JPH0468759B2 - - Google Patents

Info

Publication number
JPH0468759B2
JPH0468759B2 JP59140177A JP14017784A JPH0468759B2 JP H0468759 B2 JPH0468759 B2 JP H0468759B2 JP 59140177 A JP59140177 A JP 59140177A JP 14017784 A JP14017784 A JP 14017784A JP H0468759 B2 JPH0468759 B2 JP H0468759B2
Authority
JP
Japan
Prior art keywords
microwaves
ceramic tube
raw material
processed
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59140177A
Other languages
Japanese (ja)
Other versions
JPS6119098A (en
Inventor
Takahiko Tomya
Takeshi Hosobuchi
Tsutomu Katada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KIKAI SEIZO
Original Assignee
NIPPON KAGAKU KIKAI SEIZO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KIKAI SEIZO filed Critical NIPPON KAGAKU KIKAI SEIZO
Priority to JP14017784A priority Critical patent/JPS6119098A/en
Publication of JPS6119098A publication Critical patent/JPS6119098A/en
Publication of JPH0468759B2 publication Critical patent/JPH0468759B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロ波による連続加熱装置に関
し、より詳しくはマイクロ波により被処理物を連
続的に加熱処理するマイクロ波による連続加熱装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a continuous heating device using microwaves, and more particularly to a continuous heating device using microwaves that continuously heats an object to be processed using microwaves. It is.

〔従来の技術〕[Conventional technology]

例えば、各種の植物資源の分解または加工利用
においては、これら植物資源の各組成分が容易に
必要な処理を受け易い状態にまで前処理を行なう
のが通常手段となつている。
For example, in the decomposition or processing of various plant resources, it is common practice to pre-treat the components of these plant resources to a state where they can easily undergo necessary treatments.

特に、木材の加工屑であるおが屑の糖化処理を
例にとれば、この糖化処理は酸または酵素を触媒
として加水分解して、植物成分としてのセルロー
スはブドウ糖に、またヘミセルロースはブドウ
糖、キシロースおよび他の糖類に変成することに
よつてリグニンを分離・分解するが、この処理を
効率よく行なうためには予め高温、高圧下におく
前処理がとられている。
In particular, if we take the example of saccharification of sawdust, which is processed wood waste, this saccharification process involves hydrolysis using acids or enzymes as a catalyst, converting cellulose as a plant component into glucose, and hemicellulose into glucose, xylose, and other substances. Lignin is separated and decomposed by converting it into saccharides, but in order to carry out this process efficiently, a pretreatment is performed in advance by subjecting it to high temperature and high pressure.

従来、このような加熱処理等は、被処理物であ
る前述のようなおが屑を例にとれば、このおが屑
等を特公昭57−60056号特許公報に開示されるよ
うな石英ガラス等のベツセルに含水状態で収納し
て誘導体となし、マイクロ波により発熱させるバ
ツチ方式でもつて行なつている。
Conventionally, such heat treatment, etc. has been carried out by converting the sawdust, etc., into a bethel made of quartz glass or the like as disclosed in Japanese Patent Publication No. 57-60056. The process is also carried out using a batch method in which the derivative is stored in a hydrated state and heated using microwaves.

また、連続方式により行なうものとしては、実
開昭59−18891号明細書に開示されるようにテフ
ロン管を用いて、このテフロン管中に被処理物を
連続的に供給することにより行なつている。
In addition, as for the continuous method, as disclosed in Utility Model Application No. 59-18891, a Teflon tube is used and the material to be treated is continuously fed into the Teflon tube. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前者によれば、非連続のバツチ
方式であり、またバツチ方式のために被処理物の
徐冷過程を要すること等により作業効率性が悪い
という問題点があるとともに、石英ガラス等のベ
ツセルは脆性があり、また強度も十分でないため
に、高温とともに高圧処理を加えることができな
いという問題点がある。
However, according to the former method, there is a problem that work efficiency is poor because it is a discontinuous batch method, and the batch method requires a slow cooling process of the material to be treated. is brittle and does not have sufficient strength, so it has the problem that it cannot be subjected to high temperature and high pressure treatment.

また、後者によれば、高圧処理は行なえても、
例えば150℃以上の高温処理は行なえないという
問題点がある。
Moreover, according to the latter, even if high pressure treatment can be performed,
For example, there is a problem in that high temperature treatment of 150°C or higher cannot be performed.

本発明は、前述された問題点を解消することを
目的とし、被処理物を連続処理できながらその被
処理物を高温・高圧処理できるとともに、被処理
物への加熱効率が良いマイクロ波による連続加熱
装置を提供することにある。
The present invention aims to solve the above-mentioned problems, and it is possible to continuously process the object to be processed at high temperature and high pressure. An object of the present invention is to provide a heating device.

〔課題を解決するための手段〕[Means to solve the problem]

前述された課題を解決するために、本発明によ
るマイクロ波による連続加熱装置は、マイクロ波
の不透過材質より構成されるシールドハウジング
にマイクロ波の導波管を連通可能に連設するとと
もに、このシールドハウジング内に一端側は被処
理物供給機に、また他端側はレシーバーに接続さ
れるセラミツク管の少なくとも一部を配設しかつ
そのセラミツク管内に被処理物を撹拌するマイク
ロ波の反射可能な撹拌羽根を設け、このセラミツ
ク管内にマイクロ波を照射しかつセラミツク管内
に供給される被処理物を撹拌羽根により撹拌して
その被処理物を加熱のもとに連続的に処理するこ
とを特徴とするものである。
In order to solve the above-mentioned problems, the continuous heating device using microwaves according to the present invention has a microwave waveguide connected to a shield housing made of a material that is impermeable to microwaves so as to be able to communicate with the shield housing. At least a part of a ceramic tube is disposed inside the shield housing, one end of which is connected to the material feeder, and the other end connected to the receiver, and the microwave for stirring the material can be reflected into the ceramic tube. It is characterized by providing a stirring blade, irradiating the inside of the ceramic tube with microwaves, stirring the object to be treated fed into the ceramic tube with the stirring blade, and continuously treating the object under heating. That is.

〔作用・効果〕[Action/Effect]

一端側が被処理物供給機に、また他端側はレシ
ーバーに接続されるセラミツク管により被処理物
が連続処理できるものでありながら、セラミツク
管であるために、例えば被処理物であるおが屑の
糖化処理においてはヘミセルロースおよびセルロ
ースからリグニンを分離することができる程度に
までその被処理物の高温・高圧処理ができる。さ
らに、セラミツク管内に供給される被処理物を特
にそのセラミツク管内に設けられるマイクロ波の
反射可能な撹拌羽根により撹拌することにより、
この撹拌羽根による被処理物の撹拌とマイクロ波
の反射とが相俟つて極めて効率良くマイクロ波を
被処理物に吸収させることができ、加熱が効率良
く行なわれる。
Although the ceramic tube, which is connected at one end to the feeder for the treated material and to the receiver at the other end, can continuously process the treated material, it is difficult to saccharify the material to be treated, such as sawdust, because it is a ceramic tube. In the treatment, the material to be treated can be treated at high temperature and high pressure to the extent that lignin can be separated from hemicellulose and cellulose. Furthermore, the material to be treated fed into the ceramic tube is stirred by a stirring blade that is provided inside the ceramic tube and is capable of reflecting microwaves.
The stirring of the object to be processed by the stirring blade and the reflection of the microwaves combine to allow the object to absorb the microwaves with extremely high efficiency, resulting in efficient heating.

〔実施例〕〔Example〕

次に、本発明によるマイクロ液による連続加熱
装置の具体的一実施例につき、図面を参照しつつ
説明する。
Next, a specific embodiment of the continuous heating device using micro liquid according to the present invention will be described with reference to the drawings.

第1図において、マイクロ波の不透過材質より
構成されるシールドハウジング1には、例えばマ
グネトロン等のマイクロ波発振装置2から発生さ
れるマイクロ波をそのシールドハウジング1内に
導く導波管3が連通されて設けられている。この
シールドハウジング1内には、一端側に原料槽4
内に貯留される原料5を供給する例えば油圧イン
ジエクター等の原料供給機6が接続され、他端側
に加熱・加圧処理後の原料5を収容するレシーバ
ー7が圧力調整弁8を介して接続されているセラ
ミツク管9が貫通して設けられている。このセラ
ミツク管9としては、マイクロ波を透過させるこ
とができるとともに、熱伝導が均一で温度係数が
小さく、吸水率の低いものが選択され得る。な
お、符号10は負荷の小さいときに圧力を蓄え、
負荷が大きいときに圧力を放出させるアキユムレ
ータである。
In FIG. 1, a waveguide 3 that guides microwaves generated from a microwave oscillation device 2 such as a magnetron into the shield housing 1 is connected to a shield housing 1 made of a microwave-impermeable material. It is well established. Inside this shield housing 1, there is a raw material tank 4 on one end side.
A raw material feeder 6 such as a hydraulic injector is connected to the feeder 6 for supplying the raw material 5 stored therein, and a receiver 7 for accommodating the raw material 5 after heating and pressurization is connected to the other end via a pressure regulating valve 8. A ceramic tube 9 is provided therethrough. This ceramic tube 9 may be selected from one that can transmit microwaves, has uniform heat conduction, has a small temperature coefficient, and has a low water absorption rate. In addition, the code 10 stores pressure when the load is small,
This is an accumulator that releases pressure when the load is large.

