JPH0468388B2 - - Google Patents

Info

Publication number
JPH0468388B2
JPH0468388B2 JP58094744A JP9474483A JPH0468388B2 JP H0468388 B2 JPH0468388 B2 JP H0468388B2 JP 58094744 A JP58094744 A JP 58094744A JP 9474483 A JP9474483 A JP 9474483A JP H0468388 B2 JPH0468388 B2 JP H0468388B2
Authority
JP
Japan
Prior art keywords
film
frequency power
cutting tool
coating
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58094744A
Other languages
Japanese (ja)
Other versions
JPS59219463A (en
Inventor
Minoru Nakano
Akira Doi
Masaaki Tobioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9474483A priority Critical patent/JPS59219463A/en
Publication of JPS59219463A publication Critical patent/JPS59219463A/en
Publication of JPH0468388B2 publication Critical patent/JPH0468388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は、耐熱性に優れた被覆硬質部材の製造
法に関するものである。 (ロ) 従来の背景 超硬合金の表面に耐摩耗性に優れたTiC,
TiN,Al2O3などの硬質物質の一種又は二種以上
を、一層又は二層以上被覆した被覆超硬合金部材
は、従来の超硬合金に比べて、より優れた切削工
具材料として広く実用に供している。そのなかで
もAl2O3をもちいた二重被覆超硬合金部材は、
Al2O3のもつ優れた耐熱性、耐酸化性等のため、
特に優れた切削工具材料として知られている。近
年切削工具材料に要求される切削条件は、年々苛
酷になつてきており切削速度も300m/minを越
える場合も多くなつてきており、より耐摩耗性に
富む切削工具材料が要求されてきている。これ等
の要求に対し、Al2O3被覆層の膜厚を厚くする方
向が知られている。しかしながらAl2O3の被覆法
として知られているCVD法(化学蒸着法。以下
CVD法と称す。)においては、Al2O3の成長速度
がTiC,TiNと比べ1/10〜1/5と極めて遅く、厚
膜化を図ることが工業生産上著しく困難であるこ
と。又Al2O3の成長速度が極めて遅いため、その
反応雰囲気は通常10Torr以上、好ましくは
20Torr〜60Torrで行ねわれ、それ以下にする
と、工業上十分な成長速度が得られない。CVD
法において、膜厚のバラツキは、反応雰囲気が高
真空である程均一になることが知られているのが
Al2O3の場合、その成長速度の関係から、十分な
高真空で被覆が行なえないため、膜厚のバラツキ
が大きく、工業生産上歩留りの低下が著しく好ま
しくなかつた。 (ハ) 発明の開示 本発明は膜厚Al2O3被覆膜を、工業生産上好ま
しい、改善された成長速度でかつ、歩留りの著し
く改善された製造法を提供するものである。従来
のCVD法で、改善された成長速度をもつAl2O3
覆膜を得る方法として、特開昭54−10314号に、
CVD法の反応ガス(Al2O3,CO2および/又は
CO,H2)にTi,Zrおよび/又はHfイオンを0.08
〜0.5容量%添加する方法が開示されている。し
かしながらこの方法は、たしかにAl2O3被覆膜の
成長速度に関しては、改善されるものの、膜厚の
バラツキには何の改善ももたらすものではなかつ
た。 本発明の特徴を要約すると下記の通りである。 (1) プラズマによつて活性化された、いわゆるプ
ラズマCVD法でAl2O3膜を生成する。 (2) AlCl3とTiCl4を容量で0.2〜30の比率で反応
ガスとして用いる。 プラズマによつて活性化されたプラズマCVD
法では、その反応速度が母材の温度に依存すると
いうよりは、プラズマの電子温度(通常数千度と
いわれる。)に依存するといわれ、従来のCVD法
に比べ、同一母材温度では、著しくその成長速度
が改善されることが知られている。さらに加えて
Tiのイオンを反応ガスに添加すると、生成した
Al2O3中にTiの酸化物が固溶し、Alイオンの表面
拡散速度を向上させるため、さらに成長速度が改
善される。又本発明では、Al2O3の成長速度が十
分に改善されているため、反応雰囲気を高真空に
しても、工業生産上、適した成長速度が得られる
ため、膜厚のバラツキについても著しく改善しう
る。Al2O3の原料ガスとしては、H2,COと/又
はCO2及びAlCl3,TiCl4チタンの混合ガスで四塩
化チタン/三塩化アルミニウムの比率は0.2〜30
であるが、好ましくは0.2〜20である。0.2以下で
は成長速度の向上に余り効果なく30を越えると
Tiの酸化物の析出物を生じTiの酸化物はAl2O3
比し耐摩耗性で劣るため好ましくない。(反応炉
内の圧力は、0.1〜10Torr好ましくは、0.1〜
2Torrである。)0.1Torr未満ではプラズマ発生が
不安定で、10Torrを越えると膜厚均一性に効果
がなくなる。プラズマを発生させるには、13,
56MHzの高周波電力のほかマイクロ波を用いたも
のでも当然のことながら効果は同じである。プラ
ズマCVD法を用いるもう1つの特徴は、Al2O3
膜質を制御することにある。即ち、従来技術で
は、α,κ型の結晶質のものしか生成し得ない
が、本発明によれば、温度、高周波電力の大きさ
を制御て、アモルフアス、非晶質のものを調整す
ることができる。13、56MHzの高周波電力を用い
る場合、500〜800℃では100W〜3KW,800〜
1000℃間では200〜1000W,1000℃〜1200℃では
500W以下の電力が好ましい。析出するAl2O3
の特性は反応温度が低く高周波電力が低いほど、
アモルフアスあるいは、結晶質との混合相のもの
が得られ、又高電力、高温度になるにつれ、アモ
ルフアス、κ−,α−のAl2O3が得られる。
Al2O3の混合相は、若干、耐摩耗性が劣るが靫性
は良いので高周波電力と反応温度を選定すること
で結晶質単体かあるいは混合相にするかによつて
任意の膜質が得られる。本条件外では温度、高周
波電力が高い値のところで粗粒化し、低い値のと
ころでは、充分な成長速度が得られない。 上記したように、本発明では従来のAl2O3単体
よりも靫性の高い膜質が得られるため、基体とし
ては、超硬合金のほかIVa,Va,VIa族元素の炭
化物、窒化物、炭窒化物等の硬質相からなるサー
メツト及びAl2O3を主成分とするセラミツクある
いはSiC,Si3N4のセラミツク等の靫性の低い基
体にも応用できる。又当然のことながら高速度鋼
のような靭性の高い母材にも応用できる。以下実
施例にて説明する。 実施例 1 市販のTiCコーテイングチツプ(商品名
AC720)型番SNMN432に酸化アルミニウムを被
覆した。なお酸化アルミニウムの被覆条件は以下
の通りであつた。 反応気体組成 H2 90容量% Al2Cl3 3 〃 CO2 6 〃 TiCl4 0.5 〃 CO 0.5 〃 反応気体流速 2m/秒 反応気体圧力 2Torr 温 度 900,1000℃ 反応時間 5〜10時間 又、この条件にて13、56MHzの高周波電力
500WでAl2O3をコーテイングした。これらの結
果から単位時間当りの成長速度を第1図に示し
た。従来の方法での活性化エネルギーは、
32kcal/mol、本発明では7kcol/molであり、
温度変化による膜厚分布のバラツキが少なくなつ
ている。本条件においての0.1Torrではプラズマ
が不安定で10Torrをこえると膜厚分布が大きく
なつた。 実施例 2 市販のTiCコーテイングチツプ、型番
SNMN432にて以下の条件にてAl2O3の被覆を行
つた。なお反応ガスの組成以外は実施例1の条件
(高周波電力500W)と同じである。(反応時間
3Hr)
