JPH0468341B2 - - Google Patents

Info

Publication number
JPH0468341B2
JPH0468341B2 JP58113511A JP11351183A JPH0468341B2 JP H0468341 B2 JPH0468341 B2 JP H0468341B2 JP 58113511 A JP58113511 A JP 58113511A JP 11351183 A JP11351183 A JP 11351183A JP H0468341 B2 JPH0468341 B2 JP H0468341B2
Authority
JP
Japan
Prior art keywords
weight
copolymer
residues
rubber elastic
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58113511A
Other languages
Japanese (ja)
Other versions
JPS604545A (en
Inventor
Takashi Kokubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Monsanto Kasei Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Kasei Co filed Critical Monsanto Kasei Co
Priority to JP11351183A priority Critical patent/JPS604545A/en
Priority to US06/620,710 priority patent/US4585832A/en
Priority to GB08415347A priority patent/GB2142034B/en
Priority to DE19843422919 priority patent/DE3422919A1/en
Priority to BE0/213192A priority patent/BE899982A/en
Priority to FR8409816A priority patent/FR2549075B1/en
Priority to AU29775/84A priority patent/AU565922B2/en
Priority to CA000457213A priority patent/CA1233589A/en
Publication of JPS604545A publication Critical patent/JPS604545A/en
Priority to US06/814,794 priority patent/US4699947A/en
Publication of JPH0468341B2 publication Critical patent/JPH0468341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 本発明は、耐候性及び耐衝撃性に優れた熱可塑
性樹脂組成物に関する。 スチレン−アクリロニトリル共重合体等からな
るマトリツクス中にゴム弾性体粒子が分散した組
成を有するゴム変性樹脂は優れた耐衝撃性を示
し、かつ、成形加工が容易であるので、電気器
具、自動車その他の部品、筐体等の材料として広
く使用されている。この場合、ゴム弾性体とし
て、ポリブタジエン、ポリイソプレン、スチレン
−ブタジエン共重合体(SBR)等の共役ジエン
系重合体が広く採用されている。これは、共役ジ
エン系重合体は分子内に二重結合を有するので、
架橋が容易であり、またマトリツクス(連続相)
とのグラフト結合が容易に形成される等の特徴を
有するので耐衝撃性の優れたゴム変性樹脂、いわ
ゆるABS樹脂が容易に得られるからであるが、
一方これらのゴム変性樹脂は、上述のように分子
内に二重結合が残存するゴム弾性体を使用しいる
ので、耐候性、特に直射日光にさらされた場合の
物性の劣化が著しく、屋外で使用する機器類の筐
体等には使用できなかつた。 かかる問題を解決する手段として、ゴム弾性体
にポリブチルアクリレートその他のアクリル酸ア
ルキルエステルの重合体、エチレン−プロピレン
−非共役ジエン三元共重合体(EPDM)その他
のモノオレフイン系ゴム弾性体等の、分子内に二
重結合を有しないか、あるいは、少量しか有しな
い飽和ゴム弾性体を用いることが知られていた。
これらの飽和ゴム変性樹脂では耐候性の改良には
著しい効果を示しているが、耐衝撃性等の機械的
物性に問題があつた。これは、本発明者の考察に
よると、アクリル酸エステル系重合体ではグラフ
ト反応が十分に進行しないこと、また、EPDM
等では、単量体に対する溶解性が不良であるこ
と、ラテツクス状態のゴム弾性体を得ることが困
難であること等の理由により、粒径分布の制御が
十分にできなかつたこと等によるものである。 本発明者は、かかる問題点を有しない耐候性耐
衝撃性樹脂組成物を得ることを目的として鋭意研
究を重ねた結果飽和ゴム弾性体を用いる場合にお
いても、ゴム弾性体粒子が二山分布を有すると効
果のあることを見出し本発明に到達したものであ
つて、かかる目的は、 芳香族ビニル単量体残基10〜90重量%、シアン
化ビニル単量体残基10〜40重量%及びメタアクリ
ル酸メチル残基0〜80重量%からなるマトリツク
ス50〜300重量部中に、炭素数が2〜12個である
一価アルコールとアクリル酸とのエステルの残基
70〜98重量%、アクリロニトリル、メタアクリロ
ニトリル、スチレン、α−メチルスチレン、p−
ビニルトルエン又はアルキルメタアクリレートの
単量体残基1.92〜27重量%及び多官能性ビニル単
量体残基0.08〜3重量%からなり、平均粒径が
0.05〜0.45μmであるゴム弾性体粒子100重量部が
分散してなるグラフト共重合体(A)、 芳香族ビニル単量体残基10〜90重量%、シアン
化ビニル単量体残基10〜40重量%及びメタアクリ
ル酸メチル残基0〜80重量%からなるマトリツク
ス20〜1500重量部中に平均粒径0.5〜5μmである
エチレン−プロピレン−非共役ジエン系ゴム弾性
体粒子100重量部を分散させてなるグラフト共重
合体(B)ならびに 芳香族ビニル単量体残基10〜90重量%、シアン
化ビニル単量体残基10〜40重量%及びメタアクリ
ル酸メチル残基0〜80重量%からなる共重合体(C) を配合してなる組成物であつて、該組成物は5〜
40重量%のゴム弾性体を含有し、かつ、該ゴム弾
性体の30〜97重量%に相当する量が共重合体(A)に
含まれるゴム弾性体である耐候性耐衝撃性樹脂組
成物によつて達成される。 本発明に用いられる芳香族ビニル単量体として
は、スチレン、α−メチルスチレン、p−ビニル
トルエンその他のビニルトルエン類が例示され
る。シアン化ビニル単量体としてはアクリロニト
リル、メタアクリロニトリル等が適当である。 共重合体(A)は乳化重合法により製造するのが生
産性、得られた共重合体の物性等の面から好まし
いが、懸濁重合、乳化−懸濁重合法によつてもよ
い。 共重合体(A)の製造に使用されるアクリル酸エス
テルとしては、アクリル酸と炭素数が2〜12個、
好ましくは4〜8個の一価のアルコールとのエス
テルが適当である。具体的には、ブチルアクリレ
ート、2−エチルヘキシルアクリレート等が好ま
しい。炭素数が上記範囲外であると、十分なゴム
弾性が得られないので好ましくない。これらのエ
ステルは一種でもよく、二種以上混合して用いて
もよい。 共重合体(A)におけるゴム弾性体を構成するアク
リロニトリル、メタアクリロニトリル、スチレ
ン、α−メチルスチレン、p−ビニルトルエン又
はアルキルメタアクリレートの単量体は、ゴム弾
性体を構成するアクリル酸エステルと共重合し、
得られるアクリルラバーの補強ゴムとしての性質
およびグラフト重合反応性等を改善向上させるも
のであつて、これら単量体は2種以上併用しても
よい。 多官能性のビニル単量体としては、ジビニルベ
ンゼン、エチレングリコールジメタクリレート、
ジアリルマレート、トリアリルシアヌレート、ト
リアリルイソシアヌレート、ジアリルフタレー
ト、トリメチロールプロパントリアクリレート、
メタクリル酸アリルなどが挙げられる。(なお、
アリル基とは、CH2=CHCH2−基のことをい
う。) これらの多官能性ビニル単量体を用いることに
よりアクリル酸エステル共重合体の分子間の架