ところで、セラミツク管9内には、第2図に概
略的に示されているように、原料供給機6から供
給される原料5を撹拌するマイクロ波の反射可能
な、例えばステンレス、アルミニユム等の材質よ
り構成され、軸線回りに回転される撹拌羽根11
が設けられている。この撹拌羽根11は、前述の
ように供給される原料5を混合、分散等を含み撹
拌することに加えて、導波管3から直接にまたは
シールドハウジング1の内壁面での乱反射により
間接的にセラミツク管9内に透過し、そして原料
5を通過する間に吸収されなかつたマイクロ波を
反射させてその原料5に吸収させるものである。
なお、符号12は、セラミツク管9がシールドハ
ウジング1を貫通する箇所からのマイクロ波の漏
洩を防止するためのマイクロ波シールである。
By the way, as schematically shown in FIG. 2, the ceramic tube 9 is made of a material such as stainless steel or aluminum that can reflect the microwaves that agitate the raw material 5 supplied from the raw material feeder 6. A stirring blade 11 that is composed of
is provided. This stirring blade 11 not only stirs the supplied raw material 5 by mixing and dispersing it as described above, but also stirs it directly from the waveguide 3 or indirectly by diffused reflection on the inner wall surface of the shield housing 1. Microwaves that have passed through the ceramic tube 9 and have not been absorbed while passing through the raw material 5 are reflected and absorbed by the raw material 5.
Note that reference numeral 12 is a microwave seal for preventing leakage of microwaves from a portion where the ceramic tube 9 penetrates the shield housing 1.

こうして、原料槽4内に貯留された原料5は、
原料供給機6によりセラミツク管9内に連続的に
圧入、圧送され、マイクロ波発振装置2から導波
管3を通じて照射されるマイクロ波によつて高周
波誘電加熱され、高温・高圧処理を受けた後に圧
力調整弁8を介してレシーバー7に収容され、次
いで以降の所要の工程に委ねられる。このマイク
ロ波による高周波誘電加熱に際し、マイクロ波の
反射可能な撹拌羽根11による原料5の撹拌によ
り、この原料5の撹拌とマイクロ波の反射とが相
俟つて照射むらもなく極めて効率良くマイクロ波
が原料5に吸収され得て導波管3へのマイクロ波
の反射損失も少なく原料5を効率良く加熱させ
る。
In this way, the raw material 5 stored in the raw material tank 4 is
The raw material is continuously press-fitted and pressure-fed into the ceramic tube 9 by the raw material feeder 6, heated by high-frequency dielectric radiation by microwaves irradiated from the microwave oscillator 2 through the waveguide 3, and subjected to high-temperature and high-pressure treatment. It is accommodated in the receiver 7 via the pressure regulating valve 8, and then subjected to the subsequent required steps. During this high-frequency dielectric heating using microwaves, the stirring blade 11 that can reflect microwaves stirs the raw material 5, and the stirring of the raw material 5 and the reflection of the microwaves combine to generate microwaves extremely efficiently without uneven irradiation. The microwave can be absorbed by the raw material 5, and the reflection loss of the microwave to the waveguide 3 is small, so that the raw material 5 can be efficiently heated.

例えば植物成分としての最も普遍的な木材のお
が屑を加熱処理を行なう場合においては、原料槽
4内でおが屑と水とが混和して10%程度の濃度に
保つた原料5を原料供給機6によりマイクロ波が
照射されるセラミツク管9内に圧入・圧送する
と、母液と随伴するおが屑とは加熱されて高温と
なり、同時に蒸気圧により発生する圧力が圧力調
整弁8およびアキユムレータ10の作動により高
圧雰囲気に形成され、270℃で80Kg/cm2程度の高
温・高圧処理を達成することができる。なお、原
料5としては、スラリーもしくは液体等であつて
も良い。
For example, when heat-treating wood sawdust, which is the most common plant ingredient, the raw material 5 mixed with water in the raw material tank 4 and maintained at a concentration of about 10% is fed to the raw material feeder 6. When the mother liquor and the accompanying sawdust are pressurized and fed into the ceramic tube 9 to be irradiated with microwaves, they are heated to a high temperature, and at the same time, the pressure generated by the steam pressure is turned into a high-pressure atmosphere by the operation of the pressure regulating valve 8 and the accumulator 10. It is possible to achieve high temperature and high pressure treatment of approximately 80 kg/cm 2 at 270°C. Note that the raw material 5 may be a slurry, a liquid, or the like.

なお、セラミツク管9としてテストで用いたも
のは、外径50mm、肉厚5mm程度のものではあるが
100Kg/cm2以上の耐圧強度を有しており、前述の
ような使用条件に対しては充分な強度と安定性と
を保有している。
The ceramic tube 9 used in the test had an outer diameter of 50 mm and a wall thickness of about 5 mm.
It has a compressive strength of 100 kg/cm 2 or more, and has sufficient strength and stability for the above-mentioned usage conditions.

以上に説明したように、本発明によればセラミ
ツク管9を使用してマイクロ波の照射等を行なう
ことにより、耐薬品処理を必要としていたような
操作であつても、簡単にかつ連続的に高温・高圧
処理が可能となり、 (イ) 100〜160℃での一般高温加熱処理、 (ロ) 150〜270℃で木材、藁等の原料に対してリグ
ニン、ヘミセルロースの低分子化、 (ハ) 窒素等の不活性ガス高圧下での有機反応速度
の促進、 等の便益が得られる。
As explained above, according to the present invention, by performing microwave irradiation using the ceramic tube 9, even operations that require chemical-resistant treatment can be easily and continuously performed. High-temperature and high-pressure processing is now possible: (a) general high-temperature heat treatment at 100 to 160℃, (b) low-molecularization of lignin and hemicellulose for raw materials such as wood and straw at 150 to 270℃, and (c) Benefits include acceleration of organic reaction rates under high pressure of inert gases such as nitrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるマイクロ波による連続加
熱処理装置の具体的一実施例の高温・高圧処理系
の線図および第2図は要部拡大断面略図である。 1……シールドハウジング、2……マイクロ波
発振装置、3……導波管、4……原料槽、5……
原料、6……原料供給機、7……レシーバー、8
……圧力調整弁、9……セラミツク管、10……
アキユムレータ、11……攪拌羽根、12……マ
イクロ波シール。
FIG. 1 is a diagram of a high-temperature/high-pressure treatment system of a specific embodiment of a continuous heating treatment apparatus using microwaves according to the present invention, and FIG. 2 is a schematic enlarged cross-sectional view of the main parts. 1... Shield housing, 2... Microwave oscillator, 3... Waveguide, 4... Raw material tank, 5...
Raw material, 6... Raw material feeder, 7... Receiver, 8
...Pressure regulating valve, 9...Ceramic pipe, 10...
Accumulator, 11... Stirring blade, 12... Microwave seal.

Claims (1)

【特許請求の範囲】 1 マイクロ波の不透過材質より構成されるシー
ルドハウジングにマイクロ波の導波管を連通可能
に連設するとともに、このシールドハウジング内
に一端側は被処理物供給機に、また他端側はレシ
ーバーに接続されるセラミツク管の少なくとも一
部を配設しかつそのセラミツク管内に被処理物を
撹拌するマイクロ波の反射可能な撹拌羽根を設
け、このセラミツク管内にマイクロ波を照射しか
つセラミツク管内に供給される被処理物を撹拌羽
根により撹拌してその被処理物を加熱のもとに連
続的に処理することを特徴とするマイクロ波によ
る連続加熱装置。 2 前記セラミツク管の一端側に接続される前記
被処理物供給機による圧入・圧送により被処理物
が連続的にそのセラミツク管内を移行することを
特徴とする特許請求の範囲第1項に記載のマイク
ロ波による連続加熱装置。
[Claims] 1. A microwave waveguide is connected to a shield housing made of a microwave-impermeable material so that it can communicate with the microwave waveguide, and one end of the microwave waveguide is connected to a processing object supplying machine within the shield housing. At the other end, at least a part of a ceramic tube connected to the receiver is arranged, and a stirring blade capable of reflecting microwaves for stirring the object to be processed is provided inside the ceramic tube, and microwaves are irradiated into the ceramic tube. A continuous heating device using microwaves is characterized in that the material to be processed fed into the ceramic tube is stirred by a stirring blade and the material to be processed is continuously processed under heating. 2. The method according to claim 1, wherein the material to be processed is continuously transferred through the ceramic tube by press-fitting and force-feeding by the material supplying device connected to one end of the ceramic tube. Continuous heating device using microwaves.
JP14017784A 1984-07-05 1984-07-05 Continuous heater with microwave Granted JPS6119098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14017784A JPS6119098A (en) 1984-07-05 1984-07-05 Continuous heater with microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14017784A JPS6119098A (en) 1984-07-05 1984-07-05 Continuous heater with microwave

Publications (2)

Publication Number Publication Date
JPS6119098A JPS6119098A (en) 1986-01-27
JPH0468759B2 true JPH0468759B2 (en) 1992-11-04

Family

ID=15262679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14017784A Granted JPS6119098A (en) 1984-07-05 1984-07-05 Continuous heater with microwave

Country Status (1)

Country Link
JP (1) JPS6119098A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759668B2 (en) * 2004-05-11 2011-08-31 株式会社Idx Microwave heating device
CA2739056A1 (en) 2008-07-28 2010-02-04 Kyoto University Microwave irradiation device, linked microwave irradiation device, and method of manufacturing glycocomponent from plant material
PL399911A1 (en) * 2012-07-11 2014-01-20 Preoil Spólka Z Ograniczona Odpowiedzialnoscia Hydrothermal biomass liquefaction method and biomass hydrothermal liquefaction system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918891B2 (en) * 1977-01-29 1984-05-01 株式会社東芝 Channel selection device
JPS608713U (en) * 1983-06-28 1985-01-22 横浜ゴム株式会社 fender

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608713Y2 (en) * 1982-07-29 1985-03-28 三洋電機株式会社 microwave heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918891B2 (en) * 1977-01-29 1984-05-01 株式会社東芝 Channel selection device
JPS608713U (en) * 1983-06-28 1985-01-22 横浜ゴム株式会社 fender

Also Published As

Publication number Publication date
JPS6119098A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
US4237226A (en) Process for pretreating cellulosic substrates and for producing sugar therefrom
Subhedar et al. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production
KR101603362B1 (en) Microwave irradiation device, linked microwave irradiation device, and method of manufacturing glycocomponent from plant material
Fagan et al. Kinetics of the acid hydrolysis of cellulose found in paper refuse
KR20150041665A (en) Method and apparatus for cooling pretreated biomass prior to mixing with enzymes
CN109019753A (en) A kind of method of circulation batch type microwave catalysis oxidation processing organic wastewater
EP3399095B1 (en) Method and device for treating biomass
JP2006036977A (en) Method of modifying biomass and modification equipment
JPH0468759B2 (en)
WO2011142290A1 (en) Method for processing lignocellulose-based biomass
JP2009022239A (en) Method for producing sugar from lignocellulosic biomass
Yan et al. A study on catalytic hydrolysis of peat
EP0553149B1 (en) Apparatus and method for hydrolysis of cyanide-containing liquids
EP0364209B1 (en) Method of dissolving spent nuclear fuel
CN104561130A (en) Microwave-assisted pretreatment method for maize straws
EP3854758B1 (en) Pretreatment device and process for paper product filler
JP2004201599A (en) System and method for producing sugar from waste building material
FI970104A0 (en) Peroxide bleaching system for cellulosic and lignocellulosic material
Barman et al. Kinetics of combined noncatalytic and catalytic hydrolysis of jute fiber under ultrasonic–far infrared energy synergy
US20100311125A1 (en) Method for Liquefying and Saccharifying Starch Quickly
KR100376203B1 (en) A method of decomposing cellulose with sulfuric acid and various sulfate additives under sub- and supercritical water
US4388458A (en) Use of ultrasonic energy to improve nitrocellulose purification
WO1994024316A1 (en) Method for hydrolysis of material containing cellulose and/or starch
US1904894A (en) Process and apparatus for the manufacture of cellulose
CN1263923C (en) Supersonic chemical pretreating method for bagasse for wood-plastic composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term