(a) Technical field The present invention relates to a method for producing a coated hard member with excellent heat resistance. (b) Conventional background TiC, which has excellent wear resistance, is applied to the surface of cemented carbide.
Coated cemented carbide parts coated with one or more layers of hard substances such as TiN, Al 2 O 3 , etc. are widely used as cutting tool materials that are superior to conventional cemented carbides. It is offered to Among them, double coated cemented carbide parts using Al 2 O 3 are
Due to the excellent heat resistance and oxidation resistance of Al 2 O 3 ,
It is known as a particularly excellent cutting tool material. In recent years, the cutting conditions required for cutting tool materials have become more severe year by year, and cutting speeds are often exceeding 300 m/min, creating a demand for cutting tool materials with greater wear resistance. . In order to meet these demands, it is known to increase the thickness of the Al 2 O 3 coating layer. However, the CVD method (chemical vapor deposition method.
It is called CVD method. ), the growth rate of Al 2 O 3 is extremely slow at 1/10 to 1/5 compared to TiC and TiN, making it extremely difficult to thicken the film in terms of industrial production. Also, since the growth rate of Al 2 O 3 is extremely slow, the reaction atmosphere is usually 10 Torr or more, preferably
It is carried out at 20 Torr to 60 Torr, and if it is lower than that, a sufficient growth rate for industrial purposes cannot be obtained. CVD
It is known that the higher the vacuum in the reaction atmosphere, the more uniform the film thickness becomes.
In the case of Al 2 O 3 , due to its growth rate, coating cannot be carried out under a sufficiently high vacuum, resulting in large variations in film thickness and a significant drop in yield, which is undesirable in industrial production. (C) Disclosure of the Invention The present invention provides a method for producing a thick Al 2 O 3 coating film, which is preferable for industrial production, has an improved growth rate, and has a significantly improved yield. As a method for obtaining an Al 2 O 3 coating film with improved growth rate using the conventional CVD method, Japanese Patent Application Laid-open No. 10314/1983 describes
Reactive gas of CVD method (Al 2 O 3 , CO 2 and/or
CO, H 2 ) with 0.08% Ti, Zr and/or Hf ions
A method of adding ~0.5% by volume is disclosed. However, although this method certainly improves the growth rate of the Al 2 O 3 coating film, it does not bring about any improvement in the variation in film thickness. The features of the present invention are summarized as follows. (1) Generate an Al 2 O 3 film using the so-called plasma CVD method activated by plasma. (2) AlCl 3 and TiCl 4 are used as reaction gases in a ratio of 0.2 to 30 by volume. Plasma CVD activated by plasma
In this method, the reaction rate is said to depend not so much on the temperature of the base material as on the electron temperature of the plasma (usually said to be several thousand degrees), and compared to the conventional CVD method, it is significantly slower at the same base material temperature. It is known that its growth rate is improved. In addition
When Ti ions were added to the reaction gas, the
The Ti oxide forms a solid solution in Al 2 O 3 and improves the surface diffusion rate of Al ions, further improving the growth rate. In addition, in the present invention, the growth rate of Al 2 O 3 has been sufficiently improved, so even if the reaction atmosphere is set to a high vacuum, a growth rate suitable for industrial production can be obtained, and the variation in film thickness can be significantly reduced. It can be improved. The raw material gas for Al 2 O 3 is a mixed gas of H 2 , CO and/or CO 2 and AlCl 3 , TiCl 4 titanium, with a titanium tetrachloride/aluminum trichloride ratio of 0.2 to 30.
