JPH0468801A - High-frequency transmitting window body structure and manufacture of the same - Google Patents

High-frequency transmitting window body structure and manufacture of the same

Info

Publication number
JPH0468801A
JPH0468801A JP2177319A JP17731990A JPH0468801A JP H0468801 A JPH0468801 A JP H0468801A JP 2177319 A JP2177319 A JP 2177319A JP 17731990 A JP17731990 A JP 17731990A JP H0468801 A JPH0468801 A JP H0468801A
Authority
JP
Japan
Prior art keywords
transmitting window
transmission window
titanium nitride
waveguide
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177319A
Other languages
Japanese (ja)
Other versions
JP3028834B2 (en
Inventor
Katsuhiro Gonpei
権瓶 勝弘
Hiroshi Yonezawa
米澤 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2177319A priority Critical patent/JP3028834B2/en
Publication of JPH0468801A publication Critical patent/JPH0468801A/en
Application granted granted Critical
Publication of JP3028834B2 publication Critical patent/JP3028834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Microwave Tubes (AREA)
  • Waveguide Connection Structure (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To suppress secondary electron discharge and to prevent the temperature of a high-frequency transmitting window from being increased by forming a solid solution film composed of titanium nitride and titanium oxide on the surface of the transmitting window composed of a dielectric ceramic board to be formed in a waveguide. CONSTITUTION:Between a pair of rectangular waveguide parts 15 and 15, a circular waveguide part 11 is crimped through circular flanges 14 and 14. At the circular waveguide part 11, a transmitting window 12 composed of the dielectric ceramic board such as alumina, etc., is provided. On the both sides of the transmitting window 12, solid solution films 13 and 13 with high resistance composed of titanium nitride and titanium oxide are formed by sputtering in the discharged gas of Ar, N and O2 with the thickness of 60-130Angstrom . The transmitting window 12 is cooled by a water duct 16. The left side of the figure is connected to the vacuum side of klystron and the right side is connected to an external waveguide side. Thus, the discharge of secondary electrons is suppressed, the temperature of the transmitting window is prevented from being increased, and the crack or melting of the transmitting window is prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、高周波透過窓構体及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high frequency transmission window structure and a manufacturing method thereof.

(従来の技術) 一般にクライストロンや進行波管、あるいはジャイロト
ロンのようなマイクロ波管の出力部には、多くの場合、
矩形又は円形の導波管を横切って誘電体セラミックス板
からなる透過窓が気密に接合された高周波透過窓構体が
一体的に用いられる。
(Prior art) In general, the output section of microwave tubes such as klystrons, traveling wave tubes, or gyrotrons often has
A high frequency transmission window structure is integrally used, in which a transmission window made of a dielectric ceramic plate is hermetically joined across a rectangular or circular waveguide.

特に、大電力を増幅するクライストロンは、大形加速器
の高周波電力源や核融合炉のプラズマ加熱用高周波源と
して用いられているが、その透過窓として真空気密が容
易で誘電体損失が小さいアルミナのセラミックスが主に
使用されている。しかし、大電力の高周波をアルミナ透
過窓に透過させると、アルミナの局部的な温度上昇によ
り、しばしばアルミナにクラックや溶融によるピンホー
ルが発生する場合がある。アルミナの温度上昇は、マル
チパクタ放電、主ビームからのホッピング電子、吸着ガ
ス、電子の帯電などで生じるものと考えられている。そ
こで、アルミナの温度上昇を防止するために、アルミナ
表面に窒化チタンを塗布することが一般的に行なわれて
いる。
In particular, klystrons, which amplify large amounts of power, are used as high-frequency power sources for large accelerators and high-frequency sources for plasma heating in nuclear fusion reactors.Alumina, which is easily vacuum-tight and has low dielectric loss, is used as the transmission window for the klystron. Ceramics are mainly used. However, when high-power high-frequency waves are transmitted through the alumina transmission window, a local temperature rise in the alumina often causes pinholes to occur in the alumina due to cracks and melting. The temperature rise in alumina is thought to be caused by multipactor discharge, hopping electrons from the main beam, adsorbed gas, and electron charging. Therefore, in order to prevent the temperature of alumina from rising, titanium nitride is generally applied to the surface of the alumina.

