JPH0468581B2 - - Google Patents

Info

Publication number
JPH0468581B2
JPH0468581B2 JP4641087A JP4641087A JPH0468581B2 JP H0468581 B2 JPH0468581 B2 JP H0468581B2 JP 4641087 A JP4641087 A JP 4641087A JP 4641087 A JP4641087 A JP 4641087A JP H0468581 B2 JPH0468581 B2 JP H0468581B2
Authority
JP
Japan
Prior art keywords
fluid
heating element
viscosity
heat transfer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4641087A
Other languages
Japanese (ja)
Other versions
JPS63212840A (en
Inventor
Tomoshige Hori
Kensuke Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP62046410A priority Critical patent/JPS63212840A/en
Publication of JPS63212840A publication Critical patent/JPS63212840A/en
Publication of JPH0468581B2 publication Critical patent/JPH0468581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、投入式センサー、詳しくは乱流条件
の下で測定可能なセンサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a submerged sensor, and more particularly to a sensor capable of measuring under turbulent flow conditions.

(従来の技術) 一般に流体の粘度を測定するには、細管粘度
計、回転粘度計、円錐平板粘度計、落球粘度計な
どがある。
(Prior Art) Generally, the viscosity of a fluid is measured using a capillary viscometer, a rotational viscometer, a cone-and-plate viscometer, a falling-ball viscometer, and the like.

細管粘度計は、細管を通して流体が流れるとき
の細管の入口と出口の圧力差を利用して粘度を計
るものである。
A capillary viscometer measures viscosity using the pressure difference between the inlet and outlet of a capillary when fluid flows through the capillary.

回転粘度計は、液体の中で円筒を回転させて、
そのトルクと角速度から粘性率をはかる。
A rotational viscometer rotates a cylinder in a liquid,
The viscosity is measured from the torque and angular velocity.

円錐平板粘度は、平板の上に円錐体をおき、こ
の小さい開き角の間に流体を入れて、このどちら
かを回転するときの、その角速度とトルクを測定
して、粘性をはかるものである。
Cone-plate viscosity is a method of measuring viscosity by placing a cone on a flat plate, pouring fluid between the small opening angles, and measuring the angular velocity and torque when either of these is rotated. .

落球粘度計は、液体中に球を落下させてその平
衡速度をはかり、ストークスの法則を利用して粘
度を決定するものである。
A falling ball viscometer is a device that drops a ball into a liquid, measures its equilibrium velocity, and determines the viscosity using Stokes' law.

また、これに関するものとして、本出願人は、
先に特願昭59−7334号及び特願昭61−28280号と
して、発熱体と流体の温度差から流体の熱伝達率
を測定することによつて、その流体の粘度を知る
方法を提案している。
Additionally, in this regard, the applicant:
Previously, in Japanese Patent Application Nos. 59-7334 and 61-28280, we proposed a method for determining the viscosity of a fluid by measuring the heat transfer coefficient of the fluid from the temperature difference between the heating element and the fluid. ing.

(発明が解決しようとする問題点) 以上のもののうち、回転粘度計、円錐平板粘度
計は、駆動装置が必要となつて装置が複雑で保守
洗浄がむずかしくなる。
(Problems to be Solved by the Invention) Among the above, the rotational viscometer and the cone-and-plate viscometer require a driving device, making the device complicated and difficult to maintain and clean.

細管粘度計や落球粘度計は種類の異なつた流体
を測定するとき、細管や球体の洗浄がむずかし
く、操作が繁雑である。
When using a capillary viscometer or a falling ball viscometer to measure different types of fluid, it is difficult to clean the capillary tube or sphere, and the operation is complicated.

しかして、粘度の測定範囲が狭いし、スラリー
の測定がむずかしい。
However, the viscosity measurement range is narrow and it is difficult to measure slurry.

しかも、工学的には、サンプリングして測定す
るいわゆるバツチ方式であつて、オンラインで連
続的には測定できない。
Moreover, from an engineering perspective, it is a so-called batch method of measuring by sampling, and cannot be measured continuously online.

また、上記特願昭59−7334号及び特願昭61−
28280号に記載されたセンサーにあつては、流体
を静止状態にして測定することができないし、発
熱体等に付着した被測定物の除去が繁雑である。
In addition, the above-mentioned Japanese Patent Application No. 7334/1983 and Japanese Patent Application No. 1983-
With the sensor described in No. 28280, it is not possible to measure the fluid while it is in a stationary state, and it is complicated to remove objects to be measured that have adhered to the heating element or the like.

(問題点を解決するための手段) したがつて、本発明の技術的課題は、前記従来
の欠点を解消し、流体の内部構造を破壊しないで
熱伝達率からものの粘度を測定することができる
センサーをうることを目的とするもので、この技
術的課題を解決するために、上述の熱伝達率か粘
度を知る方法を利用する本発明の技術的手段は、
発熱体と側温抵抗体とを内部に平行に装置したシ
リンダーに、該発熱体と側温抵抗体の表面に沿つ
て摺動するピストンを設け、かつシリンダー端に
被測定流体吸込口を開口したことを特徴とする投
入式センサーである。
(Means for Solving the Problems) Therefore, the technical problem of the present invention is to solve the above-mentioned conventional drawbacks and to be able to measure the viscosity of a material from the heat transfer coefficient without destroying the internal structure of the fluid. The purpose of the present invention is to obtain a sensor, and in order to solve this technical problem, the technical means of the present invention utilizes the method of determining the heat transfer coefficient or viscosity described above.
A cylinder in which a heating element and a side temperature resistance element are arranged parallel to each other is provided with a piston that slides along the surfaces of the heating element and side temperature resistance element, and a fluid suction port to be measured is opened at the end of the cylinder. This is a throw-in type sensor that is characterized by the following.

(発明の効果) この技術的手段によれば、発熱体と測温抵抗体
を用い、それらの温度差を測定して熱伝達率を測
定することができ、測定された熱伝達率から流体
の粘性をはかることができる。
(Effect of the invention) According to this technical means, it is possible to measure the heat transfer coefficient by measuring the temperature difference between them using a heating element and a resistance temperature detector, and from the measured heat transfer coefficient, Can measure viscosity.

すなわち、熱伝達率は、単位面積における単位
時間当たりに通過する熱の量で、実験的には、発
熱体の表面温度がわかれば、熱伝達率がわかる。
That is, the heat transfer coefficient is the amount of heat that passes per unit time in a unit area, and experimentally, if the surface temperature of the heating element is known, the heat transfer coefficient can be determined.

本発明は、この熱伝達率によつて、流体の粘性
度をはかるものであつて、乱流条件下においてセ
ンサーを投入しても、センサーのシリンダー内は
静止流体となるので、発熱体の表面温度を静止状
態で測定することができる。
The present invention measures the viscosity of a fluid based on this heat transfer coefficient, and even if the sensor is inserted under turbulent flow conditions, the inside of the sensor cylinder remains static, so the surface of the heating element Temperature can be measured at rest.

乱流であると、流速の変化によつて、熱伝達率
が変化し、又チキソトロピーを示す流体や非ニユ
ートン流体の場合、流体の粘度自体も変化するた
め、実際の様相を測定できないので、静止流体中
で測定することが望ましいのである。
In turbulent flow, the heat transfer coefficient changes due to changes in flow velocity, and in the case of thixotropic fluids or non-Newtonian fluids, the viscosity of the fluid itself also changes, making it impossible to measure the actual state. It is desirable to measure in a fluid.

さらに、シリンダー内への測定流体の流入は、
工場内で使用する空気を用いてピストンを上下動
させることによつてなされ、スラリーが発熱体や
測温抵抗体に付着しても、それをピストンの摺動
で取り除くことができる。
Furthermore, the inflow of the measuring fluid into the cylinder is
This is done by moving a piston up and down using the air used in the factory, and even if slurry adheres to the heating element or resistance temperature sensor, it can be removed by sliding the piston.

(実施例) 以下図面をもとに本発明の実施例について説明
する。
(Example) Examples of the present invention will be described below based on the drawings.

1は発熱体であり、2は測温抵抗体であつて、
何れもシリンダー3のフランジ4に固定されてい
る。
1 is a heating element, 2 is a resistance temperature sensor,
Both are fixed to the flange 4 of the cylinder 3.

5は、ピストンであつて、工場内に使用されて
いる空気で上下動し、流体流入口6から流体はピ
ストンの上下動に伴つて、シリンダー3内に吸入
されたり、排出されたりする。
Reference numeral 5 denotes a piston, which is moved up and down by air used in the factory, and fluid is sucked into and discharged from the cylinder 3 from a fluid inlet 6 as the piston moves up and down.

そして、シリンダー3内に吸入された流体は、
静止状態となる。このように静止状態とすること
は、感度がよく、正確にはかれる。
The fluid sucked into the cylinder 3 is
It becomes stationary. This static state provides good sensitivity and accurate measurement.

乱流で、粘度変化を超えると検出できないし、
出入する液面が上下動するものは、検出できな
い。
In turbulent flow, if the viscosity change is exceeded, it cannot be detected.
It cannot be detected if the liquid level moving in and out moves up and down.

発熱体1は、例えばステンレス8にセラミツク
9を蒸着して絶縁をはかり、セラミツク9の上に
数ミクロンの白金10を蒸着し、これに更に、ポ
リエチレン11で絶縁し、これに更にステンレス
12で外装するもので構成する。
The heating element 1 is made by, for example, depositing ceramic 9 on stainless steel 8 for insulation, depositing several microns of platinum 10 on top of the ceramic 9, insulating this with polyethylene 11, and then covering it with stainless steel 12. Consists of things that do.

そして、これら積層間に空間があるとき、エポ
キシ系の樹脂で充填固定することにより、熱伝達
力を大きくして、内面と外面の温度差を小さくす
ることができる。
When there is a space between these laminated layers, by filling and fixing them with epoxy resin, the heat transfer force can be increased and the temperature difference between the inner and outer surfaces can be reduced.

このように構成される発熱体1は、その平均温
度θwと表面温度θsとの関係式をあらかじめ実験
的に決定しておかなければならないが、この関係
式は伝導及び対流による熱伝達の現象を定める実
験式 Nu=Co・GrC1・PrC2・ReC3・(θs/θw)C4 ここでNu:ヌツセルト数 Gr:グラスホフ数 Pr:プラントル数 Re:レイノルズ数 C0〜4:定数 において、物性値と温度の関係が既知の流体、例
えば水を用いることによつて決定することができ
る。
For the heating element 1 constructed in this way, the relational expression between its average temperature θw and surface temperature θs must be determined experimentally in advance, but this relational expression takes into account the phenomenon of heat transfer by conduction and convection. Empirical formula to determine Nu=Co・Gr C1・Pr C2・Re C3・(θs/θw) C4 where Nu: Nutselt number Gr: Grashof number Pr: Prandtl number Re: Reynolds number C 0~4 : At constant value, physical property value This can be determined by using a fluid, such as water, for which the relationship between temperature and temperature is known.

なお、第1図において、12はエアーの流入
口、13は絶縁ケーブルである。
In addition, in FIG. 1, 12 is an air inflow port, and 13 is an insulated cable.

さて、1に通電して、発熱体の平均温度θwを
計測し、同時に流体の温度θ∞を測温抵抗体2で
計測する。
Now, the temperature sensor 1 is energized to measure the average temperature θw of the heating element, and at the same time, the temperature θ∞ of the fluid is measured by the resistance temperature detector 2.

そして、非定常細線法の関係式から熱伝達率
(λ)と温度伝導率(a)を求めることにより、熱伝
達率を求めることができ、その熱伝達率から粘度
を求めることができる。
Then, by determining the heat transfer coefficient (λ) and the temperature conductivity (a) from the relational expression of the unsteady thin wire method, the heat transfer coefficient can be determined, and the viscosity can be determined from the heat transfer coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明センサーの断面図、第2図は発
熱体の断面図である。 1…発熱体、2…測温抵抗体、3…シリンダ
ー、4…フランジ、5…ピストン、6…吸入口。
FIG. 1 is a sectional view of the sensor of the present invention, and FIG. 2 is a sectional view of the heating element. DESCRIPTION OF SYMBOLS 1... Heating element, 2... Resistance temperature sensor, 3... Cylinder, 4... Flange, 5... Piston, 6... Inlet.

Claims (1)

【特許請求の範囲】[Claims] 1 発熱体と側温抵抗体とを内部に平行に装置し
たシリンダーに、該発熱体と側温抵抗体の表面に
沿つて摺動するピストンを設け、かつシリンダー
端に被測定流体吸込口を開口したことを特徴とす
る投入式センサー。
1 A cylinder in which a heating element and a side temperature resistance element are arranged in parallel is provided with a piston that slides along the surfaces of the heating element and side temperature resistance element, and a fluid suction port to be measured is opened at the end of the cylinder. A drop-in type sensor that is characterized by:
JP62046410A 1987-02-27 1987-02-27 Immersion type sensor Granted JPS63212840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046410A JPS63212840A (en) 1987-02-27 1987-02-27 Immersion type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046410A JPS63212840A (en) 1987-02-27 1987-02-27 Immersion type sensor

Publications (2)

Publication Number Publication Date
JPS63212840A JPS63212840A (en) 1988-09-05
JPH0468581B2 true JPH0468581B2 (en) 1992-11-02

Family

ID=12746381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046410A Granted JPS63212840A (en) 1987-02-27 1987-02-27 Immersion type sensor

Country Status (1)

Country Link
JP (1) JPS63212840A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397648U (en) * 1990-01-24 1991-10-08

Also Published As

Publication number Publication date
JPS63212840A (en) 1988-09-05

Similar Documents

Publication Publication Date Title
US7412875B2 (en) Centrifuge permeameter for unsaturated soils system
US5014553A (en) Method for measuring the state of a fluid
US1810992A (en) Method and means for determining the viscosity of liquid substances
US7367218B2 (en) Centrifuge permeameter for unsaturated soils system
JPH0288955A (en) Disposable sensor
US5847268A (en) Viscosity measuring apparatus and method
Bruun Hot-film anemometry in liquid flows
Flack et al. Near-surface turbulence for evaporative convection at an air/water interface
Nagendra et al. Free convection heat transfer from vertical cylinders and wires
US5249454A (en) Instrument for measurement of vacuum in sealed thin wall packets
JPH0468581B2 (en)
CN106990021B (en) Roll-off type viscosity automatic measurement device and method
CN104502407B (en) Isothermal-measure testing apparatus for cement initial hydration exothermic characteristic
Miya Properties of roll waves
JPH06510855A (en) surface tension sensor
US5056928A (en) Method and apparatus for measuring a change in state of a subject fluid
CN207066922U (en) A kind of viscosity test device
Yen et al. Evaporation of water into a sub‐zero air stream
Wadke et al. The ‘smart’sphere: Experimental results
KR100474372B1 (en) Propeller type current meter and its current measurement method
JPH0210247A (en) Measurement of density of newton and non- newton fluid
CN220323041U (en) Lubricant viscosity detection device
JP2559174B2 (en) Fluid viscosity measuring device and fluid force detecting device
CN219996818U (en) Measuring device for viscosity coefficient of liquid
SU1323919A1 (en) Device for determining kinematic viscosity of fluid