JPH0468453B2 - - Google Patents

Info

Publication number
JPH0468453B2
JPH0468453B2 JP7637384A JP7637384A JPH0468453B2 JP H0468453 B2 JPH0468453 B2 JP H0468453B2 JP 7637384 A JP7637384 A JP 7637384A JP 7637384 A JP7637384 A JP 7637384A JP H0468453 B2 JPH0468453 B2 JP H0468453B2
Authority
JP
Japan
Prior art keywords
gas
cycle
turbine
temperature
corrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7637384A
Other languages
Japanese (ja)
Other versions
JPS60219421A (en
Inventor
Hiromi Nakamura
Takehiko Takahashi
Kazuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7637384A priority Critical patent/JPS60219421A/en
Publication of JPS60219421A publication Critical patent/JPS60219421A/en
Publication of JPH0468453B2 publication Critical patent/JPH0468453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は、芳香族化合物の酸化プロセスオフガ
スの有効利用に関するものであり、詳細には芳香
族化合物の加圧液相酸化プロセスからのタービン
ブレードの高温腐蝕性元素含有有機化合物を含む
加圧オフガスを接触燃焼器にて燃焼させ、該有機
化合物を無機物としたのち、吸収塔で該無機物中
の腐蝕性成分を吸収して、実質的にタービンブレ
ード腐蝕性成分のないクリーンなオフガスとし、
ガスタービンサイクルの加圧作動媒体ガス中に導
入し、該ガスタービンサイクルの作動媒体である
空気の一部として用いるごとくしてなる酸化プロ
セス排ガスからの動力回収法であり、好ましい実
施態様においては、再生ガスタービンサイクルと
して、該クリーンなオフガスをタービン排気と熱
交換して予熱しなるものとして用いること、さら
に、吸収塔を二塔以上設け、後段吸収塔の循環及
び補給水で再生ガスタービンサイクルの低温部の
熱回収を行うごとくにしてなるものである。 芳香族化合物−特にp−、m−キシレン等の加
圧液相酸化プロセスからの加圧オフガスは、オフ
ガス中の未反応成分等の有効成分の回収を目的と
して、通常、水による吸収装置を経て排出される
ため、温度は比較的低く通常50℃前後、圧力は10
〜20ata程度である。オフガス中の成分はその殆
どが酸化反応に寄与しなかつた窒素であり、残り
は酸化反応の生成物である炭酸ガス、酸化反応未
利用の酸素、前記した水による吸収装置からの同
伴飽和水蒸気である。また、微量であるが、該オ
フガス中には酸化反応のための触媒成分の元素を
含む有機化合物を含んでおり、この副生物は触媒
成分にもよるが、タービンブレードの高温腐蝕性
成分である、例えば、臭素などの化合物を1〜
3000ppm程度含むものである。 従来、この加圧オフガスの圧力エネルギーを回
収する方法としては、次のものが知られている。 まず、オフガス中の有機化合物が高温腐蝕を起
こさない程度の温度で且つ膨張後のオフガスが露
点より高い温度となる温度、例えば、オフガスを
約300℃程度まで外部の熱源で予熱し膨張機に導
入し動力回収し、その後、接触燃焼器により該有
機化合物を無機物とした後、吸収装置にて除去す
る方法がある。この方法はオフガスの温度が低
く、流量も少ないので、膨張機で回収される動力
は小さいものであつた。 また、オフガスをそのままガスタービンサイク
ルに導入し、圧縮空気の一部として使用する方法
が提案されている。この方法の場合、タービンブ
レードの腐蝕性成分が除去されていない為、膨張
機のノズル・ブレード、燃焼器等に高温腐蝕が発
生し、寿命、信頼性の点から、特殊な材料の選択
が必須となつたり、長時間の連続運転が不可能と
言う欠点があり、実用性の低いものであつた。 本発明者らは、以上の欠点について種々検討し
た結果、オフガス中のタービンブレードの腐蝕性
成分の除去を加圧下で行つた後、ガスタービンサ
イクルの作動媒体として使用する方法を見い出し
本発明を完成した。 以下、本発明を図面を用いて説明する 第1図は、本発明の最も好ましい実施態様の一
つであり、オフガスは、再生ガスタービンサイク
ル(圧縮機C、燃焼機CC、膨張機(=タービン)
Tおよび再生器R1,R2をもつ)の熱回収媒体
(再生媒体)として利用され、さらに、洗浄塔CA
の洗浄用純水が該再生ガスタービンサイクルの低
温部の再生媒体として利用される例である。 第1図において、芳香族化合物の加圧液相酸化
プロセスからのオフガスが管1より予熱器Rで予
熱され、接触燃焼器TCに導入され、燃焼してタ
ービンブレードの腐蝕性元素含有の有機化合物を
無機物に変換し加熱された後、前記予熱器Rで熱
回収され、吸収塔Aに管4を経て導入される。吸
収塔Aにおいては、タービンブレードの腐蝕性成
分である無機物の吸収性に優れた添加成分を含む
水がポンプにより管21を経て循環されておら
ず、ここで、実質的にタービングブレードの腐食
性成分である無機物は吸収除去される。吸収塔A
からのオフガスは管5を経て洗浄塔CAに導入さ
れ、ここで、吸収塔Aで除去不十分の成分および
吸収用添加剤などの不純物が、ポンプにより管2
2〜23を経て循環される純水により除去され
る。このようにして実質的にタービングブレード
の腐蝕性成分を除かれたオフガスは管6を経てガ
スタービンサイクルの作動媒体空気の一部に混合
使用される。 第1図においては、さらに管6よりのオフガス
は、圧縮機C、燃焼器CC、膨張器(タービン)
Tおよび再生器R1,R2により構成される再生
ガスタービンサイクルの再生媒体として利用され
予熱されるともに、さらに、洗浄塔CAの洗浄純
水が該再生ガスタービンサイクルの低温部の再生
媒体として管22より低温側の再生器R2に導入
され、管35よりのタービン排気とここで熱交換
し予熱された後、管23の経て洗浄塔CAに循環
されている。 以上、本発明の好ましい実施態様に基づいて本
発明を図面により説明したが、本発明は第1図の
方法に限定されるものではなく、実質的にタービ
ングブレードの腐蝕性成分である無機物を吸収除
去したりクリーンなオフガスを単純ガスタービン
サイクルの作動媒体空気の一部として単に使用す
る方法、再生ガスタービンサイクルの再生媒体と
して使用する方法、ガスタービンサイクルにて得
られる圧縮奇しきの一部を該液相酸化プロセスの
酸化用空気として用いる方法、前記圧縮空気の一
部若しくは全部にもクリーンなオフガスと同様の
熱回収操作を行い循環及び補給水による再生ガス
タービンサイクルの低温部の熱回収とそれによる
空気/水蒸気の混合物を再生媒体として使用する
方法なども当然ふくまれる。 以上の如くである本発明の方法は、芳香族化合
物の加圧液相酸化プロセスからのタービンブレー
ドの高温腐蝕性元素含有有機化合物を含むオフガ
スから、該有害成分を減圧することなく除去し、
且つ、熱損失も最低限に押さえて、タービンの高
温作動媒体の一部として利用するものであり、極
めて優れた省エネルギープロセスを提供するもの
であり、工業的実用性の極めて高いものである。 実施例 1 (クリーンなオフガスの製造) デイクソンパツキンを充填した洗浄塔(50φ×
1000L)を使用して、管1〜5の流路を構成し、
クリーンなオフガスを得た。ここに、接触燃焼器
の操作温度は500℃とした。 このクリーンなオフガス(=CPOG)は流量
40Nm3/h、圧力14ata、温度45℃となる様、洗
浄塔の循環水(=アルカリ性水溶液)温度は調節
された。又、CPOG中のBr2の含有量は1ppmV未
満であり、測定にかからなかつた。 検討例 (ガスタービンサイクル) 第1図のフローに従つて、芳香族化合物の加圧
液相酸化プロセスの触媒成分の一つとして臭素
(Br)を使用した例について検討した。 なお、検討のための前提条件は以下の如くであ
る。 (1) 圧縮機C 断熱効率 ηc=0.70 膨張機T 〃 ηt=0.87 燃焼効率 nb=0.99 機械効率 ηm=0.98 (2) 圧力損失(サイクル総合圧力損失) 9.5% 但し、再生器R2を使用しない検討例2では
