JPH0467854A - Ultrasonic image pickup device - Google Patents

Ultrasonic image pickup device

Info

Publication number
JPH0467854A
JPH0467854A JP2179671A JP17967190A JPH0467854A JP H0467854 A JPH0467854 A JP H0467854A JP 2179671 A JP2179671 A JP 2179671A JP 17967190 A JP17967190 A JP 17967190A JP H0467854 A JPH0467854 A JP H0467854A
Authority
JP
Japan
Prior art keywords
scanning
electrode
ultrasonic
circuit
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179671A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Chitose Nakatani
中谷 千歳
Hiroyuki Takeuchi
裕之 竹内
Shinichiro Umemura
晋一郎 梅村
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2179671A priority Critical patent/JPH0467854A/en
Publication of JPH0467854A publication Critical patent/JPH0467854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To perform the image pickup of plural tomographic planes i.e. three- dimensional image pickup by the scan of an electronic linear or an electric sector at every scanning position by performing such aperture synthetic processing that reception signals for plural times at the scanning position by a scanning means are stored as adding. CONSTITUTION:A series of operations for ultrasonic wave transmission/reception are repeated at every sequential switching of electrode selection in electrode arrange ment A at a switch scanning circuit 2. The holding of reception data from a reception circuit 7 on memory space is always performed by developing on the circular arc of a concentric circle centering a position in accordance with a selected electrode, and also, it is performed as adding new data on a value held in each address of the memory space until then. In other words, the reception data is added and held at every shift of a voltage activation area in a direction of (x) i.e. a transmission/ reception wave aperture by an aperture synthesizing method. For example, when a reflection source exists at a position shown in C in a subject, a high value is added and held at a position equivalent to the circular arc a1 on the memory space in a transmission/reception wave by the selection of an electrode A1, and the high value is added and held at the position equivalent to the circular arc aj on the memory space in the transmission/reception wave by the selection of an electrode Aj.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電子走査方式の超音波診断装置並びに超音波
撮像装置に関し、特にその電子走査方式
The present invention relates to an electronic scanning type ultrasound diagnostic device and an ultrasound imaging device, and particularly to an electronic scanning type ultrasound diagnostic device and an ultrasound imaging device.

【従来の技術】[Conventional technology]

従来、超音波探触子の電気音響変換部を構成する超音波
振動子を2次元に分割し、3次元の撮像を行う手法にお
いては、多数2次元配列したそれぞれの超音波振動子に
対して独立した電極を形成し配線する方法が取られてい
た。しかし、この方法は振動子数が増すにつれ実裟が困
難になる問題がある。この問題を解決するため、電歪材
料板の両主面に互いに交差する短冊状の電極配列を設け
て超音波探触子の振動子とする方法が特開昭62〜84
697号に開示されている。従来、振動子材料として広
く用いられている圧電材料は、超音波受波による機械的
変位により電圧を発生する性質を利用して超音波探触子
の電気音響変換部に用いられている。これに対し、電歪
材料はバイアス電界下でのみ機械的変位により電圧の変
動が生じる性質を有する。また、バイアス電界の強度に
より電気機械結合係数が大きく変化するため、電歪材料
はバイアス電界により電気音響変換効率が制御できる圧
電材料とみなすこともできる。この電歪材料の平板の主
面に第5図(a)のように、互いに直交ないしある角度
で交差する短冊状の電極配列A、Bを設は振動子を構成
した場合には、各主面より選択した電極間にバイアス電
界を加えることにより、(b)のように電極交差部分の
電歪材料が振動素子として選択され、電極間の電圧変動
として超音波受信時の電気音響変換を行うことができる
。しかし、この手法では電極配列A、Hのどちらか一方
を用いて電子的フォーカシングを行いながら超音波ビー
ムの収束を行い、電子走査をリアルタイムで行うことは
可能であるが、面電極配列方向同時に電子的フォーカシ
ングを行った電子走査を行うことは困難である。
Conventionally, in the method of dividing the ultrasound transducer constituting the electroacoustic transducer of an ultrasound probe into two dimensions and capturing three-dimensional images, it is necessary to The method used was to form independent electrodes and wire them. However, this method has a problem in that it becomes difficult to put it into practice as the number of oscillators increases. In order to solve this problem, a method was proposed in Japanese Patent Application Laid-Open No. 62-84, in which a rectangular electrode array was provided on both principal surfaces of an electrostrictive material plate to serve as a vibrator for an ultrasonic probe.
No. 697. Conventionally, piezoelectric materials, which have been widely used as transducer materials, are used in electroacoustic transducers of ultrasound probes, taking advantage of their property of generating voltage through mechanical displacement caused by ultrasound reception. In contrast, electrostrictive materials have the property of causing voltage fluctuations due to mechanical displacement only under a bias electric field. Further, since the electromechanical coupling coefficient changes greatly depending on the strength of the bias electric field, the electrostrictive material can also be regarded as a piezoelectric material whose electroacoustic conversion efficiency can be controlled by the bias electric field. If a vibrator is constructed by providing strip-shaped electrode arrays A and B that are perpendicular to each other or intersect at a certain angle, as shown in FIG. 5(a), each main By applying a bias electric field between electrodes selected from the plane, the electrostrictive material at the electrode intersection is selected as a vibrating element as shown in (b), and electroacoustic conversion occurs when receiving ultrasonic waves as voltage fluctuation between the electrodes. be able to. However, with this method, it is possible to converge the ultrasonic beam while performing electronic focusing using either electrode array A or H, and perform electronic scanning in real time. It is difficult to perform electronic scanning with precise focusing.

【発明が解決しようとする課題1 上記従来技術は、交差型の電極配列を備えた電歪材料振
動子を電気音響変換部に用いた超音波探触子の動作原理
あるいは探触子の基本的構成についてのみ開示されてお
り、両主面の電極配列の両方を同時に電子的フォーカシ
ングに用いてリアルタイムで撮像することが困難である
事情を踏まえた3次元超音波撮像方式については配慮が
されておらず、該超音波探触子を備える3次元撮像が可
能な超音波診断装置あるいは超音波撮像装置は実現出来
なかった。 本発明の目的は交差型の電極を設けた電歪材料を電気音
響変換部に用いた超音波探触子を用いて、3次元の立体
撮像が可能な超音波診断装置あるいは超音波撮像装置の
撮像方式を提供することにある。 本発明の他の目的は、上記診断装置あるいは撮像装置の
電子走査方式を提供することにある。 本発明の他の目的は、上記撮像方式の診断装置あるいは
撮像装置を提供することにある。 【課題を解決するための手段】 上記目的を達成するために本発明では、交差型の電極配
列を備えた電歪材料の板の両主面の互いに交差する電極
配列A、Bのうちの一方の電極配列Aには各電極にバイ
アス電圧を選択的に印加する走査手段を接続し、他方の
電極配列Bには超音波ビームの電子的収束機能およ走査
機能を有する超音波送受信手段を接続し、上記超音波送
受信手段では電極配列Bのうちの複数電極を用いた送受
信を、いわゆる電子リニア走査もしくは電子セクタ走査
を行いながら繰り返し実施し、上記走査手段では上記超
音波送受信手段による電極選択の数より少ない数の電極
へのバイアス電圧印加により振動子の圧電性誘起部分を
小口径に絞ってこれを電極配列Aの配列方向で順次走査
する構成とし、さらに上記電子リニア走査もしくは電子
セクタ走査の走査位置ごとに上記走査手段の複数回分の
走査位置での超音波受波信号を記憶手段に加算しながら
記憶することにより電極配列Aの配列方向での開口合成
を行って3次元撮像を行う構成とした点に特徴がある。 更に具体的には、上記超音波送受信手段は電極配列Aの
全てもしくは一部の電極を用いて各回の送信および受信
を行い、その送信および受信信号に所定の遅延時間分布
を施して送波および受波ビームを収束させるものであり
、かつ1回の送信後の受信期間中に受信信号の遅延時間
分布を順次変更して受波ビームの収束点をビーム深さ方
向に移動する手段を含む。
Problem to be Solved by the Invention 1 The above-mentioned prior art is based on the operating principle of an ultrasonic probe that uses an electrostrictive material vibrator with a crossed electrode arrangement as an electroacoustic transducer or the basic principle of the probe. Only the configuration is disclosed, and no consideration is given to the three-dimensional ultrasound imaging method, which takes into account the difficulty of simultaneously using both electrode arrays on both principal surfaces for electronic focusing and imaging in real time. First, it has not been possible to realize an ultrasonic diagnostic apparatus or an ultrasonic imaging apparatus equipped with the ultrasonic probe and capable of three-dimensional imaging. An object of the present invention is to provide an ultrasonic diagnostic device or an ultrasonic imaging device capable of three-dimensional stereoscopic imaging using an ultrasonic probe using an electrostrictive material provided with crossed electrodes as an electroacoustic transducer. The objective is to provide an imaging method. Another object of the present invention is to provide an electronic scanning method for the above diagnostic device or imaging device. Another object of the present invention is to provide a diagnostic device or an imaging device using the above imaging method. [Means for Solving the Problems] In order to achieve the above object, the present invention provides one of electrode arrays A and B that intersect with each other on both principal surfaces of a plate of electrostrictive material having crossed electrode arrays. A scanning means for selectively applying a bias voltage to each electrode is connected to the electrode array A, and an ultrasonic transmitting/receiving means having an electronic focusing function and a scanning function for the ultrasonic beam is connected to the other electrode array B. However, the ultrasonic transmitting/receiving means repeatedly performs transmitting/receiving using a plurality of electrodes in the electrode array B while performing so-called electronic linear scanning or electronic sector scanning, and the scanning means controls the electrode selection by the ultrasonic transmitting/receiving means. By applying a bias voltage to a smaller number of electrodes, the piezoelectrically induced portion of the vibrator is narrowed down to a small diameter and sequentially scanned in the arrangement direction of the electrode array A. A configuration in which three-dimensional imaging is performed by performing aperture synthesis in the arrangement direction of the electrode array A by adding and storing ultrasonic reception signals at a plurality of scan positions of the scanning means in a storage means for each scan position. It is characterized by the following points. More specifically, the ultrasonic transmitting/receiving means performs transmission and reception each time using all or some of the electrodes in the electrode array A, and applies a predetermined delay time distribution to the transmitted and received signals to transmit and receive the waves. It converges the receiving beam and includes means for sequentially changing the delay time distribution of the receiving signal during the receiving period after one transmission to move the convergence point of the receiving beam in the beam depth direction.

【作用】[Effect]

上記の構成によれば、電極配列Bのうちのある部分が超
音波送受信手段により選択されても、電極配列Aのうち
走査手段により選択されてバイアス電圧が印加された部
分と対向する領域のみ電歪材料に圧電活性が生じる。こ
のため、電極配列Aの配列方向には指向性が弱い、つま
りこの方向に扇形に拡がった超音波ビームの送受波が行
われる。 したがって、ある時点で得られるエコー信号強度は、超
音波送受信手段により選択される断面上にあり、かつバ
イアス電圧が印加された電極の中央を中心点とする円弧
上にある点からの反射に対応する。そこで、この断層面
に対応付けられた記憶エリアの円弧上の各点に受信信号
の各時点でのエコー信号強度を記憶し、さらに上記走査
手段による複数回分の走査位置での受信信号を加算しな
がら記憶するという開口合成処理を行うことにより1枚
の断層像が得られる。この動作が、超音波送受信手段に
よる電極配列Bの配列方向の電子リニアもしくは電子セ
クタ走査の走査位置ごとに行われるため、複数断層面の
撮像、つまり3次元撮像が行われる。 電極配列Aの配列方向の走査を優先して行えば、つまり
電極配列Bの配列方向のビーム走査を固定したまま走査
手段により圧電活性発生領域を走査して送受信を繰り返
し、これを電極配列Bの配列方向のビーム走査位置ごと
に繰り返せば、一つの断層像がまず完成し、他の断層像
はこれに引き続き順次完成する。一方、電極配列Bの配
列方向の走査を優先して行えば、つまり走査手段による
圧電活性発生領域の走査を固定したまま電極配列Bの配
列方向のビーム走査を行って送受信を繰り返し、これを
圧電活性発生領域の走査位置ごとに繰り返せば、全ての
断層像が並行して徐々に完成する。 さらに、上記した受波ビームの収束点の移動手段を含む
構成によれば、常に焦域近傍の反射点からの受信信号を
開口合成することができる。よって、各断層像の断層面
と垂直方向の分解能が向上し、各像の画質が向上すると
共に、像完成後にこの垂直方向の断層像を抽出しても十
分な画質の像が得られる。これに替えて、送波ビーム、
受波ビームともに収束点を変更して送受信を深度ゾーン
ごとに繰り返す方式も考えられるが、上記した垂直方向
分解能と撮像時間とがトレード・オフの関係になる。し
たがって、実用的な撮像時間により十分な画質の像を得
ると言う点で上記した収束点の移動手段を採用するのが
好ましい。
According to the above configuration, even if a certain part of the electrode array B is selected by the ultrasonic transmitting/receiving means, only the region of the electrode array A facing the part selected by the scanning means and to which the bias voltage is applied is electrified. Piezoelectric activity occurs in the strained material. Therefore, the directivity is weak in the arrangement direction of the electrode array A, that is, the ultrasonic beam that spreads in a fan shape in this direction is transmitted and received. Therefore, the echo signal intensity obtained at a certain point corresponds to the reflection from a point on the cross section selected by the ultrasonic transmitting/receiving means and on a circular arc with the center point at the center of the electrode to which the bias voltage is applied. do. Therefore, the echo signal intensity at each time point of the received signal is stored at each point on the arc of the storage area associated with this tomographic plane, and the received signals at multiple scan positions by the scanning means are added. A single tomographic image is obtained by performing aperture synthesis processing in which the images are stored while the images are being stored. This operation is performed for each scanning position of electronic linear or electronic sector scanning in the arrangement direction of the electrode array B by the ultrasonic transmitting/receiving means, so that imaging of multiple tomographic planes, that is, three-dimensional imaging is performed. If priority is given to scanning in the array direction of electrode array A, that is, while the beam scan in the array direction of electrode array B is fixed, the piezoelectric activity generating region is scanned by the scanning means and transmission and reception are repeated, and this is repeated in the direction of electrode array B. If this is repeated for each beam scanning position in the array direction, one tomographic image is completed first, and the other tomographic images are completed one after another. On the other hand, if priority is given to scanning in the array direction of electrode array B, in other words, beam scanning is performed in the array direction of electrode array B while fixing the scanning of the piezoelectric activity generation region by the scanning means, repeating transmission and reception, and transmitting and receiving the piezoelectric By repeating this for each scanning position of the active region, all tomographic images are gradually completed in parallel. Further, according to the configuration including the above-mentioned means for moving the convergence point of the received beam, it is possible to always perform aperture synthesis of the received signals from the reflection points near the focal region. Therefore, the resolution of each tomographic image in the direction perpendicular to the tomographic plane is improved, the image quality of each image is improved, and even if the tomographic image in the vertical direction is extracted after the image is completed, an image of sufficient quality can be obtained. Instead of this, the transmitting beam,
A method of repeating transmission and reception for each depth zone by changing the convergence point of both the receiving beam and the receiving beam can be considered, but there is a trade-off between the vertical resolution and the imaging time described above. Therefore, it is preferable to employ the above-mentioned means for moving the convergence point in order to obtain an image of sufficient quality within a practical imaging time.

【実施例】【Example】

次に本発明の詳細な説明する。 第5図(a)に示すように、電歪磁器組成物(例えばP
b(Mgよ、、Nb2.、)O,−PbTiO,系固溶
体セラミクスなどの緩和型強誘電体において、強誘電体
への相転移温度が比較的室温の付近にある組成物など)
の矩形板あるいは、その矩形板を縦横に多数に分割して
間を樹脂などで充填した複合材料を厚み方向の共振周波
数が放射あるいは受波する超音波の周波数に相当するよ
うに加工して電歪振動子1とする。この矩形板の各主面
にそれぞれ複数の短冊状に分割された電極配列A、Bを
形成する。電極は例えば銀の焼き付けや銅、ニッケルな
どの無電解鍍金により形成しても良い。 両主面に形成された電極配列A、Bは、互いの面上の電
極分割方向が直交するように形成されている。このよう
な振動子において、電極配列Aと直流バイアス電圧発生
回路をスイッチ走査回路で接続し、電極配列Bと送信及
び受信回路を他のスイッチ走査回路で接続する。各スイ
ッチ走査回路で、それぞれが接続されている電極配列か
ら第5図(b)に示すように、電極A x g B 、
)を選択してそれぞれ直流バイアス電圧発生回路または
送受信回路と接続状態にすれば、電極交差部分は圧電性
を誘起する直流バイアス電界が加えられしかも送受信回
路と接続されるので、選択的に超音波の送受信が可能に
なる。 第6図(a)は、本発明における超音波探触子の外観を
表している。超音波の送受信を行う頭部は保護膜12で
覆われ、筐体14には手で取り扱いやすいように凹凸が
設けである。また、背面は撮像装置本体と接続するため
の信号線ケーブルが出ている。第6図(b)は、超音波
探触子頭部の解剖図である。互いに交差する短冊型の電
極配列A、Bを設けた電歪材料振動子1は、背面制動材
13の上に接着され、側面に電極端子配列AL。 BLが設けられている。これらは、それぞれのスイッチ
走査回路とフレキシブルプリント配線板等により接続さ
れる。 第1図は、本発明における超音波探触子の動作について
の概念図である。電歪振動子1の一方の主面に設けられ
た短冊状電極配列Aはスイッチ走査回路2により直流バ
イアス回路3と接続されるか、あるいは接地される。ま
た、他の主面の短冊状電極配列Bの各電極は別のマトリ
クス状のスイッチ走査回路4に接続されており、4にて
選択された所定の数の一連の電極は遅延回路5を通して
、送信回路6および受信回路7に接続される。二二で遅
延回路5は選択される各電極に連なる信号線毎(ただし
図示の例では選択される電極群の中央のものを中心に対
称位置の電極に共通接続される信号線毎)に挿入された
可変遅延素子51と、記憶された遅延時間分布データを
読み出して各可変遅延素子の遅延時間を制御するフォー
カス制御器52を含む、この構成により、超音波パルス
の送波の際には送信回路6の発生する送波パルスに対し
て遅延時間分布を与えて各電極に分配し、超音波パルス
を放射した空間内の所望の領域に収束させる。また超音
波エコーの受信時には各電極からの受信信号に遅延時間
分布を与えて加え合わせ、受信回路7に伝達することに
より受信信号を空間内の所望の領域からのエコーの受信
信号となるようにする。つまり遅延回路5はy方向の電
子的フォーカシングを行う、さらに図示の例では受信時
に遅延時間分布を変更してダイナミックフォーカシング
が行えるようにされている。送信回路、受信回路、遅延
回路の接続は、図示しである構成に限らず、例えば受信
回路7を複数にして、スイッチ走査回路4の各端子と遅
延回路5の各端子の接続点のそれぞれに接続した構成に
してもよい。また、例えば送信回路6を複数にして直接
スイッチ走査回路4の各端子に接続し、各送信回路がト
リガ入力により送波パルスを出力するようにして、各送
信回路へのトリガー信号に遅延時間分布をつけた構成で
もよい。 このような構成のもと、超音波ビームの走査開始時点で
は、直流バイアス回路3が接続されたスイッチ走査回路
2により電極配列Aの中から最端部の電極A1が選択さ
れ、バイアス電圧が印加される。また、同時にスイッチ
走査回路4のマトリクスのうち丸印で示した一連の交点
が接続される。 この状態において、スイッチ走査回路2で選択された電
極A工とスイッチ走査回路4で選択された電極配列Bの
一連の電極との交差部分がバイアス電界により誘起され
て圧電性を持つようになり電気−超音波変換器として機
能するようになる。送波パルス信号を送信回路6より出
力したのち、遅延回路5により遅延時間分布をつけ、ス
イッチ走査回路4を経て電極配列Bのうちの一連の電極
に対して出力する。このとき遅延回路5では、スイッチ
走査回路4が電極配列Bから部分的に選択する一連の電
極の配列に対して、その中心にある電極に出力される信
号には最も長い遅延時間で、両端に近い電極はど短い遅
延時間のある遅延時間分布が選ばれる。振動子として電
極配列A、Bより選択した交差部分が励振され、超音波
パルスが放射される瞬間の波面を第1図のX方向から見
た形状は、送波パルスの遅延時間分布によって決められ
た。ある焦点距離を半径とする円弧になる。これにより
、超音波ビームをX方向から見た形状は、振動子の励振
部分の中心から、ある焦点距離に対して収束するものと
なる。また、電極配列Aの各電極は配列方向の幅が十分
狭いので、X方向からみた超音波ビームの形状は、振動
子の指向性が小さいために扇形になる。したがって、X
方向から見た超音波ビームの収束点は第1図にalに示
したようにX方向から見ると遅延回路5で決められた焦
点距離を半径とする円弧上に存在する。この送波に引き
続くエコーの受信期間中に同じ遅延時間分布が各電極の
受信信号にかけられれば、受信回路7に入力する受信信
号は第1図に円弧a1と破線とで示される扇形の受信ビ
ームパターン内の反射点からのエコーを示す。そこで記
憶回路上に一つの断層面の全信号値を保持するのに十分
な2次元の記憶空間を設け、選択された電極配列Bの中
央の電極を通る断面にこれを対応させ、受信回路7から
得る受信データの各時点の値をそれぞれ電極A1に対応
する位置を中心とする同心円の円弧上に展開して保持す
る。ただし、送波繰返しの回数増加を避けて断面と垂直
の方向(X方向)の分解能を高めるため1回の送波後の
受信期間中に遅延時間分布を複数段階に順次変更して受
波ビームの収束点の位置をビーム深さ方向に移動させ、
もって受信データの各時点の値は常にX方向収束の焦域
内もしくはその近傍からのエコーを示すようにする。 こうした一連の超音波送受信の動作はスイッチ走査回路
2で電極配列A内の電極選択を順次切り替えるごとに繰
り返し行われる。受信回路7からの受信データの上述の
ような記憶空間への保持は常に選択された電極に対応す
る位置を中心とする同心円の円弧上に展開して行われ、
かつ記憶空間の各アドレスにそれ迄保持されていた値に
新たなデータを加算しながら保持する。つまりX方向へ
の圧電活性領域すなわち送受波開口がシフトする毎に開
口合成法により受信データが加算保持される1例えば被
検体内に第1図のCに示す位置に反射源があると、電極
A工の選択による送受波では記憶空間上で円弧a工に相
当する位置に大きな値が加算保持され、電極AJの選択
による送受波では記憶空間上で円弧aJに相当する位置
に大きな値が加算保持される。このような加算保持の繰
返しにより記憶空間内において反射源Cに対応する点の
データの値が大きく成る。このようにして電極配列Aの
全ての電極の順次選択による送受波およびデータ加算保
持の繰返しが終了すると、断層面の撮像領域内の全ての
反射源の位置にて記憶空間上でデータは強め合い、一つ
の断層像情報が得られる。 さらに、このような開口合成法によって一つの断層像を
得る走査を、スイッチ走査回路4を切り替えて繰り返す
。すなわちスイッチ走査回路4の交点のうち三角形で示
した一連の交点を接続し、その他は開放することにより
、電極配列Bのうちの選択部分は走査方向に一つ移動し
て接続される。 記憶装置の別の記憶空間を用いて上述の開口合成法の動
作を繰返し、これをスイッチ走査回路4の切り換え毎に
繰り返せば連続した複数の断層面の撮像、つまり3次元
撮像が行われる。 第2図(a)、(b)は、第1図の振動子を。 それぞれX方向およびX方向から見た側面図である。(
b)に示す電極配列AのうちA、に直流バイアス電圧を
加え、その他のバイアス電極は接地されている。また、
(a)では電極配列Bの一部の電極B工〜B7に対し送
信回路、受信回路、遅延回路がスイッチ走査回路により
接続されている。 被検体内のある部分に対して超音波パルスが収束するよ
うに、B工〜B7に対し遅延時間分布を持たせて励振パ
ルスを加えて超音波パルスを送信する。 その後、遅延回路および受信回路でエコー信号の整相お
よび加算すなわち電子フォーカスを行う。 破線は受信時において電子フォーカスにより、焦点が振
動子の振動面に対して被検体内の遠い所の焦点R1から
近い所の焦点R1八と変化する様子を振動子の主面に垂
直で電極A1の長さ方向に沿った平面内で見たものであ
る。この様子を、電極配列Bの配列方向から見たものを
(b)に示す。電子フォーカスの焦点は電極配列Aの電
極の幅が小さいために(b)では無指向性になり、R1
,R,。 R1は電極A1を中心とした円弧になる。バイアス電圧
を印加する電極をA1、A、、A、、  ・・、A□。 ・・、Aイと順次移動しながら受信信号強度を記憶空間
上に開口合成することにより一つの断層像が得られ、(
、)に示すように電極配列Bの中から同時に選択する電
極をBi〜B、÷7t Biヤ、〜Biass ・・と
じて順次移動すれば複数の断層像が走査されて3次元撮
像が行われる。(b)において、電極A1の幅が小さい
場合には、指向性が無指向性に近づくために超音波パル
スの収束域は円弧状になるが、実際には電極の幅が小さ
い場合には超音波の放射強度が減少し、減衰の大きな被
検体の撮像では不都合が生じる。そのため、バイアス電
圧を電極配列Aのうちの複数の電極に同時に印加し、超
音波の放射強度を増す方法が考えられる。このような場
合においては、(b)における超音波パルスの収束域の
形状は、指向性が顕著になるためもはや円弧状ではなく
なるが、この場合には指向性関数を考慮して受信信号を
記憶空間上に展開して加算保持することにより、同様に
断層像の開口合成ができる。このような走査により得ら
れる被検体内の撮像領域は、(a)の方向より見ると矩
形であるが、(b)の方向から見た領域は開口合成でど
のような領域まで受信信号を展開するかに依存する。従
って、その領域を矩形の領域にすることも、また扇型の
領域にすることも可能である。なお、送信時あるいは受
信を同時に行う信号電極の数及び、同時に直流バイアス
電圧を加えるバイアス電極の数は本実施例に限らない。 ただし、断層像の厚さ方向(第1図、X方向)にある程
度の分解能を得、断層像内の関口合成を有効に行うため
には同時に送信あるいは受信を行う信号電極の選択数を
バイアス電極の選択数より多くし、長方形の送受開口に
て送受波を行う必要がある。 また、同時に電極配列Bから選択する電極の数を超音波
の受信時に順次変更して、第1図のX方向で見た振動部
分の口径を変化させ、焦点が振動子の面より遠い部分の
受信には大きな口径を、また近い部分からの受信には小
さな口径を設定し、分解能を改善することも可能である
。また、探触子と被検体内の深さに関係させて、超音波
の送信および受信を複数回に分けて行い、それぞれの送
信時あるいは受信時の信号電極数(口径の大きさ)を固
定あるいは動的に変化させて分解能を改善することも可
能である。 一方、一つの断層像を開口合成するのにバイアス電圧を
加える電極をスイッチ走査回路で選択する順序および断
層像を複数走査する場合に電極配列Bをスイッチ走査す
る順序は如何なるものであっても良いことは自明である
。 上述の例において電極配列Bの配列方向の超音波の走査
手段は、従来の一次元配列の短冊型振動子を用いた超音
波探触子におけるリニア型電子走査に相当する。一方、
上述の例において、電極配列Bの配列方向の超音波の走
査手段を従来の一次元配列の短冊型振動子を用いた超音
波探触子におけるセクター型電子走査に相当させて行う
ことも可能である。 第3図(、)、(b)は第1図の振動子を、セクター型
電子走査に相当させて行う場合に、それぞれX方向およ
びX方向から見た側面図である。 第2図のリニア型の場合と同様に、(b)に示す電極配
列AのうちA、に直流バイアス電圧を加え、その他のバ
イアス電極は接地される。また、(a)では電極配列B
の全ての電極B□〜B1に対し送信回路、受信回路、遅
延回路が接続される。探触子の振動子面から被検体内の
扇状走査領域のある部分に対して超音波パルスが収束す
るように、Bi〜B、に対し遅延時間分布を持たせて励
振パルスを加える。その後、遅延回路および受信回路で
エコー信号の整相および加算すなわち電子フォーカスを
行う、破線は受信時において電子フォーカスにより、焦
点が振動子の振動面に対して被検体内の遠い所の焦点S
工から近い所の焦点S□へと変化する様子を振動子の主
面に垂直で電極Aiの長さ方向に沿った平面内で見たも
のである。(b)はこの様子を、電極配列Bの配列方向
から見たものである。第2図のリニア型の場合と同じよ
うに、電子フォーカスの焦点は電極配列Aの電極の幅が
小さい場合は(b)のように無指向性になり、S工、S
よ、S□は電極A、を中心とした円弧になり。 開口合成により一つの断層像が得られる。また、バイア
ス電圧を電極配列Aのうちの複数の電極に同時に印加し
、超音波の放射強度を増す方法でも、指向性関数を考慮
して受信信号を記憶空間上に展開して加算保持すること
により、同様の断層像の開口合成ができる事は言うまで
もない。バイアス電圧を印加する電極をAi、A2、A
1.・・IA+。 ・・HAnと順次移動しながら受信信号強度を記憶空間
上に開口合成することにより、電極配列Bの各電極の長
手方向に広がり、振動子の音波放射面とある角度を成し
た一つの断層面の像が得られ、(、)に示すように遅延
時間分布を変えることにより順次その角度を変化させれ
ば、複数の断層像が走査されて3次元撮像が行われる。 この場合に撮像される被検体内の領域は、(a)の方向
から見ると扇型であるが、(b)の方向から見た領域は
、リニア型に相当する走査の場合と同様に、矩形にも扇
型にもできる。なお、このセクター型の走査においても
、送信時あるいは受信を同時に行う信号電極の数及び、
同時に直流バイアス電圧を加えるバイアス電極の数は本
実施例の場合に限らず任意であることは言うまでもない
。また、一つの断層像を開口合成するのにバイアス電圧
を加える電極をスイッチ走査回路で選択する順序および
断層像を複数走査する場合に与える遅延時間分布の順序
は如何なるものであっても良い。 第4図は本発明の超音波撮像装置の実施例の全体構成を
示すブロック図である。互いに交差する電極配列A工〜
An、B工〜B、を備えた電歪振動子1には、スイッチ
走査回路2を介してバイアス回路3が、マトリクス型の
スイッチ走査回路4を介して遅延回路5およびそれに接
続される送信回路6および受信回路7が接続される。基
準信号発生器91に従い、制御回路92は、スイッチ走
査回路2によりバイアス電圧を印加する電極を電極配列
B□〜B、から選択し、バイアス電圧により電歪振動子
1の圧電性を誘起する部分を充電する。そのあと、送信
回路6は励振パルス電圧を発生し、制御回路92により
設定された遅延回路5及びスイッチ走査回路4を介して
電極配列B工〜B、のうち選択された一連の電極に印加
する。これにより送信された超音波パルスのエコーは再
び同じ電歪振動子の圧電性誘起部分で受信され、受信信
号としてスイッチ走査回路4を介して遅延回路5の入力
となり、電子フォーカスによる整相加算を受けて受信回
路7の入力となる。受信回路7で増幅された出力は信号
処理回路81によりその値を記憶回路82上の記憶空間
に順次加算保持しながら展開する。制御回路92はバイ
アス電圧印加側のスイッチ走査回路2の電極を切り替え
とその後の超音波の送受信動作、記憶回路82への受信
信号値の展開を繰返し、電極配列A工〜Anの全てにつ
いて走査を終了し、一つの断層像を得るための開口合成
を完了する。さらに、制御回路92はスイッチ走査回路
4を切り替えて、電極配列B工〜B、のうちから前の走
査時点より一つ移動した一連の電極を選択し、再び一〇
の断層像を得るための開口合成を繰り返す。これにより
、記憶回路82の記憶空間上には一連の断層面が保持さ
れ、モニター表示回路83により、任意断層面や再合成
した3次元立体像が表示される。 第4図のブロック図は上述のリニア型の走査に対するも
のであるが、セクター型の走査の場合にはスイッチ走査
回路4は無く、遅延回路5がセクター走査を実現するよ
うな遅延時間分布を電極配列B工〜B、に対して与える
機能を有するものでなければならない。 本構成の医用超音波診断装置において、第6図のような
探触子を用いて肋骨間から行う心臓の3次元撮像や、内
視鏡型に構成した探触子を用いて体腔内から心臓や前立
腺を3次元撮像する診断法は既にその高い有用性が知ら
れている。特に内視鏡型の探触子では、非常に小型化が
要求され、振動子への配線数の問題等の実装上の問題点
は、本発明のような構成をとることにより飛躍的に改善
される。 以上の実施例における3次元撮像の手法では、超音波送
受信を行う側のスイッチ走査回路4を固定している間に
バイアス電圧印加側のスイッチ走査回路2を走査して一
つの断層像を開口合成する走査を繰り返しているが、逆
にバイアス電圧印加側のスイッチ走査回路2を固定して
いる間に超音波送受信を行う側のスイッチ走査回路4を
電子走査して、複数の断層面の開口合成を同時に行う方
法も可能である。被検体が静物である場合、バイアス電
圧の印加を切り替えるのに要する時間が長く、全体の撮
像時間が長くなる場合には、後者の撮像方式が有利にな
る。また、撮像装置が医用超音波診断装置である場合等
では、被検体と探触子の相対的運動により開口合成時に
要求される等時性が低下するので、本実施例に記載した
ような前者の方法が望ましい。
Next, the present invention will be explained in detail. As shown in FIG. 5(a), an electrostrictive ceramic composition (for example, P
b (Mg, Nb2,)O, -PbTiO, compositions whose phase transition temperature to ferroelectric is relatively near room temperature in relaxed ferroelectrics such as solid solution ceramics, etc.)
A rectangular plate, or a composite material in which the rectangular plate is divided into many parts vertically and horizontally and the spaces are filled with resin etc., is processed so that the resonance frequency in the thickness direction corresponds to the frequency of the ultrasonic waves being emitted or received. Let it be strain oscillator 1. Electrode arrays A and B divided into a plurality of strips are formed on each main surface of this rectangular plate. The electrodes may be formed, for example, by baking silver or electroless plating with copper, nickel, or the like. The electrode arrays A and B formed on both main surfaces are formed such that the electrode dividing directions on the two surfaces are perpendicular to each other. In such a vibrator, the electrode array A and the DC bias voltage generation circuit are connected by a switch scanning circuit, and the electrode array B and the transmitting and receiving circuits are connected by another switch scanning circuit. In each switch scanning circuit, from the electrode arrangement to which each is connected, as shown in FIG. 5(b), the electrodes A x g B,
) and connect them to the DC bias voltage generation circuit or the transmitter/receiver circuit, a DC bias electric field that induces piezoelectricity is applied to the electrode intersections, and they are also connected to the transmitter/receiver circuit, so they can selectively generate ultrasonic waves. It becomes possible to send and receive. FIG. 6(a) shows the appearance of the ultrasonic probe according to the present invention. The head, which transmits and receives ultrasonic waves, is covered with a protective film 12, and the casing 14 is provided with irregularities to make it easier to handle by hand. Also, on the back side, there is a signal line cable for connecting to the imaging device itself. FIG. 6(b) is an anatomical diagram of the head of the ultrasound probe. An electrostrictive material vibrator 1 provided with strip-shaped electrode arrays A and B that intersect with each other is adhered onto a back damping material 13, and has an electrode terminal array AL on the side surface. BL is provided. These are connected to respective switch scanning circuits by flexible printed wiring boards or the like. FIG. 1 is a conceptual diagram of the operation of the ultrasonic probe according to the present invention. A strip-shaped electrode array A provided on one main surface of the electrostrictive vibrator 1 is connected to a DC bias circuit 3 by a switch scanning circuit 2 or grounded. Further, each electrode of the strip-shaped electrode array B on the other main surface is connected to another matrix-like switch scanning circuit 4, and a series of a predetermined number of electrodes selected in 4 is passed through a delay circuit 5. Connected to transmitting circuit 6 and receiving circuit 7. In 22, the delay circuit 5 is inserted for each signal line connected to each selected electrode (however, in the illustrated example, each signal line commonly connected to electrodes at symmetrical positions centering on the center one of the selected electrode group) With this configuration, the focus controller 52 reads out the stored delay time distribution data and controls the delay time of each variable delay element. A delay time distribution is given to the transmitted pulses generated by the circuit 6 and distributed to each electrode, so that the ultrasonic pulses are focused on a desired region within the radiated space. Furthermore, when receiving ultrasonic echoes, the received signals from each electrode are added with a delay time distribution and transmitted to the receiving circuit 7, so that the received signal becomes a received signal of an echo from a desired area in space. do. That is, the delay circuit 5 performs electronic focusing in the y direction, and in the illustrated example, dynamic focusing can be performed by changing the delay time distribution during reception. The connection of the transmitting circuit, the receiving circuit, and the delay circuit is not limited to the configuration shown in the figure. For example, the receiving circuit 7 may be provided in plurality, and each terminal of the switch scanning circuit 4 and each terminal of the delay circuit 5 may be connected to each other. A connected configuration may also be used. Furthermore, for example, a plurality of transmitting circuits 6 may be connected directly to each terminal of the switch scanning circuit 4, and each transmitting circuit may output a transmitted wave pulse in response to a trigger input, so that the trigger signal to each transmitting circuit has a delay time distribution. A configuration with . Under such a configuration, at the start of ultrasonic beam scanning, the switch scanning circuit 2 to which the DC bias circuit 3 is connected selects the endmost electrode A1 from the electrode array A, and applies a bias voltage. be done. At the same time, a series of intersections indicated by circles in the matrix of the switch scanning circuit 4 are connected. In this state, the intersection of the electrode A selected by the switch scanning circuit 2 and the series of electrodes of the electrode arrangement B selected by the switch scanning circuit 4 is induced by the bias electric field to have piezoelectricity, and is electrically - Becomes capable of functioning as an ultrasonic transducer. After the transmitting pulse signal is output from the transmitting circuit 6, a delay time distribution is added to it by the delay circuit 5, and the pulse signal is outputted to a series of electrodes in the electrode array B via the switch scanning circuit 4. At this time, in the delay circuit 5, for a series of electrode arrays partially selected from the electrode array B by the switch scanning circuit 4, the signal output to the center electrode is given the longest delay time, and the signal output to both ends is A delay time distribution with a short delay time for the electrodes that are close to each other is selected. The shape of the wavefront when viewed from the X direction in Figure 1 at the moment when the intersection of electrode arrays A and B is excited and an ultrasonic pulse is emitted as a transducer is determined by the delay time distribution of the transmitted pulse. Ta. It becomes an arc whose radius is a certain focal length. As a result, the shape of the ultrasonic beam when viewed from the X direction converges to a certain focal distance from the center of the excitation portion of the vibrator. Furthermore, since each electrode in the electrode array A has a sufficiently narrow width in the array direction, the shape of the ultrasonic beam when viewed from the X direction is fan-shaped because the directivity of the transducer is small. Therefore, X
When viewed from the X direction, the convergence point of the ultrasonic beam exists on a circular arc whose radius is the focal length determined by the delay circuit 5, as shown by al in FIG. If the same delay time distribution is applied to the reception signal of each electrode during the echo reception period following this transmission, the reception signal input to the reception circuit 7 will form a fan-shaped reception beam shown by the arc a1 and the broken line in FIG. Shows echoes from reflective points within the pattern. Therefore, a two-dimensional storage space sufficient to hold all the signal values of one tomographic plane is provided on the storage circuit, and this is made to correspond to the cross section passing through the center electrode of the selected electrode array B. The values of the received data obtained at each point in time are developed and held on concentric arcs centered on the position corresponding to the electrode A1. However, in order to avoid an increase in the number of transmission repetitions and to increase the resolution in the direction perpendicular to the cross section (X direction), the delay time distribution is sequentially changed in multiple stages during the reception period after one transmission. The position of the convergence point of is moved in the beam depth direction,
Thus, the value of the received data at each point always indicates an echo from within or near the focal region of the X direction convergence. This series of ultrasound transmission and reception operations is repeated each time the switch scanning circuit 2 sequentially switches the selection of electrodes in the electrode array A. The reception data from the reception circuit 7 is always stored in the storage space as described above by expanding it on concentric arcs centered at the position corresponding to the selected electrode.
The new data is added to the value previously held at each address in the storage space and held. In other words, each time the piezoelectric active area, that is, the transmitting/receiving aperture shifts in the X direction, the received data is added and held using the aperture synthesis method. When transmitting and receiving waves by selecting electrode A, a large value is added and held at the position corresponding to arc a on the memory space, and when transmitting and receiving waves by selecting electrode AJ, a large value is added to the position corresponding to arc aJ on the memory space. Retained. By repeating such addition and holding, the value of the data at the point corresponding to the reflection source C increases in the storage space. In this way, when the repetition of transmitting and receiving waves and adding and holding data by sequentially selecting all the electrodes of electrode array A is completed, the data is reinforced in the storage space at the positions of all the reflection sources in the imaging area of the tomographic plane. , one tomographic image information can be obtained. Further, scanning for obtaining one tomographic image by such aperture synthesis method is repeated by switching the switch scanning circuit 4. That is, by connecting a series of intersections indicated by triangles among the intersections of the switch scanning circuit 4 and leaving the others open, the selected portion of the electrode array B is moved by one position in the scanning direction and connected. By repeating the operation of the aperture synthesis method described above using another storage space of the storage device and repeating this every time the switch scanning circuit 4 is switched, continuous imaging of a plurality of tomographic planes, that is, three-dimensional imaging is performed. Figures 2(a) and (b) show the vibrator in Figure 1. They are side views seen from the X direction and the X direction, respectively. (
A DC bias voltage is applied to A of the electrode arrangement A shown in b), and the other bias electrodes are grounded. Also,
In (a), a transmitting circuit, a receiving circuit, and a delay circuit are connected to some electrodes B to B7 of electrode array B by a switch scanning circuit. In order to converge the ultrasonic pulses to a certain part of the subject, excitation pulses are added to the sections B to B7 with a delay time distribution, and the ultrasonic pulses are transmitted. Thereafter, a delay circuit and a receiving circuit perform phasing and addition of the echo signals, that is, electronic focusing. The broken line shows how the focal point changes from a focus R1 at a far point in the subject to a focus R1 at a near point with respect to the vibration plane of the transducer due to the electronic focusing during reception. It is viewed in a plane along the length of. This situation is shown in (b) as seen from the arrangement direction of electrode arrangement B. The focal point of the electronic focus becomes omnidirectional in (b) because the width of the electrodes in electrode array A is small, and R1
,R,. R1 is a circular arc centered on electrode A1. The electrodes to which the bias voltage is applied are A1, A,, A,, . . ., A□. ..., one tomographic image is obtained by aperture-synthesizing the received signal strength on the storage space while moving sequentially from A to A, and (
, ), multiple tomographic images are scanned and three-dimensional imaging is performed by sequentially moving the electrodes to be simultaneously selected from electrode array B from Bi to B, ÷7t Bi, ~ Biass, etc. . In (b), when the width of the electrode A1 is small, the directivity approaches omnidirectionality, so the convergence region of the ultrasonic pulse becomes an arc, but in reality, when the width of the electrode is small, the ultrasonic pulse The radiation intensity of the sound waves decreases, causing problems when imaging a subject with large attenuation. Therefore, a method can be considered in which a bias voltage is simultaneously applied to a plurality of electrodes in the electrode array A to increase the radiation intensity of the ultrasonic waves. In such a case, the shape of the convergence zone of the ultrasonic pulse in (b) will no longer be arc-shaped because the directivity will become significant, but in this case, the received signal should be stored in consideration of the directivity function. By expanding spatially and adding and holding, aperture synthesis of tomographic images can be performed in the same way. The imaging area inside the subject obtained by such scanning is rectangular when viewed from the direction (a), but the area viewed from the direction (b) is determined by aperture synthesis, in which the received signal is expanded to what area. It depends on what you do. Therefore, the area can be a rectangular area or a fan-shaped area. Note that the number of signal electrodes that simultaneously perform transmission or reception and the number of bias electrodes that simultaneously apply DC bias voltage are not limited to those in this embodiment. However, in order to obtain a certain degree of resolution in the thickness direction of the tomographic image (Fig. 1, It is necessary to use a rectangular transmitting/receiving aperture to transmit and receive waves. At the same time, the number of electrodes selected from electrode array B is sequentially changed when ultrasonic waves are received, and the aperture of the vibrating part as seen in the It is also possible to improve resolution by setting a large aperture for reception and a small aperture for reception from nearby areas. Also, depending on the depth of the probe and the inside of the subject, ultrasonic waves are transmitted and received multiple times, and the number of signal electrodes (aperture size) is fixed at each time of transmission or reception. Alternatively, it is also possible to improve the resolution by dynamically changing it. On the other hand, the order in which the switch scanning circuit selects the electrodes to which bias voltages are applied for aperture synthesis of one tomographic image, and the order in which the electrode array B is switched in the case of scanning a plurality of tomographic images may be arbitrary. That is self-evident. In the above example, the ultrasonic scanning means in the arrangement direction of the electrode array B corresponds to linear electronic scanning in a conventional ultrasonic probe using a one-dimensional array of strip-shaped transducers. on the other hand,
In the above example, it is also possible to perform ultrasound scanning in the arrangement direction of electrode arrangement B by corresponding to sector-type electronic scanning in an ultrasound probe using a conventional one-dimensional array of strip-shaped transducers. be. 3(a) and 3(b) are side views of the vibrator shown in FIG. 1 viewed from the X direction and the X direction, respectively, when performing sector-type electronic scanning. As in the case of the linear type shown in FIG. 2, a DC bias voltage is applied to A of the electrode array A shown in (b), and the other bias electrodes are grounded. In addition, in (a), electrode arrangement B
A transmitting circuit, a receiving circuit, and a delay circuit are connected to all electrodes B□ to B1. Excitation pulses are applied to Bi to B with a delay time distribution so that the ultrasonic pulses converge from the transducer surface of the probe to a certain part of the fan-shaped scanning area inside the subject. After that, the delay circuit and the receiving circuit perform phasing and addition of the echo signals, that is, electronic focusing.
The change from the focal point to the nearby focal point S□ is seen in a plane perpendicular to the main surface of the vibrator and along the length direction of the electrode Ai. (b) shows this situation as seen from the arrangement direction of electrode arrangement B. As in the case of the linear type shown in Fig. 2, when the width of the electrodes in electrode array A is small, the focal point of the electronic focus becomes omnidirectional as shown in (b);
Yo, S□ becomes an arc centered on electrode A. One tomographic image is obtained by aperture synthesis. In addition, even if a bias voltage is simultaneously applied to multiple electrodes in the electrode array A to increase the radiation intensity of the ultrasonic waves, the received signals can be developed in the storage space and added and stored in consideration of the directivity function. Needless to say, it is possible to perform aperture synthesis of similar tomographic images. The electrodes to which bias voltage is applied are Ai, A2, and A.
1. ...IA+. ...By aperture-synthesizing the received signal strength on the storage space while moving sequentially with HAn, a single tomographic plane that spreads in the longitudinal direction of each electrode of electrode array B and forms a certain angle with the sound wave emission surface of the transducer is created. If the angle is sequentially changed by changing the delay time distribution as shown in (,), a plurality of tomographic images are scanned and three-dimensional imaging is performed. The area inside the subject that is imaged in this case is fan-shaped when viewed from the direction (a), but the area when viewed from the direction (b) is similar to the case of linear scanning. It can be rectangular or fan-shaped. In addition, even in this sector type scanning, the number of signal electrodes that simultaneously transmit or receive,
It goes without saying that the number of bias electrodes to which direct current bias voltages are simultaneously applied is not limited to the case of this embodiment and may be arbitrary. Furthermore, the order in which electrodes to which bias voltages are applied for aperture synthesis of one tomographic image is selected by the switch scanning circuit and the order in which the delay time distributions are applied when scanning a plurality of tomographic images may be arbitrary. FIG. 4 is a block diagram showing the overall configuration of an embodiment of the ultrasonic imaging apparatus of the present invention. Electrode array A that intersects each other ~
An electrostrictive vibrator 1 equipped with B-B is connected to a bias circuit 3 via a switch scanning circuit 2, and a delay circuit 5 and a transmitting circuit connected thereto via a matrix-type switch scanning circuit 4. 6 and a receiving circuit 7 are connected. According to the reference signal generator 91, the control circuit 92 selects the electrode to which the bias voltage is applied by the switch scanning circuit 2 from the electrode arrays B□ to B, and selects the electrode to which the bias voltage is applied to the part where the piezoelectricity of the electrostrictive vibrator 1 is induced by the bias voltage. to charge. After that, the transmitting circuit 6 generates an excitation pulse voltage and applies it to a selected series of electrodes in the electrode array B through B via the delay circuit 5 and switch scanning circuit 4 set by the control circuit 92. . As a result, the echo of the transmitted ultrasonic pulse is received again by the piezoelectric induction part of the same electrostrictive vibrator, and becomes an input to the delay circuit 5 via the switch scanning circuit 4 as a received signal, which performs phasing and addition using electronic focusing. The received signal becomes an input to the receiving circuit 7. The output amplified by the receiving circuit 7 is developed by a signal processing circuit 81 while sequentially adding and retaining its value in a storage space on a storage circuit 82. The control circuit 92 repeats the switching of the electrodes of the switch scanning circuit 2 on the bias voltage application side, the subsequent ultrasonic transmission/reception operation, and the development of the received signal value in the memory circuit 82, thereby scanning all of the electrode arrays A to An. Then, aperture synthesis to obtain one tomographic image is completed. Furthermore, the control circuit 92 switches the switch scanning circuit 4 to select a series of electrodes from the electrode arrays B to B, which have been moved by one position from the previous scanning time point, to obtain ten tomographic images again. Repeat aperture synthesis. As a result, a series of tomographic planes are held in the storage space of the memory circuit 82, and the monitor display circuit 83 displays arbitrary tomographic planes and recombined three-dimensional stereoscopic images. The block diagram in FIG. 4 is for the above-mentioned linear type scanning, but in the case of sector type scanning, the switch scanning circuit 4 is not provided, and the delay circuit 5 is used to control the delay time distribution to realize sector scanning. It must have the function to provide arrays B to B. The medical ultrasonic diagnostic device with this configuration can perform three-dimensional imaging of the heart from between the ribs using a probe as shown in Figure 6, and imaging of the heart from within a body cavity using a probe configured like an endoscope. Diagnostic methods that take three-dimensional images of prostate glands and prostate glands are already known to be highly useful. In particular, endoscope-type probes are required to be extremely compact, and mounting problems such as the number of wires to the transducer can be dramatically improved by adopting the configuration of the present invention. be done. In the three-dimensional imaging method in the above embodiment, while the switch scanning circuit 4 on the side that transmits and receives ultrasound waves is fixed, the switch scanning circuit 2 on the bias voltage application side is scanned to form a single tomographic image by aperture synthesis. Conversely, while the switch scanning circuit 2 on the bias voltage application side is fixed, the switch scanning circuit 4 on the side transmitting and receiving ultrasonic waves is electronically scanned to synthesize apertures of multiple tomographic planes. It is also possible to perform both at the same time. When the object to be examined is a still object, the time required to switch the application of the bias voltage is long, and the overall imaging time becomes long, so the latter imaging method is advantageous. Furthermore, in cases where the imaging device is a medical ultrasound diagnostic device, etc., the isochronism required for aperture synthesis is reduced due to the relative movement of the subject and the probe. The following method is preferable.

【発明の効果】【Effect of the invention】

本発明によれば、被検体内部の断層像あるいは3次元像
情報を超音波エコーグラフィーにより得られる超音波撮
像装置、すなわち医用超音波診断装置あるいは超音波探
傷装置が提供される。この装置の実現により、検査者が
容易かつ迅速に被検体内部の3次元的構造および組織を
推定でき、同じ部位の断層像を再現性よく得ることがで
きる。
According to the present invention, there is provided an ultrasonic imaging device, ie, a medical ultrasonic diagnostic device or an ultrasonic flaw detection device, which can obtain tomographic image or three-dimensional image information inside a subject by ultrasonic echography. By realizing this device, the examiner can easily and quickly estimate the three-dimensional structure and tissue inside the subject, and can obtain tomographic images of the same site with high reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は撮像方法と振動子に接続される回路手段の構成
及び機能を説明する図、第2図はリニア型の電子走査の
場合の開口合成法を説明する図。 第3図はセクター型の電子走査の場合の開口合成法を説
明する図、第4図は本発明の撮像装置の一実施例を説明
するブロック図、第5図は振動子の電極構成を説明する
図、第6図は超音波探触子の外観図および部分分解図で
ある。 1・・・電歪振動子、11・・・音響整合層、12・・
・保護膜、13・・・背面制動材、14・・・筐体、2
,4・・・スイッチ走査回路、3・・・直流バイアス回
路、5・・・遅延回路、6・・・送信回路、7・・・受
信回路、81・・・信号処理回路、82・・・記憶回路
、83・・・モニター回路、91・・・基準信号発生器
、92・・・制御回路、A・・・バイアス回路側電極配
列、B・・・信号回路側電極配列、 AL、BL・・・
電極端子、              、−不 1 
 固 V 9招回路 冨 <b) 図 第 図 ((L) (交り Cb) L
FIG. 1 is a diagram for explaining an imaging method and the configuration and function of circuit means connected to a vibrator, and FIG. 2 is a diagram for explaining an aperture synthesis method in the case of linear electronic scanning. FIG. 3 is a diagram explaining the aperture synthesis method in the case of sector-type electronic scanning, FIG. 4 is a block diagram explaining an embodiment of the imaging device of the present invention, and FIG. 5 is a diagram explaining the electrode configuration of the vibrator. FIG. 6 is an external view and a partially exploded view of the ultrasonic probe. 1... Electrostrictive vibrator, 11... Acoustic matching layer, 12...
・Protective film, 13... Rear braking material, 14... Housing, 2
, 4... Switch scanning circuit, 3... DC bias circuit, 5... Delay circuit, 6... Transmission circuit, 7... Receiving circuit, 81... Signal processing circuit, 82... Memory circuit, 83... Monitor circuit, 91... Reference signal generator, 92... Control circuit, A... Bias circuit side electrode array, B... Signal circuit side electrode array, AL, BL.・・・
Electrode terminal, , -No 1
Continuous V 9 Invitation circuit depth <b) Figure ((L) (Cross Cb) L

Claims (1)

【特許請求の範囲】 1、バイアス電界により圧電性が誘起される電歪材料の
板の第1の主面には第1の方向に配列する短冊状の第1
の電極配列が、これと対向する第2の主面には前記第1
の方向と交差する第2の方向に配列する短冊状の第2の
電極配列が設けられた電気音響変換部を含んで成る超音
波探触子と、前記第1の電極配列の各々の電極に選択的
にバイアス電圧を印加する第1の走査手段と、前記第2
の電極配列の少なくとも一部の電極に送信信号を印加し
かつこれら電極に生じる受信信号を受信処理する超音波
送受信手段と、受信処理された受信信号を記憶する記憶
手段を備えた超音波撮像装置において、前記超音波送受
信手段は各電極の送信もしくは受信信号に所定の遅延時
間分布を施して送波もしくは受波ビームを収束させると
ともに使用する電極群の位置もしくは遅延時間分布の選
択によりビーム位置を前記第2の方向に順次走査する第
2の走査手段を備え、前記第1の走査手段は前記第2の
走査手段による1回の電極選択の数より少ない数の電極
選択により振動子の圧電性誘起部分の前記第1の方向の
走査を行うものであり、前記記憶手段には前記第2の走
査手段のビーム走査位置ごとに前記第1の走査手段の複
数回分の走査位置での受信信号が加算されながら記憶さ
れ、もって開口合成により3次元撮像が行なわれること
を特徴とする超音波撮像装置。 2、前記第2の走査手段による第2の方向のビーム走査
が固定されている間に前記第1の走査手段による第1の
方向の振動子の圧電性誘起部分の走査を順次行いながら
複数回の送受信を行い、前記記憶手段上で第1の方向で
の開口合成を行って一つの断層像を得るとともに、この
動作を前記第2の走査手段による走査を行いながら繰り
返すことにより3次元撮像を行うことを特徴とする請求
項1に記載の超音波撮像装置。 3、前記第1の走査手段による第1の方向の振動子の圧
電性誘起部分の走査が固定されている間に前記第2の走
査手段による第2の方向のビーム走査を順次行いながら
複数回の送受信を行い、この動作を前記第1の走査手段
による走査を行いながら繰り返して複数断層面の断層像
を開口合成により徐々に得ることを特徴とする請求項1
に記載の超音波撮像装置。 4、前記超音波送受信手段はさらに1回の送信後の受信
期間中に受信ビームの焦点距離をビーム深さ方向に順次
移動する遅延時間分布変更手段を有することを特徴とす
る請求項1に記載の超音波撮像装置。 5、前記記憶手段には前記電気音響変換部の前記第1の
走査手段により選択された圧電性誘起部分に対応する位
置を中心とす扇形形状の位置にのみ受信信号が加算され
ることを特徴とする請求項1に記載の超音波撮像装置。
[Claims] 1. On the first main surface of the electrostrictive material plate whose piezoelectricity is induced by a bias electric field, there are first strip-shaped strips arranged in a first direction.
The electrode array is arranged on the second main surface opposite to the first electrode array.
an ultrasonic probe comprising an electroacoustic transducer provided with a second strip-shaped electrode array arranged in a second direction intersecting the direction of the first electrode array; a first scanning means for selectively applying a bias voltage; and a first scanning means for selectively applying a bias voltage;
An ultrasonic imaging device comprising an ultrasonic transmitting/receiving means for applying a transmitting signal to at least some electrodes of an electrode array and receiving and processing received signals generated at these electrodes, and a storage means for storing the received signal that has been received and processed. In the ultrasonic transmitting/receiving means, the transmitting or receiving signal of each electrode is given a predetermined delay time distribution to converge the transmitting or receiving beam, and the beam position is determined by selecting the position or delay time distribution of the electrode group to be used. A second scanning means sequentially scans in the second direction, and the first scanning means scans the piezoelectricity of the vibrator by selecting a number of electrodes smaller than the number of electrodes selected at one time by the second scanning means. The inducing portion is scanned in the first direction, and the storage means stores reception signals from a plurality of scanning positions of the first scanning means for each beam scanning position of the second scanning means. An ultrasonic imaging device characterized in that three-dimensional imaging is performed by aperture synthesis by storing data while being added. 2. While the beam scanning in the second direction by the second scanning unit is fixed, the piezoelectrically induced portion of the vibrator is sequentially scanned in the first direction by the first scanning unit multiple times; A tomographic image is obtained by performing aperture synthesis in a first direction on the storage means, and by repeating this operation while scanning by the second scanning means, three-dimensional imaging is performed. The ultrasonic imaging device according to claim 1, wherein the ultrasonic imaging device performs the following steps. 3. While the scanning of the piezoelectric induced portion of the vibrator in the first direction by the first scanning unit is fixed, the beam scanning in the second direction by the second scanning unit is sequentially performed multiple times. 2. Transmission and reception of a plurality of tomographic planes by repeating this operation while scanning by the first scanning means to gradually obtain tomographic images of a plurality of tomographic planes by aperture synthesis.
The ultrasonic imaging device described in . 4. The ultrasonic transmitting/receiving means further includes delay time distribution changing means for sequentially moving the focal length of the receiving beam in the beam depth direction during a receiving period after one transmission. Ultrasonic imaging device. 5. The storage means is characterized in that the received signal is added only to fan-shaped positions centered on the position corresponding to the piezoelectric induced portion selected by the first scanning means of the electroacoustic transducer. The ultrasonic imaging device according to claim 1.
JP2179671A 1990-07-09 1990-07-09 Ultrasonic image pickup device Pending JPH0467854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179671A JPH0467854A (en) 1990-07-09 1990-07-09 Ultrasonic image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179671A JPH0467854A (en) 1990-07-09 1990-07-09 Ultrasonic image pickup device

Publications (1)

Publication Number Publication Date
JPH0467854A true JPH0467854A (en) 1992-03-03

Family

ID=16069839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179671A Pending JPH0467854A (en) 1990-07-09 1990-07-09 Ultrasonic image pickup device

Country Status (1)

Country Link
JP (1) JPH0467854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259274A (en) * 2010-06-10 2011-12-22 Konica Minolta Medical & Graphic Inc Ultrasonic probe and ultrasonic diagnosis apparatus
JP2017185085A (en) * 2016-04-07 2017-10-12 株式会社日立製作所 Ultrasound imaging apparatus and ultrasound transmission/reception method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259274A (en) * 2010-06-10 2011-12-22 Konica Minolta Medical & Graphic Inc Ultrasonic probe and ultrasonic diagnosis apparatus
JP2017185085A (en) * 2016-04-07 2017-10-12 株式会社日立製作所 Ultrasound imaging apparatus and ultrasound transmission/reception method

Similar Documents

Publication Publication Date Title
JP2789234B2 (en) Ultrasound diagnostic equipment
JP3090718B2 (en) Ultrasound diagnostic equipment
US4550606A (en) Ultrasonic transducer array with controlled excitation pattern
EP0104928B1 (en) Ultrasonic diagnostic imaging systems for varying depths of field
US5097709A (en) Ultrasonic imaging system
JPS6242616B2 (en)
US20040066708A1 (en) Ultrasonic transmitting and receiving apparatus
JP2005177481A (en) Ultrasonic probe with changeover switch
JP3382831B2 (en) Method of manufacturing ultrasonic transducer array, ultrasonic transducer array, ultrasonic probe, and ultrasonic imaging apparatus
JPH0259733B2 (en)
JPH09154844A (en) Ultrasonic diagnostic device
JP2020175049A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH0467854A (en) Ultrasonic image pickup device
JP2020175048A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH0443957A (en) Ultrasonic image pickup system
JP2743008B2 (en) Ultrasound diagnostic equipment
JPH0226189B2 (en)
JPH03247324A (en) Ultrasonic photographing method and apparatus
JP3256698B2 (en) Ultrasound diagnostic equipment
JPH08229034A (en) Ultrasonic diagnostic device
JP2004089357A (en) Ultrasonic search unit, and ultrasonic diagnostic apparatus using the same
JPS6337664B2 (en)
JPS6225376B2 (en)
JPS59108539A (en) Electron scanning type ultrasonic probe
Hykes et al. Real-Ti me Ultrasound Instru mentation: An Update