JPH0468755B2 - - Google Patents

Info

Publication number
JPH0468755B2
JPH0468755B2 JP58235365A JP23536583A JPH0468755B2 JP H0468755 B2 JPH0468755 B2 JP H0468755B2 JP 58235365 A JP58235365 A JP 58235365A JP 23536583 A JP23536583 A JP 23536583A JP H0468755 B2 JPH0468755 B2 JP H0468755B2
Authority
JP
Japan
Prior art keywords
temperature
heated
output
power
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58235365A
Other languages
Japanese (ja)
Other versions
JPS60127692A (en
Inventor
Hideki Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23536583A priority Critical patent/JPS60127692A/en
Publication of JPS60127692A publication Critical patent/JPS60127692A/en
Publication of JPH0468755B2 publication Critical patent/JPH0468755B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気コンロ、誘導加熱調理器等、被加
熱物を加熱する加熱調理器の被加熱物温度制御方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the temperature of a heated object in a cooking device that heats an object, such as an electric stove or an induction cooking device.

従来例の構成とその問題点 以下、説明の便のため誘導加熱調理器を例に述
べる。
Configuration of conventional example and its problems For convenience of explanation, an induction heating cooker will be described below as an example.

従来、この種の温度制御方法は、第1図に示す
ように、被加熱物Oの容器Pの底面温度Tpを検
知する温度検知手段TD、目的とする被加熱物温
度Tosを設定する温度設定手段S、加熱コイルH
の入力電力Piを変化させる電力可変手段Cを有
し、前記温度検知手段TDの出力f(Tp)と前記
温度設定手段Sの出力g(Tos)が等しくなるよ
うに前記入力電力Piを変化させて、被加熱物Oの
温度Tosを制御するものが一般的であつた。
Conventionally, this type of temperature control method, as shown in FIG. 1, includes a temperature detection means TD that detects the bottom surface temperature Tp of a container P of the object to be heated O, and a temperature setting that sets the target temperature Tos of the object to be heated. Means S, heating coil H
has a power variable means C that changes the input power Pi, and changes the input power Pi so that the output f (Tp) of the temperature detection means TD and the output g (Tos) of the temperature setting means S become equal. Therefore, it was common to control the temperature Tos of the object O to be heated.