7.2% (3) オフガス 流量 34000Nm3/h (CPOG) 圧力 16ata 温度 47℃ (4) 燃料(CCの燃料) 成分 CO、H2、CH4、N2、CO2などの混合
ガス 発熱量 2640kcal/Nm3 温度 80℃ 圧力 14ata (5) 膨張機T入り口条件 圧力 12ata 温度 1000℃ (5) 大気条件 ISO 検討例 1 (ガスタービンサイクル=GT1) 第1図のフロー(管No.5〜)について検討した
結果を下記に示した。 再生器 R1(熱回収量)4.0×106kcal/h 〃 R2(熱回収量)4.0×106kcal/h 圧縮機(C)動力 2450kw 膨張機(T)出力 11970kw 従つて、本発明のガスタービンサイクルは、 (1) 軸端出力 9320kw (2) 軸端熱効率 64.3%(LHV) (3) 排気温度 99℃ であり、極めて優れたものである。 検討例 2 (ガスタービンサイクル=GT2) 第1図のフローにおいて、洗浄塔CA、再生器
R2を使用しないで、吸収塔AからのCPOGをそ
のまま再生器R1に導入する他は検討例1と同様
としたところ (1) 軸端出力 7900kw (2) 軸端熱効率 65.2%(LHV) (3) 排気温度 247℃ の結果が得られた。 以上の検討結果について、CPOGのエクセルギ
ーをJIS Z 9204に従つて計算し、これを評価に
組み入れた検討例1、2の評価結果を下表に示し
た。これから、検討例1の方法が、検討例2より
優れたものであることがわかる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the effective utilization of aromatic compound oxidation process off-gases, and in particular to the effective utilization of aromatic compound oxidation process off-gases, and in particular to the high temperature corrosive element-containing organic Pressurized off-gas containing compounds is combusted in a contact combustor to turn the organic compounds into inorganic substances, and then the corrosive components in the inorganic substances are absorbed in an absorption tower to create a clean turbine blade with virtually no corrosive components. off-gas,
A method for recovering power from oxidation process exhaust gas by introducing it into the pressurized working medium gas of a gas turbine cycle and using it as part of the air that is the working medium of the gas turbine cycle, and in a preferred embodiment, As a regenerative gas turbine cycle, the clean off-gas is used for preheating by exchanging heat with the turbine exhaust gas, and two or more absorption towers are provided, and the regeneration gas turbine cycle is performed using circulation and make-up water in the latter stage absorption tower. This is done to recover heat from the low temperature section. Pressurized off-gases from pressurized liquid phase oxidation processes, such as aromatic compounds - especially p-, m-xylene, are usually passed through an aqueous absorption device for the purpose of recovery of active components such as unreacted components in the off-gas. The temperature is relatively low, usually around 50℃, and the pressure is 10℃.
~20 ata. Most of the components in the off-gas are nitrogen that did not contribute to the oxidation reaction, and the rest is carbon dioxide, which is a product of the oxidation reaction, oxygen that has not been used in the oxidation reaction, and entrained saturated water vapor from the water absorption device described above. be. In addition, the off-gas contains a small amount of organic compounds containing elements that are catalyst components for oxidation reactions, and this by-product is a high-temperature corrosive component of turbine blades, depending on the catalyst component. , for example, a compound such as bromine from 1 to
It contains about 3000ppm. Conventionally, the following methods are known as methods for recovering the pressure energy of this pressurized off-gas. First, the off-gas is preheated with an external heat source to a temperature that does not cause high-temperature corrosion of the organic compounds in the off-gas and at which the expanded off-gas is higher than the dew point, for example, approximately 300°C, and then introduced into the expander. There is a method in which the power is recovered, and then the organic compound is turned into an inorganic substance by a catalytic combustor, and then removed by an absorption device. In this method, the temperature of the off-gas is low and the flow rate is low, so the power recovered by the expander is small. Furthermore, a method has been proposed in which off-gas is directly introduced into the gas