即ち、第2図は従来の高周波透過窓構体を示したもので
、円形導波管部1の内側にアルミナセラミックス板から
なる透過窓2が設けられ、この透過窓2の表面に窒化チ
タン膜3が付着されている。
That is, FIG. 2 shows a conventional high frequency transmission window structure, in which a transmission window 2 made of an alumina ceramic plate is provided inside a circular waveguide section 1, and a titanium nitride film 3 is coated on the surface of this transmission window 2. is attached.

図中の符号4はフランジ部、5は矩形導波管部、6は透
過窓2を冷却するための通水管である。又、この第2図
において、透過窓2の左側がクライストロンの真空側を
示し、右側が真空もしくは絶縁ガスが封入されている外
部導波管側である。このような高周波透過窓構体では、
動作時に透過窓2はクライストロンの電子銃からの散乱
電子や散乱電子の衝突により透過窓2で生成される2次
電子の繰返し衝突で発熱する。この発熱で透過窓2が破
壊するのを防ぐため、透過窓2の表面に窒化チタン膜3
を形成し、且つ透過窓構体全体を水冷している。
In the figure, reference numeral 4 is a flange portion, 5 is a rectangular waveguide portion, and 6 is a water pipe for cooling the transmission window 2. Further, in FIG. 2, the left side of the transmission window 2 shows the vacuum side of the klystron, and the right side shows the external waveguide side filled with vacuum or insulating gas. In such a high frequency transmission window structure,
During operation, the transmission window 2 generates heat due to repeated collisions of secondary electrons generated in the transmission window 2 by scattered electrons from the klystron electron gun and collisions of scattered electrons. In order to prevent the transmission window 2 from being destroyed by this heat generation, a titanium nitride film 3 is placed on the surface of the transmission window 2.
The entire transparent window structure is water-cooled.

(発明が解決しようとする課1i) 上記のように従来の高周波透過窓構体においては、透過
窓2の表面に窒化チタン膜3を形成し、透過窓2からの
2次電子の放出を防止している。
(Issue 1i to be solved by the invention) As described above, in the conventional high frequency transmission window structure, the titanium nitride film 3 is formed on the surface of the transmission window 2 to prevent the emission of secondary electrons from the transmission window 2. ing.

しかし、チタンはよく知られているようにゲッタとして
作用するので、透過窓2の表面に窒化チタン膜3を形成
した後に、大気に露出した場合・、酸素を吸収もしくは
内部拡散により膜中に取り込んでしまう。そして、酸化
物は一般的に金属単体に比べ2次電子放出係数が大きい
ので、窒化チタン膜3の本来の2次電子放出抑制効果が
低減する。
However, as it is well known, titanium acts as a getter, so if the titanium nitride film 3 is formed on the surface of the transmission window 2 and then exposed to the atmosphere, oxygen will be absorbed into the film by absorption or internal diffusion. It's gone. Since oxides generally have a larger secondary electron emission coefficient than metals alone, the original secondary electron emission suppressing effect of the titanium nitride film 3 is reduced.

この発明は、透過窓の温度上昇による破壊を未然に防止
した高周波透過窓構体及びその製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high frequency transmission window structure and a method for manufacturing the same, which prevents the transmission window from being destroyed due to temperature rise.

[発明の構成] (課題を解決するための手段) この発明は、透過窓の表面に窒化チタンと酸化チタンと
の固溶体膜が形成されてなる高周波透過窓構体である。
[Structure of the Invention] (Means for Solving the Problems) The present invention is a high frequency transmission window structure in which a solid solution film of titanium nitride and titanium oxide is formed on the surface of the transmission window.

又、他の発明は、透過窓の表面に窒化チタンと酸化チタ
ンとの固溶体膜を、Ar%N、O2の放電ガス中でスパ
ッタリングにより形成する高周波透過窓構体の製造方法
である。
Another invention is a method for manufacturing a high frequency transmission window structure, in which a solid solution film of titanium nitride and titanium oxide is formed on the surface of the transmission window by sputtering in a discharge gas of Ar%N and O2.