橋、マトリツクスとのグラフト結合等が容易とな
り本発明に係る組成物の耐衝撃性が向上する。共
重合体(A)に用いられるアクリル酸エステル系共重
合体は、懸濁重合法等によつてもよいが、乳化重
合法によるのが粒径の制御、グラフト重合が容易
であること等から好ましい。 その場合、所定量の上記単量体混合物を乳化剤
を用いて水に乳化分散させ、適当な開始剤を用い
て重合を行なう。乳化剤としては、通常のアニオ
ン系、カチオン系、ノニオン系等のものが使用で
きるが、脂肪酸塩、例えば、牛脂石けん、ステア
リン酸ソーダ、オレイン酸ソーダ等が塩析操作が
容易であるので好ましい。 重合開始剤としては、過硫酸カリウム、過硫酸
アンモニウム等の過硫酸塩、過酸化水素等、また
は、これらとL−アスコルビン酸、ロンガリツ
ト、酸性亜硫酸ソーダ、塩化第1鉄等の還元剤と
組合せたレドツクス系、その他、過酸化ベンゾイ
ル、過酸化ラウリル、アゾビスイソブチロニトリ
ル等が使用できる。 その他の重合条件は通常の重合条件でよい。グ
ラフト共重合体(A)中のゴム弾性体、すなわち、上
記アクリル酸エステル系重合体の平均粒径は0.05
〜0.45μmが適当であり、0.1〜0.35μmであればさ
らに好ましい。なお、「平均粒径」は重量平均で
表わす。 かかるゴム弾性体粒子の粒径は、グラフト重合
に使用するゴム弾性体ラテツクスの平均粒径に依
存するので、上記乳化重合により得られたアクリ
ル酸エステル系重合体ラテツクスの平均粒径が所
望の値よりも小さい場合は、リン酸、硫酸、無水
酢酸等の酸性物質をラテツクスに添加してラテツ
クス粒子の凝集肥大を行なういわゆる粒径肥大操
作を行なつて、ラテツクス粒子の粒径を調整する
のが好ましい。 ゴム弾性体の平均粒径が、0.05μm未満である
と耐衝撃性が改善されず、0.45μmを超えるとラ
テツクスが不安定となり、また、得られる組成物
の耐衝撃性、表面光沢等が低下するので好ましく
ない。必要に応じて、ラテツクスの粒径を所望の
値に調整した後、芳香族ビニル単量体10〜90重量
%、シアン化ビニル単量体10〜40重量%及びメタ
アクリル酸メチル0〜80重量%からなる単量体混
合物を、アクリル酸エステル系共重合体ラテツク
ス固形分100重量部あたり50〜300重量部に相当す
る量を、上記ラテツクスに一時にまたは、分割し
て回分的にもしくは連続的に添加して乳化グラフ
ト重合を行なう。この場合、必要に応じて、重合
開始剤その他の助剤を添加する。ゴム弾性体、す
なわち、アクリル酸エステル系共重合体ラテツク
ス固形分100重量部に対して添加する単量体混合
物の量は50〜300重量部が適当である。単量体混
合物の量が上記範囲外であると本発明に係る組成
物中のゴム弾性体含量の調整が困難となり、さら
に耐衝撃性が低下するのでで好ましくない。ま
た、単量体混合物の組成が上記範囲外であると耐
薬品性、相溶性が低下するので好ましくない。 乳化グラフト重合が終了すると、MgSO4、Al2
(SO43、NaCl、HCl、CaCl2等の電解質の水溶
液を添加して塩析し、得られたクラムを脱水、乾
燥する。 共重合体(B)の製造に用いられるエチレン−プロ
ピレン−非共役ジエン系ゴム弾性体は、通常
EPDMと称されているものであつて、エチレン
−プロピレン(重量比)が80/20〜30/70、好ま
しくは70/30〜40/60、また、非共役ジエンの含
量が0.1〜10モル%のものが一般的である。 なお、非共役ジエンとしては、ジシクロペンタ
ジエン、アルキリデンノルボルネン、1,4−ヘ
キサジエン等が用いられる。 かかるEPDM100重量部を、芳香族ビニル単量
体10〜90重量%、シアン化ビニル単量体10〜40重
量%及びメタアクリル酸メチル0〜80重量%から
なる単量体混合物20〜1500重量部、好ましくは20
〜580重量部に溶解し、撹拌しながら塊状−懸濁
または塊状重合法によりグラフト重合させる。 この場合、EPDMはシアン化ビニル単量体に
難溶性であるので単量体混合物の量が少ないとき
は、ヘプタン、ヘキサン、オクタン等の非重合性
有機溶媒を単量体混合物に加えるか、芳香族ビニ
ル単量体単独、または、芳香族ビニル単量体とメ
タアクリル酸メチルの混合物に溶解し、シアン化
ビニル単量体を重合中に添加することが好まし
い。重合開始剤としては、過酸化ベンゾイル、過
酸化ラウリル、ジ−ter.−ブチルパーオキサイド
[(CH33C−O−O−C(CH33]等グラフト重合
を生じやすいものが好ましい。 マトリツクスを形成する上記単量体混合物の比
率が上記範囲外であると、本発明に係る組成物中
のゴム弾性体含量の調整が困難であり、かつ、耐
衝撃性が低下するので好ましくなく、さらに、耐
薬品性等が低下する。 また、共重合体(B)を製造する場合、EPDMを
所定量の芳香族ビニル単量体またはそれとメタア
クリル酸メチルとの混合物に溶解した後、水中に
乳化分散し、その後シアン化ビニル単量体を加
え、さらに乳化分散したラテツクスを乳化グラフ
ト重合してもよい。 この場合、得られたEPDMラテツクスと共重
合体(A)の重合工程で得られたアクリル酸エステル
系共重合体ラテツクスを混合し、続いて必要量の
単量体混合物を添加してグラフト重合を行なうこ
とにより共重合体(A)及び(B)の重合及びブレンドを
一工程で行うことができる。共重合体(B)中のゴム
弾性体粒子の平均粒径は0.5〜5μm、好ましくは、
0.6〜2μmが適当である。共重合体(A)及び(B)中の
ゴム弾性体粒子の粒径を上記範囲とすることによ
り本発明に係る組成物の耐衝撃性を向上させるこ
とができる。 共重合体(C)は芳香族ビニル単量体10〜90重量
%、シアン化ビニル単量体10〜40重量%及びメタ
アクリル酸メチル0〜80重量%からなる混合物を
塊状重合、懸濁重合、塊状−懸濁重合法等で重合
することにより得られる。この場合、架橋剤を用
いると相溶性が低下するので好ましくない。 各単量体の組成が上記範囲外となると、他の共
重合体との相溶性が低下するので好ましくない。 本発明に係る組成物は、ゴム弾性体の含量、す
なわち、共重合体(A)中のアクリル酸エステル系共
重合体及び共重合体(B)中のEPDMの合計量が、
組成物全体の5〜40重量%を占めることが必要で
ある。5重量%未満であると耐衝撃性が十分でな
く、40重量%を超えるとゴム弾性体の量が過剰と
なり剛性が低下し好ましくない。 また、本発明に係る組成物に含まれるゴム弾性
体の30〜97重量%が共重合体(A)に含まれるゴム弾
性体、すなわち、アクリル酸エステル系共重合体
であることが必要である。上記範囲外であると大
粒径及び小粒径のゴム弾性体粒子比率、すなわ
ち、粒径分布が不適当となり、耐衝撃性と得られ
る成形品の外観、特に艶(光沢)とのバランスが
不良となるので、好ましくない。 共重合体(A)、(B)及び(C)の配合は、通常の押出機
等により行われる。 本発明に係る組成物は耐候性が極めて優れてお
り、また、従来の耐候性ゴム変性樹脂と異なりゴ
ム弾性体の粒径分布が二山分布をなしているので
耐衝撃性も優れている。 次に本発明を実施例及び比較例に基いて具体的
に説明する。 製造例 1 〔アクリル酸エステル系共重合体(アクリルラ
バー・ラテツクス)の製造〕 製造例 1−1 3ガラス製フラスコに脱イオン水(以後、単
に水と表記)1520g、高級脂肪酸石けん(炭素数
18を主成分とする脂肪酸のナトリウム塩)20g、
重炭酸ソーダ10gを仕込み、窒素気流下75℃に昇
温した。過硫酸カリ水溶液0.75g/20mlを添加し
た後、5分して、アクリル酸ブチルルエステル
(BA)937.5gとアクリロニトリル(AN)62.5
g、及びメタアクリル酸アリルエステル
(AMA)5gより成るモノマー混合物のうち40
gを仕込んだ。約数分で発熱が起り、重合の開始
が確認された。最初のモノマー仕込後15分でさら
に過硫酸カリ水溶液0.75g/20mlを加え、同時に
残りのモノマー混合物の連続添加を開始、2時間
30分の時点でその添加を終了したが途中1時間30
分の時点で脂肪酸石けん6gの水溶液(20mlに溶
解)を加えた。モノマー添加終了後さらに1時間
同一温度にて重合を進めた。転化率98%、平均粒
径0.08μmであつた。 このラテツクスの半量を3フラスコに入れ、
水685ml、ドデシルベンゼンスルホン酸ソーダ
(DBS)10%水溶液5gと混合後50℃に保つた。
弱い撹拌下2.5%のリン酸水溶液320gを約1分間
で添加、次いで2分間放置後25%苛性カリ水溶液
23.4gとDBS25%水溶液14gを加え、撹拌を十分
に行なつた。平均粒径0.23μm(ナノサイザーによ
り測定)のアクリルラバー・ラテツクスが得られ
た。 製造例 1−2 BA900gとスチレン(Sh)100g及びAMA5g
より成るモノマー混合物を用いた他は製造例1−
1と同様の方法により平均粒径0.24μmのラバ
ー・ラテツクスを得た。 製造例 1−3 BA900gメタアクリル酸メチルエステル
(MMA)100g及びAMA5gより成るモノマー混
合物を用いた他は製造例1−1と同様の方法によ
り平均粒径0.25μmのラバー・ラテツクスを得た。 製造例 1−4 BA95g、AN5g及びトリメチロールプロパン
トリアクリレート(TMPT)1gより成るモノ
マー混合物にラウロイルパーオキサイド0.5gと
乳化剤としてハイテノールN−07(第一工業製薬
(株)製)4gを溶解させた。別に300gの水を入れ
た1のフラスコを準備しモノマー混合物溶液を
卓上ホモミキサーによる撹拌下に徐々に加えて乳
化、均質なエマルジヨンを得た。フラスコを重合
の出来る状態にセツトし、窒素気流下に60℃に昇
温、重合を開始した。2時間後、BA95g、AN5
g及びTMPT1gより成るモノマー混合物を添加
開始、4時間目に終了したが、引き続き1時間同
温度に保つた。転化率96%、平均粒径0.24μmの
架橋ラバー・ラテツクスが得られた。 製造例 1−5 製造例1−1で得たラバー・ラテツクス2116g
(ラバー450g)を2フラスコに入れ窒素気流下
に80℃に昇温した。BA45gとAN5g及び
TMPT1.25gの混合物を約15分で連続に仕込ん
だが、それに先立ち過硫酸カリ水溶液0.5g/15
mlを添加した。この間、系のPHは約7.5に保つた。
転化率96%、平均粒径0.25μmのラバー・ラテツ
クスが得られた。 製造例 2 (共重合体(A)の製造) 製造例 2−1 製造例1−1で得たアクリルラバー・ラテツク
ス2358g(ラバー500g)を撹拌機、還流冷却管
等を備えた3フラスコに入れ80℃まで加熱昇温
した。過硫酸カリ水溶液1.86g/50mlを加え、同
時にSt650gとAN278.6gの混合モノマーの連続
添加を始め、15分後より過硫酸カリ水溶液5.57
g/147mlの連続添加も開始した。モノマー添加
開始30分、1時間10分、及び2時間後にそれぞれ
25%苛性カリ水溶液16.3g、高級脂肪酸石けん水
溶液4.29g/35ml及び同石けん水溶液4.29g/35
mlとターピノレン5.57gを添加した。モノマー及
び過硫酸カリ水溶液の連続添加は3時間45分で完
了し、次いで30分間同温度下に放置、重合を完結
させた。このようにして得たグラフト重合体は、
ラテツクスを多量の塩化カルシウム水溶液に投入
後、ロ過乾燥した。重合の転化率は98.5%であつ
た。 製造例 2−2 製造例1−5で得たアクリルラバー・ラテツク
ス(ラバー500g)を用いた他は、製造例2−1
と同様の方法によりグラフト重合した。重合転化
率は96.5%であつた。 製造例 3 (共重合体(B)の製造) 製造例 3−1 イカリ型撹拌装置を備えた2オートクレーブ
中に、St552g、EPDM〔ムーニー粘度ML14
(100℃)45、沃素価25、エチリデンノルボルネン
を第3成分とする〕140g及びn−ヘプタン100g
を仕込み窒素置換した後、50℃で2時間、
100rpmの撹拌により完全に溶解した。次いで同
じ撹拌下にAN258gを40g/10分の速度で仕込
んだ後、ジter.−ブチルパーオキサイド0.5g、
ter.−ブチルパーアセテート0.13g及びターピノ
レン0.5gを仕込み、97℃で7時間20分塊状重合
を行つた。 塊状重合終了約30分前にジter.−ブチルパーオ
キサイド1.5g及びターピノレン1.5gをSt50gに
溶解して仕込んだ。重合終了時のEPDMラバー
の平均粒径は1.6μmであつた。 上記塊状重合工程で得られたシロツプを、水
1100g中に懸濁剤(アクリル酸−アクリル酸エス
テル共重合体)2.5gを含む水溶液を収容した3
オートクレーブ(3枚後退翼付撹拌器を備えた
もの)に仕込み、窒素置換したのち、この水性懸
濁系を130℃、500rpmの条件下に2時間懸濁重合
を行ない、次いで150℃に昇温して1時間ストリ
ツピングを行なつた。得られた樹脂組成物を水洗
後、100℃で乾燥し920gのグラフト共重合体樹脂
を得た。 製造例 3−2 製造例3−1に於て、EPDMを140g、Stを
380g、n−ヘプタンを100g、ANを215g、
MMAを215gとし、ANとMMAの全量を後仕込
に変更する他は同様に行つてグラフト共重合体樹
脂を得た。ラバーの平均粒径は1.8μmであつた。 製造例 3−3 イカリ型撹拌装置を備えた2フラスコ中に
St520g、EPDM130g及び油溶性乳化剤(ハイ
テノールN−08、第一工業製薬(株)製)9.75gと水
32.5mlを仕込み窒素雰囲気下55℃で3時間撹拌
し、均一に溶解した。次いで163mlの水を数分間
で撹拌下に加え、さらに585mlの水を一気に加え
て転相させて得たエマルジヨンのラバー成分の平
均粒径は0.82μm(コールターカウンター測定)で
あつた。別に、AN77.1g、TMPT0.75g、ドデ
シルベンゼンスルホン酸ソーダ1.17g及び水91.4
gよりエマルジヨンを調製し、上記エマルジヨン
の500.9gと混合することによつてSt−AN−
EPDMより成るエマルジヨンを得た。 製造例1−5で得たアクリルラバー・ラテツク
ス1110.6g(ラバー255g)を3フラスコに仕
込み、80℃に昇温した。続いて、過硫酸カリ水溶
液1g/25mlを添加と同時に上記St−AN−
EPDMエマルジヨン671.3g及び過硫酸カリ水溶
液3.34g/84mlの連続仕込を開始した。1時間20
分でエマルジヨンの仕込は完了し、次いでモノマ
ー混合物(St210g、AN90g)300gの連続仕込
を開始したが2時間に渡つて均一速度で仕込ん
だ。重合中、その開始後30分、1時間15分及び2
時間目にそれぞれ25%カセイカリ水溶液7.5g、
高級脂肪酸石けん水溶液2.57g/20ml及び同石け
ん2.57g/20mlとターピノレン3.34gを加えた。
モノマーの仕込終了後は30分間同温度に保ち、重
合を完結させた。転化率98%であつた。塩化カル
シウムを含む多量の水中に共重合体ラテツクスを
投入し、水洗、乾燥して829.5gのグラフト共重
合体を得た。 製造例 3−4 製造例1−5で得たアクリルラバー・ラテツク
スを1208.6g(ラバー277.5g)、St−AN−
EPDMエマルジヨンを335.6g、モノマーを428.5
g(St300g、AN128.5g)とした以外は製造例
3−3と同一の方法により転化率97%で833.7g
のグラフト共重合体を得た。 実施例 1 製造例2−1で得たグラフト重合体(A) 485.7g 製造例3−1で得グラフト重合体(B) 214.3g 共重合体(C)(AS樹脂St70重量%,AN30重量
%) 300.0g を酸化防止剤としてジter.−ブチルパラクレゾー
ル(DTBPC)3g、滑剤としてステアリン酸マ
グネシウム(Mg−St)5gと共にバンバリミキ
サーで混練りし、ペレツト化後、7−OZ射出成
形機によりシリンダー温度220℃、金型温度40℃
で成形した。 試験片は次の方法により衝撃強度、引張り強度
及び耐候性の評価を行なつた。 衝撃強度(ノツチ付、アイゾツド、23℃)
ASTM D−256−54T 引張り強度(23℃) ASTM D−638−61T 耐候性テストサンシヤイン・ウエザロメーター
WE−SON−HC(東洋理化)による、
初期値に対する引張り伸び保持率
(%/%)(200hrs試験後/400hrs試験
後) 結果を第1表に示す。 また、ASTM D1238に従つて樹脂組成物のフ
ローレートを測定し、その結果を第1表に示す。
測定条件は220℃、10Kgであり、測定値の単位は
g/10分である。 実施例 2 製造例2−1で得たグラフト重合体(A) 485.7g 製造例3−2グラフト共重合体(B) 214.3g 共重合体(C)(実施例1と同じ) 300.0g DTBPC/Mg−St 3g/5g を実施例1と同様の方法によりブレンド、成形し
て試験片を得た。 結果を第1表に示す。 実施例 3 製造例2−1で製造例1−2のラバーラテツク
スを使用して得たグラフト重合体(A) 485.7g 製造例3−1グラフト重合体(B) 214.3g 共重合体(C)(実施例1と同じ) 300.0g DTBPC/Mg−St 3g/5g を実施例1と同様の方法で成形評価した。結果を