しかし、この方法では以下に述べるように、例
えば天ぷら調理等のように被加熱物Oに負荷を投
入した場合、設定温度Tosと被加熱物温度Toが
大きく異なるという問題があつた。以下この問題
点について第1図、第2図、第3図を用いて説明
する。第1図において、Poは被加熱物容器Pの
底面を通して被加熱物Oに供給される電力、Pa
は被加熱物Oから周囲に放出される電力である。
簡単のため設定温度Tosの可変範囲を十分小さい
ものとすると、 Pa=α(To−Ta),Po=β(Tp−To) ……(1) と表わせる。ここでα、βは定数、Taは雰囲気
温度である。定常状態では、 Po=Pa ……(2) であるので、前記式(1)、(2)より To=β/α+βTp+α/α+βTa ……(3) を得る。従つて雰囲気温度Taが一定ならば第1
図に示される系で被加熱物容器底面温度Tpを一
定に保つことにより、被加熱物温度Toを一定に
保つことができる。ところが、第2図に示すよう
に、被加熱物Oに負荷Mが投入されると、負荷M
の温度と被加熱物温度Toの差に応じて負荷Mに
熱エネルギーが伝達されるので、前記式(3)が成立
しなくなる。すなわち、前記負荷Mに供給される
電力をPmとすると、 Po=Pa+Pm ……(4) となるので、前記式(1)、(4)より、 To=β/α+βTp+α/α+βTa−Pm/α+β……(5
) となる。前記式(4)、式(5)を比較することにより容
易にわかるように、電力Pm相当の負荷Mの投入
により被加熱物温度Toは、被加熱物容器底面温
度Tpを一定に保つていても、Pm/(α+β)だ
け低下してしまう。負荷Mの投入後、相当の時間
が経過すれば、負荷Mの温度が被加熱物温度To
と等しくなり熱エネルギーの伝達がなくなるので
Pm=Oとなり被加熱物温度Toは負荷のない場合
の温度、すなわち最初の設定温度Tosに回復する
が、負荷Mの熱容量が大きい場合、あるいは例え
ば天ぷら調理等のように負荷の投入、引上げを連
続して繰返す場合は、調理中は近似的に負荷の熱
容量を無限大と考えることができ、被加熱物温度
Toは定常的に設定値Tosよりもかなり低下する。
この問題点を第3図に図示する。第3図において
横軸は負荷量Pm、縦軸は被加熱物温度Toを表わ
す。
However, as described below, this method has a problem in that when a load is applied to the object O, such as when cooking tempura, the set temperature Tos and the temperature To of the object to be heated are significantly different. This problem will be explained below with reference to FIGS. 1, 2, and 3. In Figure 1, Po is the electric power supplied to the object to be heated O through the bottom of the container P for the object to be heated, and Pa
is the power emitted from the heated object O to the surroundings.
For simplicity, assuming that the variable range of the set temperature Tos is sufficiently small, it can be expressed as Pa = α (To - Ta), Po = β (Tp - To) ... (1). Here, α and β are constants, and Ta is the ambient temperature. In the steady state, Po=Pa (2), so from equations (1) and (2), To=β/α+βTp+α/α+βTa (3) is obtained. Therefore, if the ambient temperature Ta is constant, the first
By keeping the temperature Tp of the bottom surface of the heated object container constant in the system shown in the figure, the temperature To of the heated object can be kept constant. However, as shown in FIG. 2, when the load M is applied to the object to be heated O, the load M
Since thermal energy is transferred to the load M according to the difference between the temperature of and the temperature of the heated object To, the above equation (3) no longer holds true. That is, if the power supplied to the load M is Pm, then Po=Pa+Pm... (4) Therefore, from the equations (1) and (4), To=β/α+βTp+α/α+βTa−Pm/α+β… …(Five
) becomes. As can be easily seen by comparing equations (4) and (5) above, by applying a load M equivalent to the electric power Pm, the temperature of the heated object To is maintained constant at the bottom surface temperature Tp of the heated object container. also decreases by Pm/(α+β). After a considerable amount of time has passed after turning on the load M, the temperature of the load M will reach the temperature of the heated object To
is equal to and there is no transfer of thermal energy, so
Pm = O, and the temperature of the heated object To recovers to the temperature when there is no load, that is, the initial set temperature Tos, but if the heat capacity of the load M is large, or when the load is turned on or raised, such as when cooking tempura, etc. When repeated continuously, the heat capacity of the load can be considered to be approximately infinite during cooking, and the temperature of the heated object increases.
To constantly decreases considerably below the set value Tos.
This problem is illustrated in FIG. In FIG. 3, the horizontal axis represents the load amount Pm, and the vertical axis represents the temperature of the heated object To.

発明の目的 本発明は、このような従来の問題を解決し、負
荷量にかかわらず被加熱物の温度を精度良く、一
定に保つことができ、被加熱物温度の精度と安定
性の向上をはかつた加熱調理器の温度制御方法を
提供するものである。
Purpose of the Invention The present invention solves these conventional problems, enables the temperature of the heated object to be kept constant with high accuracy regardless of the amount of load, and improves the accuracy and stability of the temperature of the heated object. The present invention provides a method for controlling the temperature of a modern heating cooker.

発明の構成 本発明の温度制御方法は、被加熱物容器底面の
温度を検知する温度検知手段と、加熱調理器の入
力電力を検知する電力検知手段と、被加熱物の温
度を設定する温度設定手段と、前記入力電力を変
化させる電力可変手段と、前記電力検知手段出力
と前記温度設定手段出力を変数とする関数を出力
する演算手段を有し、前記演算手段出力と前記温
度検知手段出力が一致するように、前記電力可変
手段により前記入力電力を制御することにより、
被加熱物温度を精度良く、一定に保つもので、こ
の入力電力検知手段による入力電力の大きさの帰
還により、負荷量にかかわらず被加熱物の温度を
精度良く、一定に保つことができるものである。
Structure of the Invention The temperature control method of the present invention includes a temperature detection means for detecting the temperature of the bottom surface of a container for a heated object, a power detection means for detecting input power of a cooking device, and a temperature setting for setting the temperature of the heated object. means, a power variable means for changing the input power, and an arithmetic means for outputting a function using the output of the power detecting means and the output of the temperature setting means as variables, wherein the output of the arithmetic means and the output of the temperature detecting means are By controlling the input power by the power variable means so as to match,
A device that maintains the temperature of the heated object with high accuracy and constant, and can maintain the temperature of the heated object with high accuracy and constant regardless of the amount of load by feedback of the magnitude of input power by this input power detection means. It is.