However, it is preferably 0.2 to 20. If it is less than 0.2, it will not have much effect on improving the growth rate, and if it exceeds 30,
Ti oxides are not preferred because they produce Ti oxide precipitates and have inferior wear resistance compared to Al 2 O 3 . (The pressure inside the reactor is 0.1 to 10 Torr, preferably 0.1 to 10 Torr.
It is 2 Torr. ) Below 0.1 Torr, plasma generation is unstable, and above 10 Torr, there is no effect on film thickness uniformity. To generate plasma, 13,
Naturally, the effect is the same even if microwaves are used in addition to 56MHz high-frequency power. Another feature of using the plasma CVD method is that the quality of the Al 2 O 3 film can be controlled. That is, with the conventional technology, only α and κ type crystalline products can be produced, but according to the present invention, amorphous and non-crystalline products can be adjusted by controlling the temperature and the magnitude of high-frequency power. I can do it. 13.When using 56MHz high frequency power, 100W~3KW at 500~800℃, 800~
200~1000W between 1000℃, 1000℃~1200℃
A power of 500W or less is preferred. The characteristics of the precipitated Al 2 O 3 film change as the reaction temperature and high frequency power decrease.
Amorphous amorphous or a mixed phase with crystalline material can be obtained, and as the power and temperature increase, amorphous amorphous, κ-, and α-Al 2 O 3 can be obtained.
The mixed phase of Al 2 O 3 has slightly inferior wear resistance, but has good opacity, so by selecting the high frequency power and reaction temperature, it is possible to obtain any desired film quality depending on whether it is a single crystalline substance or a mixed phase. It will be done. Outside these conditions, the grains become coarse when the temperature and high frequency power are high, and a sufficient growth rate cannot be obtained when the temperature and high frequency power are low. As mentioned above, in the present invention, a film quality with higher toughness than that of the conventional Al 2 O 3 alone can be obtained, so the substrate can be made of carbides, nitrides, and carbides of group IVa, Va, and VIa elements in addition to cemented carbide. It can also be applied to substrates with low toughness such as cermets made of hard phases such as nitrides, ceramics mainly composed of Al 2 O 3 , or ceramics of SiC and Si 3 N 4 . Naturally, it can also be applied to base materials with high toughness such as high-speed steel. This will be explained below using examples. Example 1 Commercially available TiC coating chip (product name
AC720) Model number SNMN432 coated with aluminum oxide. The conditions for coating aluminum oxide were as follows. Reaction gas composition H 2 90% by volume Al 2 Cl 3 3 〃 CO 2 6 〃 TiCl 4 0.5 〃 CO 0.5 〃 Reaction gas flow rate 2m/sec Reaction gas pressure 2Torr Temperature 900, 1000℃ Reaction time 5 to 10 hours 13, 56MHz high frequency power under conditions
Coated with Al 2 O 3 at 500W. From these results, the growth rate per unit time is shown in FIG. The activation energy in the conventional method is
32 kcal/mol, 7 kcal/mol in the present invention,
Variations in film thickness distribution due to temperature changes are reduced. Under these conditions, at 0.1 Torr, the plasma was unstable, and when the temperature exceeded 10 Torr, the film thickness distribution became large. Example 2 Commercially available TiC coating chip, model number
Al 2 O 3 coating was performed using SNMN432 under the following conditions. Note that the conditions other than the composition of the reaction gas were the same as in Example 1 (high-frequency power 500 W). (reaction time
3Hr)