第1表に示す。 実施例 4 製造例2−1で製造例1−3のラバーラテツク
スを使用して得たグラフト重合体(A) 485.7g 製造例3−1グラフト共重合体(B) 214.3g 共重合体(C)(実施例1と同じ) 300.0g DTBPC/Mg−St 3g/5g を実施例1と同様の方法でブレンド成形して試験
片を得た。結果を第1表に示す。 実施例 5 製造例2−1で製造例1−5のラバーラテツク
スを使用して得たグラフト重合体(A) 485.7g 製造例3−1グラフト共重合体(B) 214.3g 共重合体(C)(実施例1と同じ) 300.0g DTBPC/Mg−St 3g/5g を実施例1と同様の方法により試験片とし、評価
した。結果を第1表に示す。 実施例 6 製造例3−3のグラフト共重合体 414.0g 共重合体(C)(実施例1と同じ) 586.0g DTBPC/Mg−St 3g/5g を実施例1と同様の方法により試験片とし、評価
した。結果を第1表に示す。 比較例 1 製造例2−1のグラフト重合体(A) 571.4g 共重合体(C)(実施例1と同じ) 428.6g DTBPC/Mg−St 3g/5g を実施例1と同様の方法でブレンド、成形し評価
した。 結果を第1表に示す。 比較例 2 製造例3−1のグラフト重合体(B) 1000g DTBPC/Mg−St 3g/5g を実施例1と同様の方法で、ブレンドし、評価し
た。 結果を第1表に示す。 比較例 3 アクリル酸ブチルのみを製造例1−1と同様の
方法によつて重合させて得たラテツクスを使用し
て、 製造例2−1と同様の方法でグラフト重合した
共重合体 486.7g 製造例3−1の共重合体(B) 214.3g DTBPC/Mg−St 3g/5g 実施例1と同様の方法によつて成形、評価し
た。 結果を第1表に示す。実施例1と比べ、得られ
た成形品は光沢(艶)が劣り、フローマークが認
められた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermoplastic resin composition having excellent weather resistance and impact resistance. Rubber-modified resin, which has a composition in which rubber elastic particles are dispersed in a matrix made of styrene-acrylonitrile copolymer, etc., exhibits excellent impact resistance and is easy to mold, so it can be used in electrical appliances, automobiles, and other applications. Widely used as a material for parts, housings, etc. In this case, conjugated diene polymers such as polybutadiene, polyisoprene, and styrene-butadiene copolymer (SBR) are widely used as the rubber elastic body. This is because conjugated diene polymers have double bonds in their molecules.
Easy to crosslink and matrix (continuous phase)
This is because a rubber-modified resin with excellent impact resistance, so-called ABS resin, can be easily obtained because it has characteristics such as easy formation of graft bonds with
On the other hand, these rubber-modified resins use a rubber elastic body with double bonds remaining in the molecule as mentioned above, so their weather resistance, especially when exposed to direct sunlight, deteriorates significantly, and they cannot be used outdoors. It could not be used for the casings of the equipment used. As a means to solve this problem, rubber elastic materials such as polybutyl acrylate and other acrylic acid alkyl ester polymers, ethylene-propylene-nonconjugated diene terpolymer (EPDM), and other monoolefin rubber elastic materials have been proposed. It has been known to use a saturated rubber elastic material having no or only a small amount of double bonds in its molecules.
Although these saturated rubber-modified resins have shown remarkable effects in improving weather resistance, they have had problems with mechanical properties such as impact resistance. This is due to the fact that the grafting reaction does not proceed sufficiently with acrylic ester polymers, and that EPDM
This is due to the fact that particle size distribution could not be sufficiently controlled due to poor solubility in monomers, difficulty in obtaining rubber elastic bodies in latex state, etc. be. As a result of intensive research aimed at obtaining a weather-resistant and impact-resistant resin composition that does not have such problems, the present inventor has discovered that even when using a saturated rubber elastic material, the rubber elastic particles have a bimodal distribution. The present invention was achieved by discovering that it is effective to have aromatic vinyl monomer residues of 10 to 90% by weight, vinyl cyanide monomer residues of 10 to 40% by weight, and In 50 to 300 parts by weight of a matrix consisting of 0 to 80% by weight of methyl methacrylate residues, residues of an ester of acrylic acid and a monohydric alcohol having 2 to 12 carbon atoms are added.
70-98% by weight, acrylonitrile, methacrylonitrile, styrene, α-methylstyrene, p-
Consists of 1.92 to 27% by weight of vinyl toluene or alkyl methacrylate monomer residues and 0.08 to 3% by weight of polyfunctional vinyl monomer residues, and has an average particle size of
Graft copolymer (A) formed by dispersing 100 parts by weight of rubber elastic particles having a size of 0.05 to 0.45 μm, 10 to 90% by weight of aromatic vinyl monomer residues, and 10 to 10 to 90% by weight of vinyl cyanide monomer residues. 100 parts by weight of ethylene-propylene-nonconjugated diene rubber elastic particles having an average particle size of 0.5 to 5 μm are dispersed in 20 to 1500 parts by weight of a matrix consisting of 40% by weight and 0 to 80% by weight of methyl methacrylate residues. Graft copolymer (B) obtained by the following methods: 10 to 90% by weight of aromatic vinyl monomer residues, 10 to 40% by weight of vinyl cyanide monomer residues, and 0 to 80% by weight of methyl methacrylate residues A composition comprising a copolymer (C) consisting of
A weather-resistant and impact-resistant resin composition containing 40% by weight of a rubber elastic body, in which an amount corresponding to 30 to 97% by weight of the rubber elastic body is contained in the copolymer (A). achieved by. Examples of the aromatic vinyl monomer used in the present invention include styrene, α-methylstyrene, p-vinyltoluene, and other vinyltoluenes. Suitable vinyl cyanide monomers include acrylonitrile and methacrylonitrile. Copolymer (A) is preferably produced by emulsion polymerization in terms of productivity and physical properties of the obtained copolymer, but suspension polymerization or emulsion-suspension polymerization may also be used. The acrylic esters used in the production of the copolymer (A) include acrylic acid and carbon atoms of 2 to 12,
Preferably, esters with 4 to 8 monohydric alcohols are suitable. Specifically, butyl acrylate, 2-ethylhexyl acrylate, etc. are preferred. If the number of carbon atoms is outside the above range, sufficient rubber elasticity cannot be obtained, which is not preferable. These esters may be used alone or in combination of two or more. The monomers of acrylonitrile, methacrylonitrile, styrene, α-methylstyrene, p-vinyltoluene, or alkyl methacrylate constituting the rubber elastic body in the copolymer (A) can be used together with the acrylic ester constituting the rubber elastic body. polymerize,
Two or more of these monomers may be used in combination to improve the reinforcing rubber properties and graft polymerization reactivity of the resulting acrylic rubber. Examples of polyfunctional vinyl monomers include divinylbenzene, ethylene glycol dimethacrylate,
Diallyl maleate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, trimethylolpropane triacrylate,
Examples include allyl methacrylate. (In addition,
The allyl group refers to a CH2 = CHCH2- group. ) Use of these polyfunctional vinyl monomers facilitates intermolecular crosslinking of the acrylic acid ester copolymer, graft bonding with a matrix, etc., thereby improving the impact resistance of the composition according to the present invention. The acrylic ester copolymer used for the copolymer (A) may be produced by suspension polymerization, etc., but emulsion polymerization is preferable because it is easier to control the particle size and graft polymerization. preferable. In that case, a predetermined amount of the above monomer mixture is emulsified and dispersed in water using an emulsifier, and polymerization is carried out using a suitable initiator. As the emulsifier, conventional anionic, cationic, and nonionic emulsifiers can be used, but fatty acid salts such as beef tallow soap, sodium stearate, and sodium oleate are preferred because they facilitate salting out operations. Examples of polymerization initiators include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide, etc., or redoxes in combination of these with reducing agents such as L-ascorbic acid, Rongarit, acidic sodium sulfite, and ferrous chloride. In addition, benzoyl peroxide, lauryl peroxide, azobisisobutyronitrile, etc. can be used. Other polymerization conditions may be normal polymerization conditions. The average particle diameter of the rubber elastic body in the graft copolymer (A), that is, the above acrylic ester polymer is 0.05.
~0.45 μm is suitable, and 0.1 to 0.35 μm is more preferred. Note that the "average particle size" is expressed as a weight average. The particle size of such rubber elastic particles depends on the average particle size of the rubber elastic body latex used for graft polymerization, so the average particle size of the acrylic acid ester polymer latex obtained by the above emulsion polymerization is determined to be a desired value. If the particle size is smaller than , it is recommended to adjust the particle size of the latex particles by adding an acidic substance such as phosphoric acid, sulfuric acid, or acetic anhydride to the latex to coagulate and enlarge the latex particles. preferable. If the average particle size of the rubber elastic body is less than 0.05 μm, the impact resistance will not be improved, and if it exceeds 0.45 μm, the latex will become unstable, and the impact resistance, surface gloss, etc. of the resulting composition will decrease. Therefore, it is not desirable. If necessary, after adjusting the particle size of the latex to a desired value, add 10 to 90% by weight of aromatic vinyl monomer, 10 to 40% by weight of vinyl cyanide monomer, and 0 to 80% by weight of methyl methacrylate. A monomer mixture consisting of to carry out emulsion graft polymerization. In this case, a polymerization initiator and other auxiliary agents are added as necessary. The appropriate amount of the monomer mixture to be added to 100 parts by weight of the solid content of the rubber elastic body, that is, the acrylic ester copolymer latex, is 50 to 300 parts by weight. If the amount of the monomer mixture is outside the above range, it will be difficult to adjust the rubber elastic material content in the composition according to the present invention, and impact resistance will further deteriorate, which is not preferable. Furthermore, if the composition of the monomer mixture is outside the above range, chemical resistance and compatibility will decrease, which is not preferable. When emulsion graft polymerization is completed, MgSO 4 , Al 2
An aqueous solution of an electrolyte such as (SO 4 ) 3 , NaCl, HCl, CaCl 2 is added for salting out, and the obtained crumb is dehydrated and dried. The ethylene-propylene-nonconjugated diene rubber elastic body used in the production of copolymer (B) is usually
It is called EPDM and has an ethylene-propylene (weight ratio) of 80/20 to 30/70, preferably 70/30 to 40/60, and a non-conjugated diene content of 0.1 to 10 mol%. These are common. Note that as the non-conjugated diene, dicyclopentadiene, alkylidene norbornene, 1,4-hexadiene, etc. are used. 100 parts by weight of such EPDM is mixed with 20-1500 parts by weight of a monomer mixture consisting of 10-90% by weight of aromatic vinyl monomer, 10-40% by weight of vinyl cyanide monomer, and 0-80% by weight of methyl methacrylate. , preferably 20
It is dissolved in ~580 parts by weight and graft polymerized by bulk-suspension or bulk polymerization method while stirring. In this case, since EPDM is poorly soluble in vinyl cyanide monomer, if the amount of the monomer mixture is small, add a non-polymerizable organic solvent such as heptane, hexane, octane, etc. to the monomer mixture, or add an aromatic It is preferable to dissolve the group vinyl monomer alone or in a mixture of an aromatic vinyl monomer and methyl methacrylate and add the vinyl cyanide monomer during polymerization. As the polymerization initiator, those that easily cause graft polymerization are preferred, such as benzoyl peroxide, lauryl peroxide, and di-ter.-butyl peroxide [(CH 3 ) 3 C-O-O-C(CH 3 ) 3 ]. . If the ratio of the monomer mixture forming the matrix is outside the above range, it is undesirable because it is difficult to adjust the rubber elastic material content in the composition according to the present invention and the impact resistance decreases. Furthermore, chemical resistance etc. are reduced. When producing the copolymer (B), EPDM is dissolved in a predetermined amount of an aromatic vinyl monomer or a mixture of it and methyl methacrylate, and then emulsified and dispersed in water. The emulsion-dispersed latex may be subjected to emulsion graft polymerization. In this case, the obtained EPDM latex and the acrylic ester copolymer latex obtained in the polymerization process of copolymer (A) are mixed, and then the required amount of the monomer mixture is added to carry out graft polymerization. By doing so, polymerization and blending of copolymers (A) and (B) can be performed in one step. The average particle size of the rubber elastic particles in the copolymer (B) is 0.5 to 5 μm, preferably
A suitable thickness is 0.6 to 2 μm. By setting the particle size of the rubber elastic body particles in the copolymers (A) and (B) within the above range, the impact resistance of the composition according to the present invention can be improved. Copolymer (C) is produced by bulk polymerization or suspension polymerization of a mixture consisting of 10 to 90% by weight of aromatic vinyl monomer, 10 to 40% by weight of vinyl cyanide monomer, and 0 to 80% by weight of methyl methacrylate. It can be obtained by polymerization using a bulk-suspension polymerization method or the like. In this case, the use of a crosslinking agent is not preferable because it reduces compatibility. If the composition of each monomer is outside the above range, the compatibility with other copolymers will decrease, which is not preferable. In the composition according to the present invention, the content of the rubber elastic body, that is, the total amount of the acrylic ester copolymer in the copolymer (A) and the EPDM in the copolymer (B) is
It is necessary to account for 5 to 40% by weight of the total composition. If it is less than 5% by weight, the impact resistance will not be sufficient, and if it exceeds 40% by weight, the amount of rubber elastic body will be excessive and the rigidity will decrease, which is not preferable. Furthermore, it is necessary that 30 to 97% by weight of the rubber elastic body contained in the composition according to the present invention be the rubber elastic body contained in the copolymer (A), that is, the acrylic ester copolymer. . If it is outside the above range, the ratio of large and small rubber elastomer particles, that is, the particle size distribution, will be inappropriate, and the balance between impact resistance and the appearance of the resulting molded product, especially gloss (gloss), will be inappropriate. This is not preferable because it becomes defective. The copolymers (A), (B) and (C) are blended using a conventional extruder or the like. The composition according to the present invention has extremely excellent weather resistance, and also has excellent impact resistance because, unlike conventional weather-resistant rubber-modified resins, the particle size distribution of the rubber elastic body has a bimodal distribution. Next, the present invention will be specifically explained based on Examples and Comparative Examples. Production Example 1 [Production of acrylic ester copolymer (acrylic rubber/latex)] Production Example 1-1 3 In a glass flask, 1520 g of deionized water (hereinafter simply referred to as water), higher fatty acid soap (carbon number
20g of sodium salt of fatty acids whose main component is 18),
10 g of sodium bicarbonate was charged, and the temperature was raised to 75°C under a nitrogen stream. After adding 0.75 g/20 ml of potassium persulfate aqueous solution, 5 minutes later, 937.5 g of acrylic acid butyl ester (BA) and 62.5 g of acrylonitrile (AN) were added.