実施例の説明 以下、添付図面に基づいて本発明の一実施例に
ついて説明する。第4図において、Oは被加熱
物、Pは被加熱物容器、Mは負荷、Hは加熱コイ
ル、TDは前記被加熱物容器Pの底面温度Tpを検
知する温度検知手段、Sは目的とする被加熱物温
度Tosを設定する温度設定手段、Cは前記加熱コ
イルHの入力電力Piを変化させる電力可変手段、
PDは前記入力電力Piを検知する電力検知手段、
Fは前記温度設定手段Sの出力g(Tos)と前記
電力検知手段PDの出力h(Pi)を変数とする関数
F〔g(Tos)、h(Pi)〕を出力する演算手段で、
前記温度検知手段TDの出力f(Tp)と前記演算
手段Fの出力F〔g(Tos)、h(Pi)〕が等しくな
るよう前記入力電力Piが制御される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. In FIG. 4, O is the object to be heated, P is the container for the object to be heated, M is the load, H is the heating coil, TD is a temperature detection means for detecting the bottom surface temperature Tp of the container P for the object to be heated, and S is the purpose. temperature setting means for setting the heated object temperature Tos; C is a power variable means for changing the input power Pi of the heating coil H;
PD is a power detection means for detecting the input power Pi;
F is an arithmetic means that outputs a function F [g(Tos), h(Pi)] whose variables are the output g(Tos) of the temperature setting means S and the output h(Pi) of the power detection means PD,
The input power Pi is controlled so that the output f (Tp) of the temperature detection means TD and the output F [g (Tos), h (Pi)] of the calculation means F are equal.

前記加熱コイルHから前記被加熱物容器Pへの
電力伝達効率をηとすると、 Po=ηPi−Pa′ ……(6) の関係がある。ここでPa′は被加熱物容器から周
囲へ放出される電力で、 Pa′=ξ(Tp−Ta) ……(7) と表わせる。ここでξは定数である。前記式(1)、
(2)、(6)、(7)より To=(1+ξ/β)Tp−η/βPi−ξ/βTa ……(8) を得る。従つてTo=Tos(const)に制御するた
めには Tp=aPi+bTos+c 但し、a=η/β+ξ、b=β/β+ξ、c=ξ/β+
ξ Ta ……(9) を満たすようにTpを制御すればよい。容易にわ
かるように、例えば f(Tp)=Tp、g(Tos) =bTos、h(Pi)=aPi F〔g(Tos)、h(Pi)〕 =g(Tos)+h(Pi)+c とすれば、第4図に示される系は前記式(9)を満た
すようにTpを制御するので、第5図に示すよう
に負荷量にかかわらず、被加熱物温度Toに保つ
ことができる。この動作は定性的には、負荷量
Pmに応じて被加熱物容器底面温度Tpを引上げて
被加熱物温度Toを設定値Tosに保つことにほか
ならない。
If the power transmission efficiency from the heating coil H to the heated object container P is η, then there is the following relationship: Po=ηPi−Pa′ (6). Here, Pa′ is the electric power released from the heated object container to the surroundings, and can be expressed as Pa′=ξ(Tp−Ta) ……(7). Here ξ is a constant. The above formula (1),
From (2), (6), and (7), we obtain To=(1+ξ/β)Tp−η/βPi−ξ/βTa ……(8). Therefore, in order to control To=Tos (const), Tp=aPi+bTos+c However, a=η/β+ξ, b=β/β+ξ, c=ξ/β+
Tp should be controlled so that ξ Ta...(9) is satisfied. As can be easily seen, for example, f (Tp) = Tp, g (Tos) = bTos, h (Pi) = aPi F[g (Tos), h (Pi)] = g (Tos) + h (Pi) + c. Then, since the system shown in FIG. 4 controls Tp so as to satisfy the above equation (9), the temperature of the object to be heated can be maintained at To, regardless of the load amount, as shown in FIG. 5. Qualitatively, this behavior can be explained by the amount of load
This is nothing but raising the bottom surface temperature Tp of the object to be heated according to Pm to maintain the temperature To of the object to be heated at the set value Tos.