【表】 上記の切削チツプと比較のために、市販の
6μTiCに5μAl2O3をコーテイングしたもので(No.
5)下記の条件で切削テストを行つた。 被削材 SCM435 切削条件 V=400m/min f=0.3mm/rev d=1.5mm 3分間切削したところ、No.1〜No.3はフランク
摩耗が、0.25〜0.28mmで切削可能であつた。No.
4、No.5は、0.39mm、0,31mmであつた。 実施例 3 10容量%の結合相(Co,Ni)で硬質相が60%
TiC、8%TiN、2%Mo2C、残WCの組成から
なるサーメツト及び95%Al2O3−5%TiCセラミ
ツクを基体として、実施例1と同様の反応ガス組
成で表2の条件でAl2O3を5μコーテイングした。
[Table] For comparison with the cutting tips above, commercially available
6μTiC coated with 5μAl 2 O 3 (No.
5) A cutting test was conducted under the following conditions. Work material SCM435 Cutting conditions V=400m/min f=0.3mm/rev d=1.5mm After cutting for 3 minutes, No. 1 to No. 3 could be cut with flank wear of 0.25 to 0.28 mm. No.
4. No. 5 was 0.39mm and 0.31mm. Example 3 10% by volume binder phase (Co, Ni) and 60% hard phase
Using a cermet with a composition of TiC, 8% TiN, 2% Mo 2 C, and residual WC as a base and a 95% Al 2 O 3 -5% TiC ceramic as a substrate, the reaction gas composition was the same as in Example 1 and under the conditions shown in Table 2. Coated with 5 μ of Al 2 O 3 .

