 1980-03-07 1981-10-07 Hitachi Ltd Light interference device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953067A (en) * 1972-09-20 1974-05-23
JPS56128407A (en) * 1980-03-07 1981-10-07 Hitachi Ltd Light interference device

Also Published As

Publication number Publication date
JPS58221104A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
JP3856838B2 (en) Method and apparatus for measuring the shape of an object
US8319975B2 (en) Methods and apparatus for wavefront manipulations and improved 3-D measurements
US3694088A (en) Wavefront measurement
US7595891B2 (en) Measurement of the top surface of an object with/without transparent thin films in white light interferometry
US20080068617A1 (en) Fast 3d height measurement method and system
JPH04220510A (en) Method and apparatus for measuring surface of substance in non-contact mode
CN105091781B (en) A kind of method and apparatus of single hardwood interference fringe picture measurement optical surface
CA2397095A1 (en) Apparatus and methods for surface contour measurement
JP2020517911A (en) Radius of curvature measurement by spectrum controlled interferometry
JP4188515B2 (en) Optical shape measuring device
US9091633B2 (en) Apparatus and method for locating the centre of a beam profile
JPH046882B2 (en)
EP1137929A1 (en) Non-contact topographical analysis apparatus and method thereof
JP4357360B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP2001059714A (en) Shape measuring method and device
JP2004537732A (en) Three-dimensional imaging by projecting interference fringes and evaluating absolute phase mapping
JP2007298281A (en) Measuring method and device of surface shape of specimen
JPH0437362B2 (en)
JP2001099624A (en) Method for measuring and analyzing interference fringe
JP2017026494A (en) Device for measuring shape using white interferometer
JP2007147505A (en) Method and device for measuring surface profile
JP2004053307A (en) Microstructure measuring method and its measuring apparatus
JP2020153992A (en) Shape measurement device by white interferometer
JP5376284B2 (en) Interferometry method and interferometer
JP2753545B2 (en) Shape measurement system