(作 用) この発明によれば、透過窓の表面に窒化チタンより高抵
抗の同溶体膜が形成されているので、2次電子放出係数
が小さく、マルチパクタ放電が抑制され、誘電体損失に
よる透過窓上での発熱を低減することが出来る。その結
果、透過窓のクラックや濱融を防ぐことが出来る。
(Function) According to the present invention, since a solution film having higher resistance than titanium nitride is formed on the surface of the transmission window, the secondary electron emission coefficient is small, multipactor discharge is suppressed, and transmission due to dielectric loss is reduced. Heat generation above the window can be reduced. As a result, cracks and melting of the transmission window can be prevented.

(実施例) 以下、図面を参照して、この発明の一実施例を詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

この発明における高周波透過窓構体は第1図に示すよう
に構成され、円形導波管部11の内側にはアルミナのよ
うな誘電体セラミックス板からなる一過窓12が設けら
れ、この透過窓12の表面には窒化チタンと酸化チタン
との固溶体膜13が60乃至120人の厚さに形成され
ている。尚、図中の符号14は円形フランジ、15は矩
形導波管部、16は透過窓12を冷却するための通水管
であり、透過窓12の左側がクライストロンの真空側を
示し、右側が真空もしくは絶縁ガスが封入されている外
部導波管側である。
The high frequency transmission window structure according to the present invention is constructed as shown in FIG. A solid solution film 13 of titanium nitride and titanium oxide is formed on the surface to a thickness of 60 to 120 mm. In the figure, reference numeral 14 is a circular flange, 15 is a rectangular waveguide section, and 16 is a water pipe for cooling the transmission window 12. The left side of the transmission window 12 indicates the vacuum side of the klystron, and the right side indicates the vacuum side. Alternatively, it is the external waveguide side filled with insulating gas.

透過窓12の表面に窒化チタンと酸化チタンとの固溶体
膜13を形成するに当たっては、アルゴン(Ar)、窒
素(N)、酸素(0□)の混合放電ガス中でスパッタリ
ングにより60乃至120人の厚さに形成する。この時
、酸素分圧が全圧の0.1乃至1.0%の範囲に設定さ
れている。この場合、固溶体膜13は導電体の窒化チタ
ンと絶縁体の酸化チタンの組成を連続的に変えることが
出来るので、膜厚と組成比で決定される抵抗値を任意に
選べる。又、既述のように、スパッタリングにより固溶
体膜13を形成するが、アルゴン、窒素、酸素の分圧を
制御して窒化チタンと酸化チタンの組成比を変え、スパ
ッタリング時間で膜厚を変え、所望の固溶体膜13を得
ている。
In forming the solid solution film 13 of titanium nitride and titanium oxide on the surface of the transmission window 12, 60 to 120 people were Form into a thick layer. At this time, the oxygen partial pressure is set in the range of 0.1 to 1.0% of the total pressure. In this case, since the solid solution film 13 can continuously change the composition of titanium nitride as a conductor and titanium oxide as an insulator, the resistance value determined by the film thickness and composition ratio can be arbitrarily selected. Further, as described above, the solid solution film 13 is formed by sputtering, and the composition ratio of titanium nitride and titanium oxide is changed by controlling the partial pressures of argon, nitrogen, and oxygen, and the film thickness is changed by changing the sputtering time to obtain the desired thickness. A solid solution film 13 is obtained.

次に、各種条件における従来及びこの発明における透過
窓の温度上昇測定結果について説明する。
Next, the results of measuring the temperature rise of the transmission window in the conventional and the present invention under various conditions will be explained.

尚、測定に当たっては、透過窓を導波管部の途中に設け
、導波管部内を高真空にした後、パルスのマイクロ波を
導波管部内に導き、透過窓に透過させる。そして、パル
ス電力に対する透過窓の温度上昇は、冷却水の通水管に
熱電対を圧着して測定・する。
In the measurement, a transmission window is provided in the middle of the waveguide section, and after creating a high vacuum inside the waveguide section, pulsed microwaves are guided into the waveguide section and transmitted through the transmission window. The temperature rise of the transmission window in response to pulsed power is measured by crimping a thermocouple to the cooling water pipe.

先ず第3図は、従来の透過窓2に窒化チタン膜3を、O
人の厚さ形成した場合の温度上昇を示している。この図
から明らかなように、パルス電力が15MW付近で6℃
と急激な温度上昇があった。
First, in FIG. 3, a titanium nitride film 3 is placed on a conventional transmission window 2,
It shows the rise in temperature when the thickness of the person is formed. As is clear from this figure, when the pulse power is around 15 MW, it is 6°C.
There was a sudden rise in temperature.

又、第4図は、透過窓2に窒化チタン113を60人の
厚さ形成した場合の温度上昇を示している。この図から
明らかなように、パルス電力が15MW付近での急激な
温度上昇はないが、パルス電力が50MW以上での温度
の上昇が、窒化チタン1!I3を、O人の厚さ形成した
場合に比べて大きく、パルス電力が200MW付近で9
℃上昇した。これは、窒化チタン膜3の抵抗損失による
ものと理解される。窒化チタン膜3はいずれもアルゴン
(Ar)分圧1.3X、O−2To r r、窒素分圧
5.2X、O−”Torrとし全圧6.5×1O−2T
orrでスパッタリングにより塗布し、膜厚はスパッタ
時間を制御して作成したものである。
Further, FIG. 4 shows the temperature rise when titanium nitride 113 is formed in the transmission window 2 to a thickness of 60 mm. As is clear from this figure, there is no rapid temperature rise when the pulse power is around 15 MW, but the temperature rises when the pulse power is 50 MW or more. It is larger than when I3 is formed to a thickness of O people, and when the pulse power is around 200 MW, it becomes 9
℃ rose. This is understood to be due to the resistance loss of the titanium nitride film 3. The titanium nitride film 3 has argon (Ar) partial pressure of 1.3X, O-2Torr, nitrogen partial pressure of 5.2X, O-''Torr, and total pressure of 6.5×1O-2T.
The film was coated by sputtering using a sputtering method, and the film thickness was determined by controlling the sputtering time.

それに対して、第5図はこの発明の実施例によるもので
、全圧6.5X、O−2Torr、アルゴン(A「)分
圧1.3X、O−2Torr、窒素分圧5. 19x 
、O−”To r r、酸素分圧6.5×、O−’To
rrのスパッタリング条件で作成した窒化チタンと酸化
チタンとの固溶体膜13を、透過窓12の表面に60人
の厚さ形成した場合の温度上昇を示している。この図か
ら明らかなように、パルス電力が15MW付近での急激
な温度上昇もなく、又、パルス電力が212MWで温度
上昇2.7℃と上記従来の窒化チタン膜3を形成した場
合に比べて低い。
On the other hand, FIG. 5 is according to an embodiment of the present invention, where the total pressure is 6.5X, O-2Torr, argon (A') partial pressure is 1.3X, O-2Torr, and nitrogen partial pressure is 5.19X.
, O-'To r r, oxygen partial pressure 6.5×, O-'To
This figure shows the temperature rise when a solid solution film 13 of titanium nitride and titanium oxide, which was created under sputtering conditions of rr, is formed to a thickness of 60 mm on the surface of the transmission window 12. As is clear from this figure, there is no rapid temperature rise when the pulse power is around 15 MW, and the temperature rise is 2.7°C when the pulse power is 212 MW, compared to the case where the conventional titanium nitride film 3 is formed. low.

又、第6図は、スパッタリング条件がアルゴン(Ar)
分圧1.3X、O−2Torr、窒素分圧5.16X、
O−2Torr、酸素分圧3.25X、O−’Torr
、全圧6.5X、O−’Torrで作成した窒化チタン
と酸化チタンとの固溶体膜13を、透過窓12の表面に
60人の厚さ形成した場合の温度上昇を示している。窒
化チタン膜3を形成した場合に比べて、温度上昇が小さ
く、パルス電力が212MWで温度上昇は2.2℃であ
った。
In addition, FIG. 6 shows that the sputtering conditions are argon (Ar).
Partial pressure 1.3X, O-2Torr, nitrogen partial pressure 5.16X,
O-2Torr, oxygen partial pressure 3.25X, O-'Torr
, the temperature rise is shown when a solid solution film 13 of titanium nitride and titanium oxide prepared at a total pressure of 6.5X and O-'Torr is formed to a thickness of 60 mm on the surface of the transmission window 12. Compared to the case where the titanium nitride film 3 was formed, the temperature rise was smaller, and the temperature rise was 2.2° C. when the pulse power was 212 MW.

最後の第7図は、上記の全圧6.5X、O−2Torr
に対し酸素分圧が0.5%のスバッ91Jング条件で作
成した窒化チタンと酸化チタンとの固溶体膜13を、透
過窓12の表面に120人の厚さ形成した場合の温度上
昇を示している。低パルス電力での急激な温度上昇もな
く、又、パルス電力が207MWで温度上昇は2.6℃
である。
The last figure 7 shows the above total pressure 6.5X, O-2 Torr.
The figure shows the temperature rise when a solid solution film 13 of titanium nitride and titanium oxide, which was prepared under Subac91J conditions with an oxygen partial pressure of 0.5%, is formed on the surface of the transmission window 12 to a thickness of 120 mm. There is. There is no sudden temperature rise with low pulse power, and the temperature rise is 2.6℃ with pulse power of 207MW.
It is.

このように、窒化チタンをベースに酸化チタンを同時に
塗布すれば、高パルス電力での抵抗損失を小さく出来る
ばかりでなく、マルチパクタ放電による温度上昇と考え
られている低パルス電力での急激な温度上昇も低減する
ことが出来る。
In this way, by applying titanium oxide based on titanium nitride at the same time, it is possible to not only reduce the resistance loss at high pulse power, but also to reduce the sudden temperature rise at low pulse power, which is thought to be caused by multipactor discharge. can also be reduced.

[発明の効果] 以上説明したようにこの発明によれば、透過窓の表面に
、窒化チタンと酸化チタンとの固溶体膜を、A r %
 N s 02の放電ガス中でスパッタリングにより付
着させることにより、窒化チタンよりも高抵抗の膜を形
成することが出来る。従って、2次電子放出係数が小さ
く、マルチパクタ放電が抑制され、且つ誘電体損失によ
る透過窓上での発熱を低減することが出来る。その結果
、透過窓のクラックや溶融を防ぐことが出来る。
[Effects of the Invention] As explained above, according to the present invention, a solid solution film of titanium nitride and titanium oxide is formed on the surface of the transmission window at an A r %
By depositing by sputtering in a discharge gas of N s 02, a film with higher resistance than titanium nitride can be formed. Therefore, the secondary electron emission coefficient is small, multipactor discharge is suppressed, and heat generation on the transmission window due to dielectric loss can be reduced. As a result, it is possible to prevent the transmission window from cracking or melting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る高周波透過窓構体を
示す縦断面図、第2図は従来の高周波透過窓構体を示す
縦断面図、−3図乃至第7図は各種条件における透過窓
の温度上昇とパルス電力との関係を示す特性曲線図であ
る。 11・・・導波管、12・・・透過窓、13・・・固溶
体膜。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a vertical cross-sectional view showing a high-frequency transmitting window structure according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view showing a conventional high-frequency transmitting window structure, and FIGS. -3 to 7 are transmittance under various conditions. FIG. 3 is a characteristic curve diagram showing the relationship between window temperature rise and pulse power. 11... Waveguide, 12... Transmission window, 13... Solid solution membrane. Applicant's agent Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)導波管内に誘電体セラミックス板からなる透過窓
が設けられてなる高周波透過窓構体において、 上記透過窓の表面に窒化チタンと酸化チタンとの固溶体
膜が形成されてなることを特徴とする高周波透過窓構体
(1) A high frequency transmission window structure including a transmission window made of a dielectric ceramic plate provided in a waveguide, characterized in that a solid solution film of titanium nitride and titanium oxide is formed on the surface of the transmission window. High frequency transparent window structure.
(2)導波管内に設けられる誘電体セラミックス板から
なる透過窓の表面に、窒化チタンと酸化チタンとの固溶
体膜を、Ar、N、O_2の放電ガス中でスパッタリン
グにより形成することを特徴とする高周波透過窓構体の
製造方法。
(2) A solid solution film of titanium nitride and titanium oxide is formed on the surface of a transmission window made of a dielectric ceramic plate provided in the waveguide by sputtering in a discharge gas of Ar, N, and O_2. A method for manufacturing a high frequency transmitting window structure.
JP2177319A 1990-07-06 1990-07-06 High frequency transmission window structure and method of manufacturing the same Expired - Lifetime JP3028834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177319A JP3028834B2 (en) 1990-07-06 1990-07-06 High frequency transmission window structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177319A JP3028834B2 (en) 1990-07-06 1990-07-06 High frequency transmission window structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0468801A true JPH0468801A (en) 1992-03-04
JP3028834B2 JP3028834B2 (en) 2000-04-04