【表】 比較のために従来のCVD法で5μAl2O3コーテイ
ングしたサーメツト(No.12)、セラミツク(No.13)
を実施例2の切削条件で切削テストを行つた(切
削時間5分)フランク摩耗を測定したところ第3
表の結果が得られた。
[Table] For comparison, cermet (No. 12) and ceramic (No. 13) coated with 5 μAl 2 O 3 using the conventional CVD method.
A cutting test was conducted under the cutting conditions of Example 2 (cutting time: 5 minutes), and flank wear was measured.
The results in the table were obtained.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Al2O3被覆速度への反応温度の効果
を示しており、Aは本発明、Bは従来のドーピン
ブのみによる効果を示す。
FIG. 1 shows the effect of reaction temperature on the Al 2 O 3 coating rate, with A showing the effect of the present invention and B showing the effect of conventional doping alone.

Claims (1)

【特許請求の範囲】 1 超硬合金、高速度鋼、セラミツク、サーメツ
トを母材として該母材上に水素、三塩化アルミニ
ウム、一酸化炭素と/又は二酸化炭素及び四塩化
チタンの混合ガスであつて、かつ四塩化チタンと
三塩化アルミニウムの比率(容積)が、0.2〜30
である該混合ガスを流し、該雰囲気中でプラズマ
CVD法でAl2O3膜を被覆することを特徴とする
Al2O3コーテイング膜を有する切削工具の製造
法。 2 特許請求の範囲第1項において、雰囲気中の
圧力が、0.1〜10torrであることを特徴とする
Al2O3コーテイング膜を有する切削工具の製造
法。 3 特許請求の範囲第1又は第2項において、プ
ラズマCVD法を、13.56MHzの高周波電力によつ
て行い、かかる電力が反応温度500〜800℃未満に
おいては、100W〜3KW、800〜1000℃未満では、
200W〜1000W、1000℃〜1200℃では、高周波電
力が、500W以下の条件下で、Al2O3膜を被覆す
ることを特徴とするAl2O3コーテイング膜を有す
る切削工具の製造法。
[Claims] 1. A mixed gas of hydrogen, aluminum trichloride, carbon monoxide and/or carbon dioxide and titanium tetrachloride is applied to a base material of cemented carbide, high speed steel, ceramic or cermet. and the ratio (volume) of titanium tetrachloride and aluminum trichloride is 0.2 to 30.
Flow the mixed gas, and generate plasma in the atmosphere.
Characterized by coating Al 2 O 3 film by CVD method
A method for manufacturing a cutting tool with an Al 2 O 3 coating film. 2. In claim 1, the pressure in the atmosphere is 0.1 to 10 torr.
A method for manufacturing a cutting tool with an Al 2 O 3 coating film. 3 In claim 1 or 2, the plasma CVD method is performed using high frequency power of 13.56MHz, and when the reaction temperature is 500 to 800℃, the power is 100W to 3KW, and 800 to 1000℃. Well then,
A method for producing a cutting tool having an Al 2 O 3 coating film, characterized in that the Al 2 O 3 film is coated under conditions of 200 W to 1000 W, 1000° C. to 1200° C., and a high frequency power of 500 W or less.
JP9474483A 1983-05-27 1983-05-27 Manufacture of al2o3 coating film Granted JPS59219463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9474483A JPS59219463A (en) 1983-05-27 1983-05-27 Manufacture of al2o3 coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9474483A JPS59219463A (en) 1983-05-27 1983-05-27 Manufacture of al2o3 coating film

Publications (2)

Publication Number Publication Date
JPS59219463A JPS59219463A (en) 1984-12-10
JPH0468388B2 true JPH0468388B2 (en) 1992-11-02

Family

ID=14118630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9474483A Granted JPS59219463A (en) 1983-05-27 1983-05-27 Manufacture of al2o3 coating film

Country Status (1)

Country Link
JP (1) JPS59219463A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011360A (en) * 1973-05-30 1975-02-05
JPS5128600A (en) * 1974-09-05 1976-03-10 Kitasato Gakuen KAYOSEIPURUSHIAN BURUUNOSEIZOHOHO
JPS5410314A (en) * 1977-06-09 1979-01-25 Sandvik Ab Coated sintered carbide body and method of making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011360A (en) * 1973-05-30 1975-02-05
JPS5128600A (en) * 1974-09-05 1976-03-10 Kitasato Gakuen KAYOSEIPURUSHIAN BURUUNOSEIZOHOHO
JPS5410314A (en) * 1977-06-09 1979-01-25 Sandvik Ab Coated sintered carbide body and method of making same

Also Published As

Publication number Publication date
JPS59219463A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US4269899A (en) Surface hafnium-titanium carbide coated hard alloy and method
USRE31526E (en) Coated cemented carbide body and method of making such a body
US5920760A (en) Coated hard alloy blade member
US6902764B2 (en) Oxide coated cutting tool
CA1226772A (en) Coated silicon nitride cutting tools
US4469489A (en) Coated composite modified silicon aluminum oxynitride cutting tools
US5589223A (en) Process for producing cermet cutting tools having both longitudinal and granular crystal structures
JPH05230620A (en) Sintered hard material coated with ceramic oxide
US6207262B1 (en) Coated cemented carbide endmill having hard-material-coated-layers excellent in adhesion
JPH0576546B2 (en)
JPH068010A (en) Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
US5112649A (en) Method of depositing micro-crystalline solid particles by hot filament cvd
US6365230B1 (en) Method of manufacturing a diamond film coated cutting tool
JP3277558B2 (en) Manufacturing method of coated cutting tip
JPS623234B2 (en)
JPS6155591B2 (en)
JPH0468388B2 (en)
JPS5928565A (en) Coated hard alloy tool
JPS59222570A (en) Production of composite ceramic coating film
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP2734311B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JPS5824501B2 (en) Method for manufacturing tungsten carbide coating layer
JP2738233B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance