JPH0468292B2 - - Google Patents

Info

Publication number
JPH0468292B2
JPH0468292B2 JP61102471A JP10247186A JPH0468292B2 JP H0468292 B2 JPH0468292 B2 JP H0468292B2 JP 61102471 A JP61102471 A JP 61102471A JP 10247186 A JP10247186 A JP 10247186A JP H0468292 B2 JPH0468292 B2 JP H0468292B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
synthesis gas
stream
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61102471A
Other languages
Japanese (ja)
Other versions
JPS62258328A (en
Inventor
Hironori Arakawa
Kazuhiko Takeuchi
Takehiko Matsuzaki
Yoshihiro Sugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61102471A priority Critical patent/JPS62258328A/en
Publication of JPS62258328A publication Critical patent/JPS62258328A/en
Publication of JPH0468292B2 publication Critical patent/JPH0468292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、エタノール合成用触媒とアルコール
脱水用触媒を組み合わせた複合触媒により、合成
ガスから一段でエチレンを選択的に合成する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for selectively synthesizing ethylene from synthesis gas in one step using a composite catalyst that combines a catalyst for ethanol synthesis and a catalyst for alcohol dehydration.

〔従来技術〕[Prior art]

近年石油資源の枯渇化に伴い、石油以外の炭素
資源から石油化学製品を作り出す技術開発が盛ん
である。例えばC1化学技術が良い例である。石
油化学製品のうちでも、エチレン、プロピレン
は、最も重要な基礎化学品であり年間数百万tが
消費されている。このエチレン、プロピレンを石
油以外の炭素資源から製造する方法として合成ガ
スから改良型フイツシヤー・トロプシユ触媒を用
いて製造する方法が検討されているが、エチレ
ン・プロピレン選択性の向上にはシユルツフロー
リ則の制約もあり、多くの困難が存在している。
In recent years, with the depletion of petroleum resources, there has been active development of technology to produce petrochemical products from carbon resources other than petroleum. A good example is C1 chemical technology. Among petrochemical products, ethylene and propylene are the most important basic chemicals, and millions of tons are consumed annually. As a method of producing ethylene and propylene from carbon resources other than petroleum, a method of producing ethylene and propylene from synthesis gas using an improved Fischier-Tropsch catalyst is being considered; However, there are many difficulties.

また、合成ガスから容易に合成することができ
るメタノールからZSM−5等の特異なゼオライ
ト触媒により、エチレン・プロピレを選択的に合
成する方法も見い出されている。しかしこの方法
ではエチレンよりもプロピレンの選択率が多いと
いう欠点がありエチレンを選択的に合成すること
はむづかしい。
Additionally, a method has been discovered to selectively synthesize ethylene and propylene from methanol, which can be easily synthesized from synthesis gas, using a unique zeolite catalyst such as ZSM-5. However, this method has the disadvantage that the selectivity of propylene is higher than that of ethylene, making it difficult to selectively synthesize ethylene.

一方、最近合成ガスから直接エタノールを合成
する触媒も見い出されている。(特開昭58−
141089) 本発明者らは、これらの先行技術をふまえ、ま
たこれらの欠点を克服すべく、合成ガスから一段
でエチレンの選択的合成方法を鋭意検討した結
果、エタノール合成用触媒と特定の脱水素用触媒
を組み合わせた複合系触媒により、合成ガスから
エチレンを選択的に合成するプロセスを見い出す
に至つた。
On the other hand, a catalyst for directly synthesizing ethanol from synthesis gas has recently been discovered. (Unexamined Japanese Patent Publication No. 1983-
141089) Based on these prior art techniques and in order to overcome these drawbacks, the present inventors have intensively investigated a method for selectively synthesizing ethylene from synthesis gas in one step. We have discovered a process for selectively synthesizing ethylene from synthesis gas using a composite catalyst that combines conventional catalysts.

〔目的〕〔the purpose〕

本発明は、複合系触媒により合成ガスから一段
で選択的にエチレンを合成する方法を提供するこ
とを目的としてなされたものである。
The present invention has been made for the purpose of providing a method for selectively synthesizing ethylene from synthesis gas in one step using a composite catalyst.

〔構成〕〔composition〕

すなわち、本発明によれば、合成ガスからエタ
ノールを生成する触媒とエタノールを脱水してエ
チレンを生成する触媒を組み合わせ、合成からエ
タノールを合成する反応条件で同時にエタノール
の脱水反応を行い合成ガスから一段で効率良くエ
チレンを生成するプロセスが提供される。
That is, according to the present invention, a catalyst that produces ethanol from synthesis gas and a catalyst that dehydrates ethanol to produce ethylene are combined, and the dehydration reaction of ethanol is simultaneously carried out under the reaction conditions for synthesizing ethanol from the synthesis gas to produce ethylene. provides a process for efficiently producing ethylene.

本発明で用いるエタノール合成用触媒としては
Rhを主活性金属種として含む、一元系あるいは
多元担持Rh触媒であれば任意である。好ましく
は、Rh/SiO2、Rh−Fe/SiO2、Rh−Ti−Fe/
SiO2、Rh−Ti−Fe−Ir/SiO2、Ri−Mn−Fe/
SiO2、等のエタノールの選択率が比較的に高い
ものが良い。
The catalyst for ethanol synthesis used in the present invention is
Any single-component or multi-component supported Rh catalyst containing Rh as the main active metal species may be used. Preferably Rh/ SiO2 , Rh-Fe/ SiO2 , Rh-Ti-Fe/
SiO 2 , Rh-Ti-Fe-Ir/SiO 2 , Ri-Mn-Fe/
It is preferable to use a material with a relatively high selectivity for ethanol, such as SiO 2 .

本発明で用いる脱水触媒としては既存の金属酸
化物あるいはゼオライト等の脱水用酸性物質で良
いが、好ましくはシリカライト、チヤバサイト、
エリオナイト、ゼオロン500H、ゼオロン400Hの
ゼオライトが良い。
The dehydration catalyst used in the present invention may be an existing acidic substance for dehydration such as metal oxide or zeolite, but preferably silicalite, chaabasite,
Zeolites such as Erionite, Zeolon 500H, and Zeolon 400H are good.

本発明で用いる複合触媒系は、上述した触媒を
混合しても良いし、エタノール合成用触媒を上段
に、脱水用触媒を下段に設置しても良い。また両
触媒の割合は任意であるが脱水用触媒が多いほう
が好ましい。
In the composite catalyst system used in the present invention, the above-mentioned catalysts may be mixed, or the ethanol synthesis catalyst may be placed in the upper stage and the dehydration catalyst may be placed in the lower stage. Further, although the ratio of both catalysts is arbitrary, it is preferable that the amount of the dehydration catalyst is large.

本発明の用いる反応条件は合成ガス反応が進行
すれば任意であるが反応温度として100℃〜450
℃、反応圧力1atm〜200Kg/cm2、反応流速として
1ml/min/gCat〜1000m/min/gCat、合成ガ
ス比H2/CO=10/1〜1/10であれば任意であ
る。好ましくは250℃〜350℃、1atm〜50Kg/cm2
50ml〜800ml/min、合成ガス比H2/10=4/1
〜1/4が良い。
The reaction conditions used in the present invention are arbitrary as long as the synthesis gas reaction proceeds, but the reaction temperature is 100°C to 450°C.
C, reaction pressure of 1 atm to 200 Kg/ cm2 , reaction flow rate of 1 ml/min/gCat to 1000 m/min/gCat, and synthesis gas ratio H2 /CO=10/1 to 1/10. Preferably 250℃~350℃, 1atm~50Kg/ cm2 ,
50ml to 800ml/min, synthesis gas ratio H 2 /10 = 4/1
~1/4 is good.

〔効果〕〔effect〕

本発明の方法によれば、合成ガスから一段反応
で収良く、エチレンを合成することができるとい
うすぐれた効果を奏する。
According to the method of the present invention, ethylene can be synthesized from synthesis gas in a single step reaction with good yield, which is an excellent effect.

〔実施例〕〔Example〕

次に本発明を実施例に基づき詳細に説明する。 Next, the present invention will be explained in detail based on examples.