Family

ID=16028906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177319A Expired - Lifetime JP3028834B2 (en) 1990-07-06 1990-07-06 High frequency transmission window structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3028834B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143325A (en) * 2004-07-05 2006-06-08 Ishida Co Ltd Bag making and packaging system
CN102859633A (en) * 2010-05-18 2013-01-02 E2V技术(英国)有限公司 Electron tube
JP2017183467A (en) * 2016-03-30 2017-10-05 住友大阪セメント株式会社 Electrostatic chuck device, and manufacturing method of electrostatic chuck device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143325A (en) * 2004-07-05 2006-06-08 Ishida Co Ltd Bag making and packaging system
CN102859633A (en) * 2010-05-18 2013-01-02 E2V技术(英国)有限公司 Electron tube
JP2017183467A (en) * 2016-03-30 2017-10-05 住友大阪セメント株式会社 Electrostatic chuck device, and manufacturing method of electrostatic chuck device

Also Published As

Publication number Publication date
JP3028834B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US3670196A (en) Helix delay line for traveling wave devices
JPH0468801A (en) High-frequency transmitting window body structure and manufacture of the same
US3221198A (en) Sodium vapor lamp having a tin oxide coating
US3891884A (en) Electron discharge device having electron multipactor suppression coating on window body
US2123024A (en) Electrode for electric discharge devices
JP3075752B2 (en) Hermetic window of high-frequency waveguide
US3101460A (en) Hermetically sealed waveguide window with non-sputtering iris
KR20110055638A (en) High-pressure discharge lamp
KR101342526B1 (en) Cascade voltage amplifier and method of activating a plurality of cascaded electron tube stages
Nguyen et al. Development of a 50 kW CW L-band rectangular window for Jefferson Lab FEL Cryomodule
US3474284A (en) High frequency tantalum attenuation in traveling wave tubes
JPS63284744A (en) Plasma x-ray source
Michizono et al. High-power test of pill-box and TW-in-ceramic type S-band RF windows
JPS63149901A (en) Microwave device
GB2297190A (en) Electron tubes with graphite coating to reduce multipactor dishcarge and diamond layer to conduct away heat
JP3503595B2 (en) Output window and manufacturing method thereof
JPH05258730A (en) Incandescent body for light source
JP2830607B2 (en) Output part window material for microwave tube
JPH1013102A (en) High-frequency transmissive window structure body and producing method therefor
JPH03274696A (en) Microwave plasma source
JPS60205942A (en) Exhausting of electron tube
US3634786A (en) Microwave circuit utilizing a semiconductor impedance element
JP3369210B2 (en) Metal vapor laser oscillation tube
US3900755A (en) Arc suppressing coating for metal-dielectric interface surfaces
JPH0528969A (en) Rapid start-type fluorescent lamp and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11