turbine cycle and used as part of the compressed air. In this method, because the corrosive components of the turbine blades are not removed, high-temperature corrosion occurs in the expander nozzle blades, combustor, etc., and special materials must be selected from the viewpoint of longevity and reliability. It also had the disadvantage of not being able to operate continuously for long periods of time, making it impractical. As a result of various studies on the above-mentioned drawbacks, the present inventors discovered a method of removing corrosive components of turbine blades in off-gas under pressure, and then using the off-gas as a working medium in a gas turbine cycle, and completed the present invention. did. The present invention will be explained below with reference to the drawings. Figure 1 shows one of the most preferred embodiments of the present invention. )
T and regenerators R1 and R2) as a heat recovery medium (regeneration medium).
In this example, pure water for cleaning is used as a regeneration medium in the low temperature section of the regeneration gas turbine cycle. In Figure 1, off-gas from the pressurized liquid phase oxidation process of aromatic compounds is preheated in preheater R through tube 1, introduced into contact combustor TC, and combusted to remove corrosive element-containing organic compounds from turbine blades. After being converted into an inorganic substance and heated, the heat is recovered in the preheater R and introduced into the absorption tower A through the pipe 4. In the absorption tower A, water containing an additive component that has excellent absorption of inorganic substances, which are corrosive components of the turbine blades, is not circulated by the pump through the pipe 21, and here, substantially the corrosion of the turbine blades is prevented. Inorganic substances, which are natural components, are absorbed and removed. Absorption tower A
The off-gas from is introduced into the cleaning tower CA through pipe 5, where impurities such as components that have not been removed sufficiently in the absorption tower A and absorption additives are removed by a pump into pipe 2.
It is removed by pure water that is circulated through 2 to 23. The off-gas, which has thus been substantially freed from the corrosive components of the turbinating blades, is mixed with a portion of the working medium air of the gas turbine cycle via the pipe 6. In Fig. 1, the off-gas from the pipe 6 is further transmitted to the compressor C, the combustor CC, and the expander (turbine).
In addition, the purified water from the cleaning tower CA is used as a regeneration medium for the regeneration gas turbine cycle consisting of the regeneration gas turbine cycle T and regenerators R1 and R2 and is preheated. It is introduced into the regenerator R2 on the lower temperature side, where it is preheated by exchanging heat with the turbine exhaust gas from the pipe 35, and then circulated through the pipe 23 to the cleaning tower CA. The present invention has been described above with reference to the drawings based on a preferred embodiment of the present invention, but the present invention is not limited to the method shown in FIG. Simply using the absorbed or clean off-gas as part of the working air air in a simple gas turbine cycle, as a regeneration medium in a regenerative gas turbine cycle, or as part of the compressed air obtained in a gas turbine cycle. A method of using air as oxidizing air in the liquid phase oxidation process, a heat recovery operation similar to that of clean off-gas is performed on some or all of the compressed air, and heat recovery is performed in the low temperature section of the regeneration gas turbine cycle using circulation and make-up water. Naturally, this also includes a method of using the resulting air/steam mixture as a regeneration medium. The method of the present invention as described above removes harmful components from an off-gas containing high-temperature corrosive element-containing organic compounds of a turbine blade from a pressurized liquid phase oxidation process of aromatic compounds without reducing the pressure.
In addition, it minimizes heat loss and is used as a part of the high-temperature working medium of the turbine, providing an extremely excellent energy-saving process and having extremely high industrial practicality. Example 1 (Production of clean off-gas) Cleaning tower (50φ×
1000L) to configure the flow paths of tubes 1 to 5,
Obtained clean off-gas. Here, the operating temperature of the catalytic combustor was 500°C. This clean off-gas (=CPOG) has a flow rate of
The temperature of the circulating water (=alkaline aqueous solution) in the washing tower was adjusted so that the flow rate was 40Nm 3 /h, the pressure was 14ata, and the temperature was 45°C. Moreover, the content of Br 2 in CPOG was less than 1 ppmV and was not included in the measurement. Study Example (Gas Turbine Cycle) According to the flow shown in Figure 1, an example was studied in which bromine (Br) was used as one of the catalyst components in a pressurized liquid phase oxidation process of aromatic compounds. The preconditions for the study are as follows. (1) Compressor C Adiabatic efficiency ηc=0.70 Expander T 〃 ηt=0.87 Combustion efficiency nb=0.99 Mechanical efficiency ηm=0.98 (2) Pressure loss (total cycle pressure loss) 9.5% However, consider not using regenerator R2 In example 2
7.2% (3) Off gas Flow rate 34000Nm 3 /h (CPOG) Pressure 16ata Temperature 47℃ (4) Fuel (CC fuel) Component Mixed gas such as CO, H 2 , CH 4 , N 2 , CO 2 Calorific value 2640kcal / Nm 3 Temperature 80℃ Pressure 14ata (5) Expander T inlet conditions Pressure 12ata Temperature 1000℃ (5) Atmospheric conditions ISO Study example 1 (Gas turbine cycle = GT1) Study the flow in Figure 1 (Pipe No. 5~) The results are shown below. Regenerator R1 (heat recovery amount) 4.0×10 6 kcal/h 〃 R2 (heat recovery amount) 4.0×10 6 kcal/h Compressor (C) power 2450kw Expander (T) output 11970kw Therefore, the gas of the present invention The turbine cycle is extremely excellent, with (1) shaft end output of 9320kw, (2) shaft end thermal efficiency of 64.3% (LHV), and (3) exhaust temperature of 99℃. Study example 2 (Gas turbine cycle = GT2) Same as study example 1 except that in the flow shown in Figure 1, CPOG from absorption tower A is directly introduced into regenerator R1 without using cleaning tower CA and regenerator R2. As a result, the following results were obtained: (1) Shaft end output 7900kw (2) Shaft end thermal efficiency 65.2% (LHV) (3) Exhaust temperature 247℃. Regarding the above study results, the exergy of CPOG was calculated according to JIS Z 9204, and the evaluation results of Study Examples 1 and 2, which were incorporated into the evaluation, are shown in the table below. From this, it can be seen that the method of Study Example 1 is superior to Study Example 2. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の動力回収方法の好ましい一
例のフローであり、図中の番号及び記号はそれぞ
れ、 R:予熱器、TC:接触燃焼器、A:吸収塔、
CA:洗浄塔、R2:低温側再生器、R1:高温
側再生器、C:圧縮機、T:膨張機、CC:燃焼
器、L:負荷、および1,2,3,4,5,6,
7,21,22,23,31,32,33,3
4,35,36,37:管を示す。
FIG. 1 is a flowchart of a preferred example of the power recovery method of the present invention, and the numbers and symbols in the diagram are respectively R: preheater, TC: contact combustor, A: absorption tower,
CA: Cleaning tower, R2: Low temperature side regenerator, R1: High temperature side regenerator, C: Compressor, T: Expander, CC: Combustor, L: Load, and 1, 2, 3, 4, 5, 6 ,
7, 21, 22, 23, 31, 32, 33, 3
4, 35, 36, 37: Indicates a tube.

Claims (1)

【特許請求の範囲】 1 芳香族化合物の加圧液相酸化プロセスからの
タービンブレードの高温腐蝕性元素含有有機化合
物を含む加圧オフガスを接触燃焼器にて燃焼さ
せ、該有機化合物を無機物としたのち、吸収塔で
該無機物中の腐蝕性成分を吸収して、実質的にタ
ービンブレード腐蝕性成分のないクリーンなオフ
ガスとし、ガスタービンサイクルの加圧作動媒体
ガス中に導入し、該ガスタービンサイクルの作動
媒体である空気の一部として用いるごとくしてな
る酸化プロセス排ガスからの動力回収法。 2 ガスタービンサイクルが再生サイクルであ
り、該クリーンなオフガスをタービン排気と熱交
換して予熱してなるものである特許請求の範囲第
1項記載の方法。 3 吸収塔を二塔以上設け、後段吸収塔の循環及
び補給水で再生ガスタービンサイクルの低温部の
熱回収を行う特許請求の範囲第1項又は2項記載
の方法。
[Claims] 1. Pressurized off-gas containing high-temperature corrosive element-containing organic compounds of turbine blades from a pressurized liquid phase oxidation process of aromatic compounds is combusted in a catalytic combustor to convert the organic compounds into inorganic substances. Thereafter, the corrosive components in the inorganic substances are absorbed in an absorption tower to produce a clean off-gas substantially free of components corrosive to turbine blades, and the off-gas is introduced into the pressurized working medium gas of the gas turbine cycle. A method of recovering power from the oxidation process exhaust gas, which is used as part of the air that is the working medium of the oxidation process. 2. The method according to claim 1, wherein the gas turbine cycle is a regeneration cycle, and the clean off-gas is preheated by heat exchange with turbine exhaust gas. 3. The method according to claim 1 or 2, wherein two or more absorption towers are provided, and heat recovery from the low-temperature section of the regeneration gas turbine cycle is performed using circulation in the latter absorption tower and make-up water.
JP7637384A 1984-04-16 1984-04-16 Method of recovering power from exhaust gas of oxidizing process Granted JPS60219421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7637384A JPS60219421A (en) 1984-04-16 1984-04-16 Method of recovering power from exhaust gas of oxidizing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7637384A JPS60219421A (en) 1984-04-16 1984-04-16 Method of recovering power from exhaust gas of oxidizing process

Publications (2)

Publication Number Publication Date
JPS60219421A JPS60219421A (en) 1985-11-02
JPH0468453B2 true JPH0468453B2 (en) 1992-11-02

Family

ID=13603537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7637384A Granted JPS60219421A (en) 1984-04-16 1984-04-16 Method of recovering power from exhaust gas of oxidizing process

Country Status (1)

Country Link
JP (1) JPS60219421A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203929A (en) * 1986-03-04 1987-09-08 Mitsubishi Gas Chem Co Inc Power recovery method from off-gas in oxidation reactor
GB0808200D0 (en) * 2008-05-06 2008-06-11 Invista Technologies Srl Power recovery

Also Published As

Publication number Publication date
JPS60219421A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
US6574962B1 (en) KOH flue gas recirculation power plant with waste heat and byproduct recovery
JP2013533426A (en) Jet engine with carbon capture
JPH05332161A (en) Chemical loop combustion type power generating plant system
JP2011202668A (en) Power generating facility
JP2002053311A (en) Method for recovering heat in sulfuric acid manufacturing equipment
CN107081040A (en) One kind is based on CO after chemical chain making oxygen by air separation and burning2The electricity generation system of trapping
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
CN107057767A (en) One kind is based on CO before chemical chain making oxygen by air separation and burning2The electricity generation system of trapping
US5349810A (en) Humid air turbine (HAT) cycle power process
JP2948351B2 (en) Turbine plant
CN114655923B (en) System and method for cogeneration of hydrogen and electricity of coal-fired boiler
CN112209351A (en) Method for preparing sulfuric acid from coking desulfurization waste liquid
US3531664A (en) Means for and method of removing pollutants from products of combustion
US8555652B1 (en) Air-independent internal oxidation
JPH0468453B2 (en)
CN111071996A (en) Method for preparing sulfuric acid
CN110867599A (en) High-efficiency integrated coal gasification fuel cell power generation system and method adopting high-temperature purification
CN217274049U (en) Sulfur acid-making waste heat recovery device with superheater arranged at evaporation outlet of sulfur-burning furnace
CN217235541U (en) Sulfur acid production waste heat recovery device with high-temperature superheater arranged behind sulfur burning furnace
JPS60165063A (en) Fuel cell power generation system
CN214087722U (en) System for coking desulfurization waste liquid system sulphuric acid
CN211045602U (en) High-efficiency integrated coal gasification fuel cell power generation system adopting high-temperature purification
JP3484247B2 (en) Exhaust gas treatment method
JPH03145523A (en) Thermoelectric power plant and themoelectric power generating method
JPH03100331A (en) Power generating method by co reheat gas turbine combined cycle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term