g, and 5 g of methacrylic acid allyl ester (AMA).
I prepared g. Heat generation occurred in about a few minutes, and the initiation of polymerization was confirmed. 15 minutes after the initial monomer charge, 0.75 g/20 ml of potassium persulfate aqueous solution was added, and at the same time, continuous addition of the remaining monomer mixture was started for 2 hours.
The addition was finished at the 30 minute mark, but in the middle the addition was completed for 1 hour and 30 minutes.
At the minute point, an aqueous solution of 6 g of fatty acid soap (dissolved in 20 ml) was added. After the monomer addition was completed, polymerization was continued for another hour at the same temperature. The conversion rate was 98% and the average particle size was 0.08 μm. Pour half of this latex into 3 flasks,
After mixing with 685 ml of water and 5 g of a 10% aqueous solution of sodium dodecylbenzenesulfonate (DBS), the mixture was kept at 50°C.
Add 320 g of 2.5% phosphoric acid aqueous solution over about 1 minute with weak stirring, then add 25% caustic potassium aqueous solution after standing for 2 minutes.
23.4 g and 14 g of a 25% DBS aqueous solution were added and stirred thoroughly. Acrylic rubber latex with an average particle size of 0.23 μm (measured with a nanosizer) was obtained. Production example 1-2 BA900g, styrene (Sh) 100g and AMA5g
Production Example 1- except that a monomer mixture consisting of
Rubber latex with an average particle size of 0.24 μm was obtained in the same manner as in Example 1. Production Example 1-3 A rubber latex with an average particle size of 0.25 μm was obtained in the same manner as Production Example 1-1, except that a monomer mixture consisting of 900 g of BA, 100 g of methacrylic acid methyl ester (MMA), and 5 g of AMA was used. Production Example 1-4 A monomer mixture consisting of 95 g of BA, 5 g of AN, and 1 g of trimethylolpropane triacrylate (TMPT), 0.5 g of lauroyl peroxide, and Hytenol N-07 (Daiichi Kogyo Seiyaku) as an emulsifier.
(manufactured by Co., Ltd.) was dissolved. Separately, a flask 1 containing 300 g of water was prepared, and the monomer mixture solution was gradually added to the flask while stirring using a tabletop homomixer to emulsify and obtain a homogeneous emulsion. The flask was set in a state where polymerization could occur, and the temperature was raised to 60°C under a nitrogen stream to initiate polymerization. 2 hours later, BA95g, AN5
The addition of a monomer mixture consisting of 1 g of TMPT and 1 g of TMPT was started and ended at 4 hours, but the temperature was kept at the same temperature for 1 hour. A crosslinked rubber latex with a conversion rate of 96% and an average particle size of 0.24 μm was obtained. Production Example 1-5 2116g of rubber latex obtained in Production Example 1-1
(450 g of rubber) was placed in two flasks and heated to 80°C under a nitrogen stream. BA45g and AN5g and
A mixture of 1.25 g of TMPT was continuously charged in about 15 minutes, but before that, 0.5 g of potassium persulfate aqueous solution/15
ml was added. During this time, the pH of the system was maintained at approximately 7.5.
A rubber latex with a conversion rate of 96% and an average particle size of 0.25 μm was obtained. Production Example 2 (Production of Copolymer (A)) Production Example 2-1 2358 g (500 g of rubber) of the acrylic rubber latex obtained in Production Example 1-1 was placed in 3 flasks equipped with a stirrer, reflux condenser, etc. The temperature was raised to 80°C. 1.86g/50ml of potassium persulfate aqueous solution was added, and at the same time, continuous addition of mixed monomers of St650g and AN278.6g was started, and after 15 minutes, potassium persulfate aqueous solution 5.57g/50ml was added.
Continuous addition of g/147ml was also started. 30 minutes after the start of monomer addition, 1 hour 10 minutes, and 2 hours later, respectively.
25% caustic potassium aqueous solution 16.3g, higher fatty acid soap aqueous solution 4.29g/35ml and the same soap aqueous solution 4.29g/35
ml and 5.57 g of terpinolene were added. Continuous addition of the monomer and potassium persulfate aqueous solution was completed in 3 hours and 45 minutes, and then the mixture was left at the same temperature for 30 minutes to complete polymerization. The graft polymer thus obtained is
The latex was poured into a large amount of calcium chloride aqueous solution and then filter-dried. The conversion rate of polymerization was 98.5%. Production Example 2-2 Production Example 2-1 except that the acrylic rubber latex (500 g of rubber) obtained in Production Example 1-5 was used.
Graft polymerization was carried out in the same manner as described above. The polymerization conversion rate was 96.5%. Production Example 3 (Production of Copolymer (B)) Production Example 3-1 St552g, EPDM [Mooney viscosity ML 1 + 4
(100℃) 45, iodine value 25, ethylidenenorbornene as the third component] 140g and n-heptane 100g
After preparing and purging with nitrogen, heat at 50℃ for 2 hours.
It was completely dissolved by stirring at 100 rpm. Next, under the same stirring, 258 g of AN was charged at a rate of 40 g/10 minutes, and then 0.5 g of di-ter.-butyl peroxide was added.
0.13 g of ter.-butyl peracetate and 0.5 g of terpinolene were charged, and bulk polymerization was carried out at 97° C. for 7 hours and 20 minutes. Approximately 30 minutes before the end of bulk polymerization, 1.5 g of di-ter.-butyl peroxide and 1.5 g of terpinolene were dissolved in 50 g of St and charged. The average particle size of the EPDM rubber at the end of polymerization was 1.6 μm. The syrup obtained in the above bulk polymerization process was mixed with water.
3 containing an aqueous solution containing 2.5 g of suspending agent (acrylic acid-acrylic acid ester copolymer) in 1100 g
After charging the autoclave (equipped with a stirrer with 3 swept blades) and purging with nitrogen, this aqueous suspension system was subjected to suspension polymerization at 130°C and 500 rpm for 2 hours, and then the temperature was raised to 150°C. Then, stripping was performed for 1 hour. The obtained resin composition was washed with water and then dried at 100°C to obtain 920 g of graft copolymer resin. Production Example 3-2 In Production Example 3-1, 140g of EPDM and St.
380g, n-heptane 100g, AN 215g,
A graft copolymer resin was obtained in the same manner except that MMA was changed to 215 g and the entire amounts of AN and MMA were changed to post-feeding. The average particle size of the rubber was 1.8 μm. Production example 3-3 In 2 flasks equipped with a stirrer
St520g, EPDM130g, oil-soluble emulsifier (Hitenol N-08, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 9.75g and water
32.5 ml of the solution was charged and stirred at 55°C for 3 hours under a nitrogen atmosphere to uniformly dissolve the solution. Next, 163 ml of water was added over several minutes with stirring, and then 585 ml of water was added all at once to invert the phase. The average particle size of the rubber component of the emulsion obtained was 0.82 μm (as measured by Coulter counter). Separately, AN77.1g, TMPT0.75g, sodium dodecylbenzenesulfonate 1.17g and water 91.4g
St-AN- by preparing an emulsion from g and mixing it with 500.9 g of the above emulsion.
An emulsion consisting of EPDM was obtained. 1110.6 g (255 g of rubber) of the acrylic rubber latex obtained in Production Example 1-5 was charged into 3 flasks, and the temperature was raised to 80°C. Subsequently, at the same time as adding 1 g/25 ml of potassium persulfate aqueous solution, the St-AN-
Continuous charging of 671.3 g of EPDM emulsion and 3.34 g/84 ml of potassium persulfate aqueous solution was started. 1 hour 20
The charging of the emulsion was completed in minutes, and then continuous charging of 300 g of the monomer mixture (St 210 g, AN 90 g) was started at a uniform rate over a period of 2 hours. During the polymerization, 30 minutes after its initiation, 1 hour 15 minutes and 2
7.5 g of 25% caustic potash aqueous solution at each hour,
2.57 g/20 ml of higher fatty acid soap aqueous solution, 2.57 g/20 ml of the same soap, and 3.34 g of terpinolene were added.
After the monomer was charged, the temperature was kept at the same temperature for 30 minutes to complete the polymerization. The conversion rate was 98%. The copolymer latex was poured into a large amount of water containing calcium chloride, washed with water, and dried to obtain 829.5 g of a graft copolymer. Production Example 3-4 1208.6g (277.5g of rubber) of the acrylic rubber latex obtained in Production Example 1-5, St-AN-
335.6g EPDM emulsion, 428.5g monomer
833.7g at a conversion rate of 97% using the same method as Production Example 3-3 except that
A graft copolymer was obtained. Example 1 Graft polymer (A) obtained in Production Example 2-1 485.7g Graft polymer (B) obtained in Production Example 3-1 214.3g Copolymer (C) (AS resin St 70% by weight, AN 30% by weight ) was mixed with 3 g of di-ter.-butyl para-cresol (DTBPC) as an antioxidant and 5 g of magnesium stearate (Mg-St) as a lubricant in a Banbury mixer, pelletized, and then molded in a 7-OZ injection molding machine. Cylinder temperature 220℃, mold temperature 40℃
It was molded with. The test pieces were evaluated for impact strength, tensile strength, and weather resistance using the following methods. Impact strength (notched, izod, 23℃)
ASTM D-256-54T Tensile Strength (23℃) ASTM D-638-61T Weather Resistance Test Sunshine Weatherometer
By WE-SON-HC (Toyo Rika),
Tensile elongation retention rate (%/%) with respect to initial value (after 200 hrs test/after 400 hrs test) The results are shown in Table 1. Further, the flow rate of the resin composition was measured according to ASTM D1238, and the results are shown in Table 1.
The measurement conditions were 220°C and 10 kg, and the unit of measurement was g/10 minutes. Example 2 Graft polymer (A) obtained in Production Example 2-1 485.7g Production Example 3-2 graft copolymer (B) 214.3g Copolymer (C) (same as Example 1) 300.0g DTBPC/ A test piece was obtained by blending and molding 3g/5g of Mg-St in the same manner as in Example 1. The results are shown in Table 1. Example 3 Graft polymer (A) obtained in Production Example 2-1 using the rubber latex of Production Example 1-2 485.7g Production Example 3-1 graft polymer (B) 214.3g Copolymer (C) ) (same as Example 1) 300.0g DTBPC/Mg-St 3g/5g was molded and evaluated in the same manner as Example 1. The results are shown in Table 1. Example 4 Graft polymer (A) obtained in Production Example 2-1 using the rubber latex of Production Example 1-3 485.7g Production Example 3-1 graft copolymer (B) 214.3g Copolymer ( C) (Same as Example 1) 300.0g DTBPC/Mg-St 3g/5g was blend-molded in the same manner as Example 1 to obtain a test piece. The results are shown in Table 1. Example 5 Graft polymer (A) obtained in Production Example 2-1 using the rubber latex of Production Example 1-5 485.7g Production Example 3-1 graft copolymer (B) 214.3g Copolymer ( C) (same as Example 1) 300.0g DTBPC/Mg-St 3g/5g was used as a test piece in the same manner as Example 1 and evaluated. The results are shown in Table 1. Example 6 Graft copolymer of Production Example 3-3 414.0g Copolymer (C) (same as Example 1) 586.0g DTBPC/Mg-St 3g/5g were prepared as test pieces by the same method as Example 1. ,evaluated. The results are shown in Table 1. Comparative Example 1 Graft polymer (A) of Production Example 2-1 571.4g Copolymer (C) (same as Example 1) 428.6g DTBPC/Mg-St 3g/5g were blended in the same manner as Example 1. , molded and evaluated. The results are shown in Table 1. Comparative Example 2 1000 g of the graft polymer (B) of Production Example 3-1 and 3 g/5 g of DTBPC/Mg-St were blended and evaluated in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 A copolymer obtained by graft polymerization in the same manner as in Production Example 2-1 using a latex obtained by polymerizing only butyl acrylate in the same manner as in Production Example 1-1. 486.7g Production Copolymer (B) of Example 3-1 214.3g DTBPC/Mg-St 3g/5g Molded and evaluated in the same manner as in Example 1. The results are shown in Table 1. Compared to Example 1, the obtained molded product had poor gloss (gloss) and flow marks were observed. 【table】

Claims (1)

【特許請求の範囲】 1 芳香族ビニル単量体残基10〜90重量%、シア
ン化ビニル単量体残基10〜40重量%及びメタアク
リル酸メチル残基0〜80重量%からなるマトリツ
クス50〜300重量部中に、炭素数が2〜12個であ
る一価アルコールとアクリル酸とのエステルの残
基70〜98重量%、アクリロニトリル、メタアクリ
ロニトリル、スチレン、α−メチルスチレン、p
−ビニルトルエン又はアルキルメタアクリレート
の単量体残基1.92〜27重量%及び多官能性ビニル
単量体残基0.08〜3重量%からなり、平均粒径が
0.05〜0.45μmであるゴム弾性体粒子100重量部が
分散してなるグラフト共重合体(A)、 芳香族ビニル単量体残基10〜90重量%、シアン
化ビニル単量体残基10〜40重量%及びメタアクリ
ル酸メチル残基0〜80重量%からなるマトリツク
ス20〜1500重量部中に平均粒径0.5〜5μmである
エチレン−プロピレン−非共役ジエン系ゴム弾性
体粒子100重量部を分散させてなるグラフト共重
合体(B)ならびに 芳香族ビニル単量体残基10〜90重量%、シアン
化ビニル単量体残基10〜40重量%及びメタアクリ
ル酸メチル残基0〜80重量%からなる共重合体(C) を配合してなる組成物であつて、該組成物は5
〜40重量%のゴム弾性体を含有し、かつ、該ゴム
弾性体の30〜97重量%に相当する量が共重合体(A)
に含まれるゴム弾性体であることを特徴とする耐
候性耐衝撃性樹脂組成物。 2 共重合体(B)が芳香族ビニル単量体残基10〜90
重量%、シアン化ビニル単量体残基10〜40重量%
及びメタアクリル酸メチル残基0〜80重量%から
なるマトリツクス20〜580重量部中に平均粒径0.5
〜5μmであるエチレン−プロピレン−非共役ジエ
ン系ゴム弾性体粒子100重量部を分散させてなる
グラフト共重合体である特許請求の範囲第1項記
載の組成物。
[Scope of Claims] 1. Matrix 50 consisting of 10 to 90% by weight of aromatic vinyl monomer residues, 10 to 40% by weight of vinyl cyanide monomer residues, and 0 to 80% by weight of methyl methacrylate residues. ~300 parts by weight, 70 to 98% by weight of residues of esters of monohydric alcohols having 2 to 12 carbon atoms and acrylic acid, acrylonitrile, methacrylonitrile, styrene, α-methylstyrene, p
- Consisting of 1.92 to 27% by weight of vinyl toluene or alkyl methacrylate monomer residues and 0.08 to 3% by weight of polyfunctional vinyl monomer residues, with an average particle size of
Graft copolymer (A) formed by dispersing 100 parts by weight of rubber elastic particles having a diameter of 0.05 to 0.45 μm, 10 to 90% by weight of aromatic vinyl monomer residues, and 10 to 90% by weight of vinyl cyanide monomer residues. 100 parts by weight of ethylene-propylene-nonconjugated diene rubber elastic particles having an average particle size of 0.5-5 μm are dispersed in 20-1500 parts by weight of a matrix consisting of 40% by weight and 0-80% by weight of methyl methacrylate residues. Graft copolymer (B) obtained by the following methods: 10 to 90% by weight of aromatic vinyl monomer residues, 10 to 40% by weight of vinyl cyanide monomer residues, and 0 to 80% by weight of methyl methacrylate residues A composition comprising a copolymer (C) consisting of 5
Contains ~40% by weight of a rubber elastic body, and an amount corresponding to 30 to 97% by weight of the rubber elastic body is a copolymer (A).
A weather-resistant and impact-resistant resin composition characterized by being a rubber elastic body contained in. 2 Copolymer (B) has 10 to 90 aromatic vinyl monomer residues
wt%, vinyl cyanide monomer residue 10-40 wt%
and 20 to 580 parts by weight of a matrix consisting of 0 to 80% by weight of methyl methacrylate residues with an average particle size of 0.5%.
2. The composition according to claim 1, which is a graft copolymer prepared by dispersing 100 parts by weight of ethylene-propylene-nonconjugated diene rubber elastic particles having a diameter of ~5 μm.
JP11351183A 1983-06-23 1983-06-23 Weather-resistant and impact-resistant resin composition Granted JPS604545A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP11351183A JPS604545A (en) 1983-06-23 1983-06-23 Weather-resistant and impact-resistant resin composition
US06/620,710 US4585832A (en) 1983-06-23 1984-06-14 Weather and impact resistant resin composition and process for its preparation
GB08415347A GB2142034B (en) 1983-06-23 1984-06-15 Weather and impact resistant resin compositions
DE19843422919 DE3422919A1 (en) 1983-06-23 1984-06-20 WEATHER-RESISTANT RESISTANT RESIN AND METHOD FOR THEIR PRODUCTION
BE0/213192A BE899982A (en) 1983-06-23 1984-06-21 WEATHER AND SHOCK RESISTANT COMPOSITION AND PROCESS FOR PREPARING THE SAME.
FR8409816A FR2549075B1 (en) 1983-06-23 1984-06-22 WEATHER AND SHOCK RESISTANT COMPOSITION AND PROCESS FOR PREPARING THE SAME
AU29775/84A AU565922B2 (en) 1983-06-23 1984-06-22 Graft copolymer composition
CA000457213A CA1233589A (en) 1983-06-23 1984-06-22 Weather and impact resistant resin composition and process for its preparation
US06/814,794 US4699947A (en) 1983-06-23 1985-12-30 Weather and impact resistant resin composition and process for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11351183A JPS604545A (en) 1983-06-23 1983-06-23 Weather-resistant and impact-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS604545A JPS604545A (en) 1985-01-11
JPH0468341B2 true JPH0468341B2 (en) 1992-11-02

Family

ID=14614185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11351183A Granted JPS604545A (en) 1983-06-23 1983-06-23 Weather-resistant and impact-resistant resin composition

Country Status (2)

Country Link
JP (1) JPS604545A (en)
BE (1) BE899982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321237B1 (en) * 2011-09-08 2013-10-28 던롭 스포츠 가부시키가이샤 Golf ball

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132953A (en) * 1985-12-05 1987-06-16 Sumitomo Naugatuck Co Ltd Weather-resistant resin composition having improved chemical resistance and rib strength
JPS62151442A (en) * 1985-12-26 1987-07-06 Sumitomo Naugatuck Co Ltd Weather-resistant resin composition having improved coloring property, chemical resistance and rib strength
JPS63245458A (en) * 1986-10-06 1988-10-12 ザ ダウ ケミカル カンパニ− Blend consisting of epdm graft terpolymer and acrylate rubber
JP4618692B2 (en) * 1998-10-29 2011-01-26 ユーエムジー・エービーエス株式会社 Rubber-containing graft polymer and thermoplastic resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164147A (en) * 1981-04-01 1982-10-08 Sumitomo Naugatuck Co Ltd Thermoplastic resin composition having excellent colorability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164147A (en) * 1981-04-01 1982-10-08 Sumitomo Naugatuck Co Ltd Thermoplastic resin composition having excellent colorability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321237B1 (en) * 2011-09-08 2013-10-28 던롭 스포츠 가부시키가이샤 Golf ball

Also Published As

Publication number Publication date
BE899982A (en) 1984-12-21
JPS604545A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
CA1175187A (en) High-notched-impact polymers having improved weather resistance
US4585832A (en) Weather and impact resistant resin composition and process for its preparation
JPS6347745B2 (en)
JPH06157688A (en) Graft polymer of granular material and molding compound containing same
US5541256A (en) Process for preparing synthetic resin powder having improved blocking resistance
JPS6239173B2 (en)
US4902745A (en) Rubber-like thermoplastic polymer mixtures
JPS6221804B2 (en)
JPH0133485B2 (en)
JPH0468341B2 (en)
JP4327198B2 (en) Thermoplastic resin composition
JP2648179B2 (en) Methacrylic resin cast plate excellent in impact resistance and method for producing the same
JPH0535173B2 (en)
JPS6039687B2 (en) Thermoplastic resin manufacturing method
JPH02212534A (en) Polymer mixture
JPH0356589B2 (en)
JPS6128698B2 (en)
KR100394735B1 (en) Preparation method of thermoplastic resin composition with excellent weather resistance, gloss and impact resistance
JP3181718B2 (en) Method for producing graft copolymer
JP2762488B2 (en) Thermoplastic resin composition
JP3142593B2 (en) Thermoplastic resin composition excellent in weather resistance, chemical resistance and impact resistance
JP2897051B2 (en) Crosslinked particle-containing polymer and composition thereof
KR100188529B1 (en) The preparation of thermoplastic resin composition having high glossness and high impact strength at low temperature
JP3340631B2 (en) Thermoplastic resin composition
JPH0522722B2 (en)