第6図は、第4図の実施例の具体回路例であ
る。第6図において1はサーミスタで抵抗2と共
に前記温度検知手段TDを構成する。7は可変抵
抗で前記温度設定手段Sを構成する。8はカレン
ト・トランス、9はカレント・トランス8の負荷
抵抗、10は整流用ダイオード、11,12は抵
抗、13はコンデンサであり、前記電力検知手段
PDを構成しており、入力電力Piに比例した電圧
を発生する。抵抗14,15,16,17,1
8、オペアンプ19は、前記演算手段Fを構成
し、前記温度設定手段Sの出力と前記電力検知手
段PDの出力の一次結合を出力する。3はオペア
ンプ、4,5は利得設定用抵抗で、前記温度検知
手段TDの出力と、前記演算手段Fの出力の差電
圧を増幅出力する差動増幅回路6を構成してい
る。加熱コイルHへの入力電力Pinを変化させる
前記電力可変手段Cは前記差動増幅回路6の出力
の増加関数として前記入力電力を変化させる。容
易にわかるように、前記差動増幅回路6の利得が
十分大きければ、第6図の系は前記温度検知手段
TDの出力と前記演算手段Fの出力が等しくなる
ように動作する。従つてサーミスタ1の特性及び
抵抗2,9,11,12,14,15,16,1
7,18の値を適当にすることにより式(9)を満た
すように被加熱物容器底面温度Tpを制御するこ
とができ、負荷量にかかわらず被加熱物温度To
を設定値Tosに保つことができる。
FIG. 6 shows a specific circuit example of the embodiment shown in FIG. In FIG. 6, reference numeral 1 denotes a thermistor which together with a resistor 2 constitutes the temperature detecting means TD. 7 constitutes the temperature setting means S by a variable resistor. 8 is a current transformer, 9 is a load resistance of the current transformer 8, 10 is a rectifying diode, 11 and 12 are resistors, 13 is a capacitor, and the power detection means
It constitutes a PD and generates a voltage proportional to the input power Pi. Resistance 14, 15, 16, 17, 1
8. The operational amplifier 19 constitutes the calculation means F, and outputs a linear combination of the output of the temperature setting means S and the output of the power detection means PD. 3 is an operational amplifier, 4 and 5 are gain setting resistors, and constitute a differential amplifier circuit 6 that amplifies and outputs the differential voltage between the output of the temperature detection means TD and the output of the calculation means F. The power variable means C for changing the input power Pin to the heating coil H changes the input power as an increasing function of the output of the differential amplifier circuit 6. As can be easily seen, if the gain of the differential amplifier circuit 6 is sufficiently large, the system shown in FIG.
It operates so that the output of TD and the output of the calculation means F are equal. Therefore, the characteristics of thermistor 1 and resistances 2, 9, 11, 12, 14, 15, 16, 1
By setting the values of 7 and 18 appropriately, the bottom surface temperature Tp of the heated object container can be controlled so as to satisfy equation (9), and the heated object temperature To can be controlled regardless of the load amount.
can be kept at the set value Tos.

発明の効果 上記各実施例から明らかなように、本発明の温
度制御方法は、特に加熱調理器の入力電力の大き
さを演算処理、帰還して被加熱物容器底面温度を
制御することにより、負荷量にかかわらず被加熱
物温度を精度良く、一定に保つことができ、被加
熱物温度の精度と安定性の向上をはかることがで
きるものである。
Effects of the Invention As is clear from the above-mentioned embodiments, the temperature control method of the present invention specifically calculates and returns the magnitude of the input power of the cooking device to control the temperature of the bottom surface of the container of the object to be heated. The temperature of the object to be heated can be maintained constant with high accuracy regardless of the amount of load, and the accuracy and stability of the temperature of the object to be heated can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の誘導加熱調理器における温度制
御方法を示すブロツク図、第2図は同誘導加熱調
理器におけるエネルギの流れを示す説明図、第3
図は同誘導加熱調理器による温度特性図、第4図
は本発明の一実施例を示す誘導加熱調理器におけ
る温度制御方法を示すブロツク図、第5図は同誘
導加熱調理器による温度特性図、第6図は同誘導
加熱調理器の具体例を示す電気回路図である。 TD……温度検知手段、PD……入力検知手段、
S……温度設定手段、C……電力可変手段。
Figure 1 is a block diagram showing a temperature control method in a conventional induction heating cooker, Figure 2 is an explanatory diagram showing the flow of energy in the same induction heating cooker, and Figure 3 is an explanatory diagram showing the flow of energy in the induction heating cooker.
The figure is a temperature characteristic diagram of the same induction heating cooker, FIG. 4 is a block diagram showing a temperature control method in an induction heating cooker showing one embodiment of the present invention, and FIG. 5 is a temperature characteristic diagram of the same induction heating cooker. , FIG. 6 is an electric circuit diagram showing a specific example of the induction heating cooker. TD...Temperature detection means, PD...Input detection means,
S...Temperature setting means, C...Power variable means.

Claims (1)

【特許請求の範囲】 1 被加熱物容器底面の温度を検知する温度検知
手段と、加熱調理器の入力電力を検知する電力検
知手段と、被加熱物の温度を設定する温度設定手
段と、前記入力電力を変化させる電力可変手段
と、前記電力検知手段出力と前記温度設定手段出
力を変数とする関数を出力する演算手段を有し、
前記演算手段出力と前記温度検知手段出力が一致
するように、前記電力可変手段により前記入力電
力を制御することにより、被加熱物の温度を設定
値に保つ加熱調理器の被加熱物温度制御方法。 2 演算手段出力は、電力検知手段出力と温度設
定手段出力を変数とする略一次関数である特許請
求の範囲第1項記載の加熱調理器の被加熱物温度
制御方法。
[Scope of Claims] 1. Temperature detection means for detecting the temperature of the bottom surface of the object to be heated container, power detection means for detecting the input power of the cooking device, temperature setting means for setting the temperature of the object to be heated; comprising a power variable means for changing the input power, and an arithmetic means for outputting a function using the output of the power detection means and the output of the temperature setting means as variables,
A method for controlling the temperature of a heated object in a cooking device in which the temperature of the heated object is maintained at a set value by controlling the input power by the power variable means so that the output of the calculation means and the output of the temperature detection means match. . 2. The method for controlling the temperature of a heated object in a heating cooker according to claim 1, wherein the output of the calculation means is a substantially linear function with the output of the power detection means and the output of the temperature setting means as variables.
JP23536583A 1983-12-13 1983-12-13 Method of controlling temperature of article to be heated ofheating cooking device Granted JPS60127692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23536583A JPS60127692A (en) 1983-12-13 1983-12-13 Method of controlling temperature of article to be heated ofheating cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23536583A JPS60127692A (en) 1983-12-13 1983-12-13 Method of controlling temperature of article to be heated ofheating cooking device

Publications (2)

Publication Number Publication Date
JPS60127692A JPS60127692A (en) 1985-07-08
JPH0468755B2 true JPH0468755B2 (en) 1992-11-04

Family

ID=16985001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23536583A Granted JPS60127692A (en) 1983-12-13 1983-12-13 Method of controlling temperature of article to be heated ofheating cooking device

Country Status (1)

Country Link
JP (1) JPS60127692A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465093A (en) * 1990-07-05 1992-03-02 Matsushita Electric Ind Co Ltd Electromagnetic cooking device
JPH04181683A (en) * 1990-11-15 1992-06-29 Sanwa Chiyuuri Kogyo Kk Electromagnetic induction heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168487A (en) * 1981-04-09 1982-10-16 Hitachi Ltd Induction heater
JPS58176891A (en) * 1982-04-09 1983-10-17 三菱電機株式会社 Induction heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632398U (en) * 1979-08-20 1981-03-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168487A (en) * 1981-04-09 1982-10-16 Hitachi Ltd Induction heater
JPS58176891A (en) * 1982-04-09 1983-10-17 三菱電機株式会社 Induction heater

Also Published As

Publication number Publication date
JPS60127692A (en) 1985-07-08

Similar Documents

Publication Publication Date Title
US4162379A (en) Apparatus for deriving a feedback control signal in a thermal system
US6350968B1 (en) Method and apparatus for rapid heat-up of a glass-ceramic cooktop
US6285012B1 (en) Method and apparatus for thermal limiting of the temperature of a glass-ceramic cooktop
GB2049240A (en) Furnace temperature controller
JPH0468755B2 (en)
JPS60203811A (en) Detector
JPH0410647B2 (en)
JPS644616B2 (en)
US2857104A (en) Feedback network for control systems
JPS6316991Y2 (en)
US4263501A (en) Variable proportioning control apparatus
JPH0449759B2 (en)
JP2014072610A (en) Temperature control circuit for crystal oscillator with thermostat chamber
JPH06324089A (en) Output-signal formation device
JPS6311681B2 (en)
JPS59120949A (en) Cooking device by heating
JPH0221004B2 (en)
JP2548369B2 (en) Heating cooker
JPS647374Y2 (en)
KR20240066663A (en) Aerosol generator
JPS60263201A (en) Temperature control device
JP2845608B2 (en) Airflow sensor
US5220156A (en) Stable control system with positive feedback characteristic
SU781783A1 (en) Temperature stabilizing device
JPS6340191Y2 (en)