実施例 1 固定床加圧流通式反応装置の反応管(内径8
mm、長さ150mm)の上段にエタノル合成用触媒と
してRh(1)−Fe(0.3)/SiO2(カツコ内は原子比、
Rh4、7wt%)を0.5g、下段に脱水用触媒として
H−シリカライトを1.5gを仕込んだ。合成ガス
反応に先立つてH2気流(300ml/min)中400℃
で1h還元処理を行つた。H2気流中で放冷した後、
室温にて合成ガス(H2/CO=1)に切り替え反
応温度280℃、反応圧力50Kg/cm2、流速100ml/
minで反応を行つた。反応開始1時間後のCO転
化率は5%であり、生成物の選択率(炭素効率)
はCH448.3%、C2H62.5%、C2H429.3%、C3H80.7
%、C3H62.7%、CH3OH7.0%、C2H5OH0.0%、
C2H5OC2H5微量、C2含酸素化合物5.2%、CO23.3
%、その他1.0%であつた。
Example 1 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8
Rh(1)-Fe(0.3)/SiO 2 (atomic ratio in box,
0.5 g of Rh4 (7wt%) and 1.5 g of H-silicalite as a dehydration catalyst were placed in the lower stage. 400℃ in H2 stream (300ml/min) prior to syngas reaction
Reduction treatment was performed for 1 h. After cooling in a stream of H2 ,
Switch to synthesis gas (H 2 /CO = 1) at room temperature, reaction temperature 280℃, reaction pressure 50Kg/cm 2 , flow rate 100ml/
The reaction was carried out at min. The CO conversion rate 1 hour after the start of the reaction was 5%, and the selectivity of the product (carbon efficiency) was
CH4 48.3 % , C2H6 2.5%, C2H4 29.3% , C3H8 0.7
%, C3H6 2.7 %, CH3OH7.0 %, C2H5OH0.0 % ,
C2H5 OC2H5 trace , C2 oxygenates 5.2%, CO2 3.3
%, and others 1.0%.

実施例 2 固定床加圧流通式反応装置の反応管(内径8
mm、長さ150mm)の上段にエタノル合成用触媒と
してRh(1)−Ti(1)−Fe(0.3)−Ir(0.5)/SiO2(カ
ツコ内は原子比、Rh4、7wt%)を0.5g、下段に
脱水用触媒としてH−シリカライトを1.5gを仕
込んだ。合成ガス反応に先立つてH2気流(300
ml/min)中400℃で1h還元処理を行つた。H2
流中で放冷した後、室温にて合成ガス(H2/CO
=1)に切り替え反応温度260℃、反応圧力50
Kg/cm2、流速100ml/minで反応を行つた。反応
開始1時間後のCO転化率は6.2%であり、生成物
の選択率(炭素効率)はCH432.7%、C2H63.6%、
C2H444.7%、C3H81.2%、C3H62.4%、
CH3OH5.9%、C2H5OH0.0%、C2H5OC2H51.5
%、C2含酸素化合物5.8%、CO23.1%、その他0.6
%であつた。
Example 2 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8
mm, length 150 mm) as a catalyst for ethanol synthesis. g, 1.5 g of H-silicalite was charged into the lower stage as a dehydration catalyst. Prior to the synthesis gas reaction, a stream of H2 (300
ml/min) at 400°C for 1 h. After cooling in a H 2 stream, synthesis gas (H 2 /CO
=1) Reaction temperature 260℃, reaction pressure 50
The reaction was carried out at a flow rate of 100 ml/ min at a flow rate of 100 ml/min. The CO conversion rate 1 hour after the start of the reaction was 6.2%, and the product selectivity (carbon efficiency) was 32.7% for CH 4 , 3.6% for C 2 H 6 ,
C2H4 44.7 %, C3H8 1.2%, C3H6 2.4 % ,
CH3OH5.9 % , C2H5OH0.0 % , C2H5OC2H5 1.5
%, C2 oxygenates 5.8%, CO2 3.1%, others 0.6
It was %.

実施例 3 固定床加圧流通式反応装置の反応管(内径8
mm、長さ150mm)の上段にエタノル合成用触媒と
してRh(1)−Ti(1)−Fe(0.3)−Ir(0.5)/SiO2(カ
ツコ内は原子比、Rh4、7wt%)を0.5g、下段に
脱水用触媒としてゼオロン500Hを1.5gを仕込ん
だ。合成ガス反応に先立つてH2気流(300ml/
min)中400℃で1h還元処理を行つた。H2気流中
で放冷した後、室温にて合成ガス(H2/CO=
1)に切り替え反応温度260℃、反応圧力50Kg/
cm2、流速100ml/minで反応を行つた。反応開始
1時間後のCO転化率は6.1%であり、生成物の選
択率(炭素効率)はCH434.2%、C2H611.9%、
C2H441.9%、C3H81.6%、C3H6微量、CH3OH微
量、C2H5OH0.0%、C2H5OC2H5微量、C2含酸素
化合物 微量、CO210.9%、その他0.3%であつ
た。
Example 3 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8
mm, length 150 mm) as a catalyst for ethanol synthesis. g, 1.5 g of Zeolon 500H was charged into the lower stage as a dehydration catalyst. H2 stream (300ml/
Reduction treatment was carried out at 400°C for 1 hour (min). After cooling in a H 2 stream, synthesis gas (H 2 /CO=
Switch to 1) Reaction temperature 260℃, reaction pressure 50Kg/
The reaction was carried out at a flow rate of 100 ml/min at a flow rate of 100 ml/min. The CO conversion rate 1 hour after the start of the reaction was 6.1%, and the product selectivity (carbon efficiency) was 34.2% for CH 4 , 11.9% for C 2 H 6 ,
C 2 H 4 41.9%, C 3 H 8 1.6%, C 3 H 6 trace, CH 3 OH trace, C 2 H 5 OH 0.0%, C 2 H 5 OC 2 H 5 trace, C 2 oxygenated compound trace , CO 2 10.9%, and other 0.3%.

実施例 4 固定床加圧流通式反応装置の反応管(内径8
mm、長さ150mm)の上段にエタノル合成用触媒と
してRh(1)−Ti(1)−Fe(0.3)−Ir(0.5)/SiO2(カ
ツコ内は原子比、Rh4、7wt%)を0.5g、下段に
脱水用触媒としてゼオロン200Hを1.5gを仕込ん
だ。合成ガス反応に先立つてH2気流(300ml/
min)中400℃で1h還元処理を行つた。H2気流中
で放冷した後、室温に合成ガス(H2/CO=1)
に切り替え反応温度260℃、反応圧力50Kg/cm2
流速100ml/minで反応を行つた。反応開始1時
間後のCO転化率は6.2%であり、生成物の選択率
(炭素効率)はCH444.8%、C2H65.2%、C2H423.9
%、C3H88.7%、C3H6微量、CH3OH0.2%、
C2H5OH0.0%、C2H5OC2H5微量、C2含酸素化合
物 微量、CO210.9%、その他0.3%であつた。
Example 4 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8
mm, length 150 mm) as a catalyst for ethanol synthesis. g, 1.5 g of Zeolon 200H was charged into the lower stage as a dehydration catalyst. H2 stream (300ml/
Reduction treatment was carried out at 400°C for 1 hour (min). After cooling in a stream of H2 , the synthesis gas ( H2 /CO=1) was brought to room temperature.
Switch to reaction temperature 260℃, reaction pressure 50Kg/cm 2 ,
The reaction was carried out at a flow rate of 100 ml/min. The CO conversion rate 1 hour after the start of the reaction was 6.2%, and the product selectivity (carbon efficiency) was CH 4 44.8%, C 2 H 6 5.2%, C 2 H 4 23.9
%, C3H8 8.7 %, C3H6 trace , CH3OH0.2 %,
C 2 H 5 OH 0.0%, C 2 H 5 OC 2 H 5 trace amount, C 2 oxygen-containing compound trace amount, CO 2 10.9%, and others 0.3%.

比較例 1 固定床加圧流通式反応装の反応管(内径8mm、
長さ150mm)の上段にエタノール合成用触媒とし
てRh(1)−Fe(0.3)/SiO2(カツコ内は原子比、
Rh4.7wt%)を0.5g、仕込んだ。合成ガス反応
に先立つてH2気流(300ml/min)中400℃で1h
還元処理を行つた。H2気流中で放冷した後、室
温にて合成ガス(H2/CO=1)に切り替え反応
温度280℃、反応圧力50Kg/cm2、流速100ml/min
で反応を行つた。反応開始1時間後のCO転化率
は5.0%であり、生成物の選択率(炭素効率)は
CH435.6%、C2H61.4%、C2H40.1%、C3H8.0.2
%、C3H6微量、CH3OH19.8%、C2H5OH32.6%、
C2H5OC2H5微量、C2含酸素化合物39.5%、
CO22.3%、その他1.1%であつた。
Comparative Example 1 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8 mm,
Rh(1)-Fe(0.3)/SiO 2 (the atomic ratio in the cutout is
0.5g of Rh4.7wt%) was charged. 1 h at 400 °C in H2 flow (300 ml/min) prior to syngas reaction.
Reduction processing was performed. After cooling in a H 2 stream, switch to synthesis gas (H 2 /CO = 1) at room temperature. Reaction temperature: 280℃, reaction pressure: 50Kg/cm 2 , flow rate: 100ml/min.
I performed the reaction. The CO conversion rate 1 hour after the start of the reaction was 5.0%, and the product selectivity (carbon efficiency) was
CH4 35.6% , C2H6 1.4% , C2H4 0.1 %, C3H8.0.2
%, C3H6 trace , CH3OH19.8 %, C2H5OH32.6 % ,
C2H5 OC2H5 traces , C2 oxygenates 39.5% ,
CO 2 was 2.3% and others 1.1%.

比較例 2 固定床加圧流通式反応装の反応管(内径8mm、
長さ150mm)の上段にエタノール合成用触媒とし
てRh(1)−Ti(1)−Fe(0.3)Ir(0.5)/SiO2(カツコ
内は原子比、Rh4.7wt%)を0.5g、仕込んだ。
合成ガス反応に先立つてH2気流(300ml/min)
中400℃で1h還元処理を行つた。H2気流中で放冷
した後、室温にて合成ガス(H2/CO=1)に切
り替え反応温度260℃、反応圧力50Kg/cm2、流速
100ml/minで反応を行つた。反応開始1時間後
のCO転化率は6.3%であり、生成物の選択率(炭
素効率)はCH421.5%、C2H61.3%、C2H40.1%、
C3H80.5%、C3H60.4%、CH3OH3.7%、
C2H5OH50.7%、C2H5OC2H5微量、C2含酸素化
合物65.0%、CO24.2%、その他3.3%であつた。
Comparative Example 2 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8 mm,
0.5 g of Rh(1)-Ti(1)-Fe(0.3)Ir(0.5)/SiO 2 (atomic ratio in the cutlet, Rh4.7wt%) was charged into the upper stage (length 150 mm) as a catalyst for ethanol synthesis. is.
H2 stream (300ml/min) prior to synthesis gas reaction
Reduction treatment was performed at 400°C for 1 hour. After cooling in a H 2 stream, switch to synthesis gas (H 2 /CO = 1) at room temperature. Reaction temperature: 260℃, reaction pressure: 50Kg/cm 2 , flow rate.
The reaction was carried out at 100 ml/min. The CO conversion rate 1 hour after the start of the reaction was 6.3%, and the product selectivity (carbon efficiency) was 21.5% for CH 4 , 1.3% for C 2 H 6 , 0.1% for C 2 H 4 ,
C3H8 0.5%, C3H6 0.4 %, CH3OH3.7 % ,
The contents were 50.7% of C2H5OH , trace amounts of C2H5OC2H5 , 65.0% of C2 oxygen - containing compounds, 4.2% of CO2 , and 3.3% of others.

比較例 3 固定床加圧流通式反応装の反応管(内径8mm、
長さ150mm)の上段にエタノール合成用触媒とし
てRh(1)−Ti(1)−Fe(0.3)Ir(0.5)/SiO2(カツコ
内は原子比、Rh4.7wt%)を0.5g、下段に脱水
用触媒としてγ−Al2O3を1.5gを仕込んだ。合成
ガス反応に先立つてH2気流(300ml/min)中
400℃で1h還元処理を行つた。H2気流中で放冷し
た後、室温にて合成ガス(H2/CO=1)に切り
替え反応温度260℃、反応圧力50Kg/cm2、流速100
ml/minで反応を行つた。反応開始1時間後の
CO転化率は6.2%であり、生成物の選択率(炭素
効率)はCH431.1%、C2H62.0%、C2H47.2%、
C3H80.5%、C3H63.2%、CH3OH4.5%、
C2H5OH17.7%、C2H5OC2H522.4%、C2含酸素化
合物41.1%、CO25.8%、その他4.4%であつた。
Comparative Example 3 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8 mm,
0.5 g of Rh(1)-Ti(1)-Fe(0.3)Ir(0.5)/SiO 2 (atomic ratio in the box, Rh4.7wt%) as a catalyst for ethanol synthesis was placed in the upper part (length 150 mm), and in the lower part. 1.5 g of γ-Al 2 O 3 was added as a dehydration catalyst. In H 2 stream (300ml/min) prior to synthesis gas reaction
Reduction treatment was performed at 400°C for 1 hour. After cooling in a H 2 stream, switch to synthesis gas (H 2 /CO = 1) at room temperature. Reaction temperature: 260℃, reaction pressure: 50Kg/cm 2 , flow rate: 100℃.
The reaction was carried out at ml/min. 1 hour after the start of the reaction
The CO conversion rate is 6.2%, and the product selectivity (carbon efficiency) is CH4 31.1%, C2H6 2.0 %, C2H4 7.2 %,
C3H8 0.5%, C3H6 3.2%, CH3OH4.5 % ,
The contents were 17.7% for C 2 H 5 OH, 22.4% for C 2 H 5 OC 2 H 5 , 41.1% for C 2 oxygen-containing compounds, 5.8% for CO 2 , and 4.4% for others.

比較例 4 固定床加圧流通式反応装の反応管(内径8mm、
長さ150mm)の上段にエタノール合成用触媒とし
てRh(1)−Ti(1)−Fe(0.3)Ir(0.5)/SiO2(カツコ
内は原子比、Rh4.7wt%)を0.5g、下段に脱水
用触媒としてH−ZSM−5を1.5gを仕込んだ。
合成ガス反応に先立つてH2気流(300ml/min)
中400℃で1h還元処理を行つた。H2気流中で放冷
した後、室温にて合成ガス(H2/CO=1)に切
り替え反応温度260℃、反応圧力50Kg/cm2、流速
100ml/minで反応を行つた。反応開始1時間後
のCO転化率は6.1%であり、生成物の選択率(炭
素効率)はCH423.3%、C2H61.4%、C2H40.5%、
C3H80.3%、C3H60.7%、CH3OH12.2%、
C2H5OH42.8%、C2H5OC2H5微量、C2含酸素化
合物55.6%、CO23.5%、その他2.6%であつた。
Comparative Example 4 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8 mm,
0.5 g of Rh(1)-Ti(1)-Fe(0.3)Ir(0.5)/SiO 2 (atomic ratio in the box, Rh4.7wt%) as a catalyst for ethanol synthesis was placed in the upper part (length 150 mm), and in the lower part. 1.5 g of H-ZSM-5 was charged as a dehydration catalyst.
H2 stream (300ml/min) prior to synthesis gas reaction
Reduction treatment was performed at 400°C for 1 hour. After cooling in a H 2 stream, switch to synthesis gas (H 2 /CO = 1) at room temperature. Reaction temperature: 260℃, reaction pressure: 50Kg/cm 2 , flow rate.
The reaction was carried out at 100 ml/min. The CO conversion rate 1 hour after the start of the reaction was 6.1%, and the product selectivity (carbon efficiency) was 23.3% for CH 4 , 1.4% for C 2 H 6 , 0.5% for C 2 H 4 ,
C3H8 0.3 %, C3H6 0.7 %, CH3OH12.2 %,
The contents were 42.8% C2H5OH , trace amounts of C2H5OC2H5 , 55.6% of C2 oxygen - containing compounds, 3.5% of CO2 , and 2.6% of others.

比較例 5 固定床加圧流通式反応装の反応管(内径8mm、
長さ150mm)の上段にエタノール合成用触媒とし
てRh(1)−Ti(1)−Fe(0.3)Ir(0.5)/SiO2(カツコ
内は原子比、Rh4.7wt%)を0.5g、下段に脱水
用触媒としてH−ZSM−5を1.5gを仕込んだ。
合成ガス反応に先立つてH2気流(300ml/min)
中400℃で1h還元処理を行つた。H2気流中で放冷
した後、室温にて合成ガス(H2/CO=1)に切
り替え反応温度260℃、反応圧力50Kg/cm2、流速
100ml/minで反応を行つた。反応開始0.5時間後
のCO転化率は6.2%であり、生成物の選択率(炭
素効率)はCH466.0%、C2H64.6%、C2H41.8%、
C3H81.1%、C3H62.2%、CH3OH6.5%、
C2H5OH1.4%、C2H5OC2H5微量、C2含酸素化合
物5.1%、CO211.5%、その他1.2%であつた。
Comparative Example 5 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8 mm,
0.5 g of Rh(1)-Ti(1)-Fe(0.3)Ir(0.5)/SiO 2 (atomic ratio in the box, Rh4.7wt%) as a catalyst for ethanol synthesis was placed in the upper part (length 150 mm), and in the lower part. 1.5 g of H-ZSM-5 was charged as a dehydration catalyst.
H2 stream (300ml/min) prior to synthesis gas reaction
Reduction treatment was performed at 400°C for 1 hour. After cooling in a H 2 stream, switch to synthesis gas (H 2 /CO = 1) at room temperature. Reaction temperature: 260℃, reaction pressure: 50Kg/cm 2 , flow rate.
The reaction was carried out at 100 ml/min. The CO conversion rate 0.5 hours after the start of the reaction was 6.2%, and the product selectivity (carbon efficiency) was CH 4 66.0%, C 2 H 6 4.6%, C 2 H 4 1.8%,
C3H8 1.1%, C3H6 2.2%, CH3OH6.5 % ,
The contents were 1.4 % C2H5OH , trace amounts of C2H5OC2H5 , 5.1% of C2 oxygen -containing compounds, 11.5% of CO2 , and 1.2% of others.

比較例 6 固定床加圧流通式反応装の反応管(内径8mm、
長さ150mm)の上段にエタノール合成用触媒とし
てRh(1)−Ti(1)−Fe(0.3)Ir(0.5)/SiO2(カツコ
内は原子比、Rh4.7wt%)を0.5g、下段に脱水
用触媒としてモルデナイトを1.5gを仕込んだ。
合成ガス反応に先立つてH2気流(300ml/min)
中400℃で1h還元処理を行つた。H2気流中で放冷
した後、室温にて合成ガス(H2/CO=1)に切
り替え反応温度260℃、反応圧力50Kg/cm2、流速
100ml/minで反応を行つた。反応開始1時間後
のCO転化率は6.2%であり、生成物の選択率(炭
素効率)はCH450.9%、C2H67.5%、C2H40.0%、
C3H819.7%、C3H60.0%、CH3OH0.0%、
C2H5OH0.0%、C2H5OC2H5微量、C2含酸素化合
物微量、CO215.0%、その他6.9%であつた。
Comparative Example 6 Reaction tube of fixed bed pressurized flow reactor (inner diameter 8 mm,
0.5 g of Rh(1)-Ti(1)-Fe(0.3)Ir(0.5)/SiO 2 (atomic ratio in the box, Rh4.7wt%) as a catalyst for ethanol synthesis was placed in the upper part (length 150 mm), and in the lower part. 1.5 g of mordenite was added as a dehydration catalyst.
H2 stream (300ml/min) prior to synthesis gas reaction
Reduction treatment was performed at 400°C for 1 hour. After cooling in a H 2 stream, switch to synthesis gas (H 2 /CO = 1) at room temperature. Reaction temperature: 260℃, reaction pressure: 50Kg/cm 2 , flow rate.
The reaction was carried out at 100 ml/min. The CO conversion rate 1 hour after the start of the reaction was 6.2%, and the product selectivity (carbon efficiency) was CH 4 50.9%, C 2 H 6 7.5%, C 2 H 4 0.0%,
C3H8 19.7 %, C3H6 0.0 %, CH3OH0.0 %,
The contents were 0.0% C 2 H 5 OH, trace amounts of C 2 H 5 OC 2 H 5 , trace amounts of C 2 oxygen-containing compounds, 15.0% CO 2 , and 6.9% of others.

Claims (1)

【特許請求の範囲】[Claims] 1 合成ガスからエタノールを合成するシリカ担
持多成分系ロジウム触媒とゼオライト触媒を組合
せた複合触媒により、合成ガスから一段でエチレ
ンを選択的に得る方法。
1. A method for selectively obtaining ethylene from synthesis gas in one step using a composite catalyst that combines a silica-supported multicomponent rhodium catalyst and a zeolite catalyst to synthesize ethanol from synthesis gas.
JP61102471A 1986-05-02 1986-05-02 Selective synthesis of ethylene from synthetic gas Granted JPS62258328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61102471A JPS62258328A (en) 1986-05-02 1986-05-02 Selective synthesis of ethylene from synthetic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61102471A JPS62258328A (en) 1986-05-02 1986-05-02 Selective synthesis of ethylene from synthetic gas

Publications (2)

Publication Number Publication Date
JPS62258328A JPS62258328A (en) 1987-11-10
JPH0468292B2 true JPH0468292B2 (en) 1992-11-02

Family

ID=14328363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102471A Granted JPS62258328A (en) 1986-05-02 1986-05-02 Selective synthesis of ethylene from synthetic gas

Country Status (1)

Country Link
JP (1) JPS62258328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110302A (en) * 2006-10-30 2008-05-15 National Institute Of Advanced Industrial & Technology Catalyst for producing ethylene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333342A (en) * 1986-07-29 1988-02-13 Agency Of Ind Science & Technol Production of ethylene from synthesis gas
JPH0665384B2 (en) * 1987-12-21 1994-08-24 日揮株式会社 Catalyst regeneration method
JP2006116439A (en) * 2004-10-21 2006-05-11 National Institute Of Advanced Industrial & Technology Catalyst for producing ethylene and method for producing ethylene by using the catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692825A (en) * 1979-12-18 1981-07-27 Haldor Topsoe As Method and catalyst for manufacturing gas mixture containing high quantity of c22hydrocarbons
JPS57159723A (en) * 1981-03-30 1982-10-01 Idemitsu Kosan Co Ltd Selective preparation of lower unsaturated hydrocarbons
JPS60246329A (en) * 1984-05-21 1985-12-06 Toyota Central Res & Dev Lab Inc Process for synthesizing hydrocarbon
JPS6183134A (en) * 1984-09-28 1986-04-26 Agency Of Ind Science & Technol Production of unsaturated hydrocarbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692825A (en) * 1979-12-18 1981-07-27 Haldor Topsoe As Method and catalyst for manufacturing gas mixture containing high quantity of c22hydrocarbons
JPS57159723A (en) * 1981-03-30 1982-10-01 Idemitsu Kosan Co Ltd Selective preparation of lower unsaturated hydrocarbons
JPS60246329A (en) * 1984-05-21 1985-12-06 Toyota Central Res & Dev Lab Inc Process for synthesizing hydrocarbon
JPS6183134A (en) * 1984-09-28 1986-04-26 Agency Of Ind Science & Technol Production of unsaturated hydrocarbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110302A (en) * 2006-10-30 2008-05-15 National Institute Of Advanced Industrial & Technology Catalyst for producing ethylene

Also Published As

Publication number Publication date
JPS62258328A (en) 1987-11-10

Similar Documents

Publication Publication Date Title
US9957206B2 (en) Hydrocarbon conversion
Raja et al. Direct conversion of methane to methanol
RU2203215C2 (en) Hydrogen-rich gas production method
US5233113A (en) Process for converting lower alkanes to esters
CA1061805A (en) Conversion of synthesis gas to aromatic hydrocarbons
TW413674B (en) Process for the preparation of acetic acid
US6376562B1 (en) Hybrid catalyst for hydrocarbon synthesis via hydrogenation of carbon dioxide
JP2000501735A (en) Use of transition metal containing small pore molecular sieve catalysts in the conversion of oxygen binding compounds.
US5840969A (en) Process for the preparation of acetic acid from a synthesis gas of hydrogen and carbon monoxide
CN101410353B (en) Method for producing propylene
JPH01146837A (en) Method for dehydrating cyclohexenone
Klier et al. Catalytic synthesis of methanol, higher alcohols and ethers
SU1194267A3 (en) Method of producing c2-c4 olefins
JPH0468292B2 (en)
Park et al. Catalytic reduction of carbon dioxide. The effects of catalysts and reductants
WO2000029364A1 (en) Preparation of polyoxymethylene dimethyl ethers by reaction of dimethylether with formaldehyde over heterogeneous catalysts
Hutchings et al. Methanol Conversion to Hydrocarbons over Zeolite H-ZSM-5: Investigation of the Role of CO and Ketene in the Formation of the Initial C C Bond
EP0256479A2 (en) Process for the catalytic transhalogenation of a poly-iodo-benzene
CN107814690B (en) Method for converting ethylene glycol monomethyl ether
US4982032A (en) Process for converting a wet acetylene-containing stream to aromatics using a zinc-promoted, crystalline, borosilicate molecular sieve catalyst composition
JPS58116425A (en) Manufacture of benzene, toluene and xylene- rich hydrocarbon mixture
CN111514940A (en) Catalyst for one-step preparation of acetone, preparation method and application thereof
KR20190053339A (en) Method of producing methanol
JPS5982319A (en) Catalytic conversion of methanol to light olefins
CN111389454B (en) Catalyst and method for preparing p-tolualdehyde from synthesis gas and toluene

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term