JPH0467646A - Evaluation of crystal of semiconductor material - Google Patents

Evaluation of crystal of semiconductor material

Info

Publication number
JPH0467646A
JPH0467646A JP18105890A JP18105890A JPH0467646A JP H0467646 A JPH0467646 A JP H0467646A JP 18105890 A JP18105890 A JP 18105890A JP 18105890 A JP18105890 A JP 18105890A JP H0467646 A JPH0467646 A JP H0467646A
Authority
JP
Japan
Prior art keywords
change
semiconductor material
crystal
wafer
depletion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18105890A
Other languages
Japanese (ja)
Inventor
Yoshio Murakami
義男 村上
Takayuki Shingyouchi
新行内 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP18105890A priority Critical patent/JPH0467646A/en
Publication of JPH0467646A publication Critical patent/JPH0467646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make it possible to inspect the state of the crystal in the depth direction of a semiconductor material before the delivery of products and to eliminate defectives by a method wherein a change in the state of the crystal in the depth direction of the semiconductor material is evaluated on the basis of a change in a leakage current due to carriers, which are generated in a depletion layer while the depletion layer is made to expand in the semiconductor material. CONSTITUTION:A single crystal silicon wafer 1 is earthed under a low temperature of 10 deg.C, a positive voltage is applied to an N<+> impurity region 2 and a depletion layer is generated. The voltage and a current at this time are respectively measured by a voltmeter 3 and an ammeter 4. Then, a bias voltage being applied between the wafer 1 and the region 2 is modified by the operation of a variable resistor 5 and the voltage and the current are again measured. When a change in the value of the current to the bias voltages is measured in such a way, the state of the crystal of a semiconductor material can be estimated in the depth direction of the material. Moreover, the region 2 can be formed even at any arbitrary position in a sampling inspection of the wafer 1, but has only to be formed selecting a part, which has no trouble for the formation of an integrated circuit, of the wafer 1 in a non-destructive inspection of a product.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体材科の結晶評価方法に係り、特に、半導
体材科の表面からその深さ方向に連続的に結晶を評価す
る方法に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for evaluating crystals in semiconductor materials, and particularly relates to a method for evaluating crystals continuously from the surface of a semiconductor material in the depth direction. do.

[従来の技術] 従来、ウェハ状に切り出された半導体材科(以下、半導
体ウェハと云う)は、出荷前に、その結晶の評価試験に
付され、一定以上の結晶欠陥を含む半導体ウェハは不良
品とされている。
[Prior Art] Conventionally, semiconductor materials cut into wafers (hereinafter referred to as semiconductor wafers) are subjected to a crystal evaluation test before being shipped, and semiconductor wafers containing crystal defects above a certain level are rejected. It is considered to be a good product.

かかる結晶の評価試験方法は、例えば、光電減衰法とし
て知られており、この光電減衰法を利用した従来の結晶
評価方法をまず簡単に説明する。
Such a crystal evaluation test method is known, for example, as a photoelectric attenuation method, and a conventional crystal evaluation method using this photoelectric attenuation method will first be briefly explained.

光電減衰法では、所定波長の光が半導体ウェハの表面に
照射され、該照射によりキャリアを半導体ウェハ内に生
成する。このキャリアは時間と共に減衰するので、測定
端子を半導体ウェハの表面に接触させ、その減衰特性か
らキャリアの再結合ライフタイムを推定する。半導体ウ
ェハの結晶の良否は、再結合ライフタイムに影響するの
で、上記の方法で推定された再結合ライフタイムから半
導体ウェハの結晶の良否を判定している。
In the photoelectric attenuation method, light of a predetermined wavelength is irradiated onto the surface of a semiconductor wafer, and carriers are generated within the semiconductor wafer by the irradiation. Since this carrier decays over time, the measurement terminal is brought into contact with the surface of the semiconductor wafer, and the carrier recombination lifetime is estimated from its decay characteristics. Since the quality of the crystal of the semiconductor wafer affects the recombination lifetime, the quality of the crystal of the semiconductor wafer is determined from the recombination lifetime estimated by the above method.

[発明が解決しようとする問題点コ 上述の光電減衰法を利用した結晶評価方法では、キャリ
アの減衰特性が半導体ウェハ全体の平均的特性であるた
め、半導体ウェハの平均的な結晶の性質は評価できるも
のの、結晶の性質の表面からの深さ方向分布は評価でき
ない。
[Problems to be solved by the invention] In the crystal evaluation method using the photoelectric attenuation method described above, the carrier attenuation characteristics are the average characteristics of the entire semiconductor wafer, so the average crystal properties of the semiconductor wafer cannot be evaluated. However, the depth distribution of crystal properties from the surface cannot be evaluated.

半導体ウェハは半導体装置、特に、集積回路に基板を提
供するものであり、集積回路の構成素子が深さ方向で均
一な半導体ウェハの表面近傍に形成されるのみならは上
記従来の結晶評価方法て足りるといえよう。しかしなが
ら、近年、注目されているイントリンシック(IG)ウ
ェハやエピタキシャルウェハでは、深さ方向で結晶の性
質が大きく変化している可能性があり、半導体ウェハの
結晶の性質の深さ方向分布を非破壊で評価できる方法が
要望されていた。
Semiconductor wafers provide substrates for semiconductor devices, especially integrated circuits, and if the components of integrated circuits are formed near the surface of the semiconductor wafer, which is uniform in the depth direction, the conventional crystal evaluation method described above cannot be used. It can be said that it is sufficient. However, in intrinsic (IG) wafers and epitaxial wafers, which have been attracting attention in recent years, there is a possibility that the crystal properties change significantly in the depth direction, and the depth distribution of the crystal properties of semiconductor wafers cannot be changed. There was a need for a method that could be evaluated by destruction.

[問題点を解決するための手段] 本発明は、上記従来の結晶評価方法の問題点を解決すべ
くなされたものであり、半導体材科中に空乏層を拡張さ
せつつ該空乏層中で発生するキャリアに起因する漏洩電
流の変化で半導体材科の深さ方向での結晶状態の変化を
評価するものである。
[Means for Solving the Problems] The present invention was made to solve the problems of the conventional crystal evaluation method described above. This method evaluates changes in the crystal state in the depth direction of semiconductor materials based on changes in leakage current caused by carriers.

したがって、本願発明の要旨は、半導体材科にp−n接
合またはショットキ接合を形成する工程と、該p−n接
合またはショットキ接合に電圧を印加して所定幅の空乏
層を形成する工程と、上記p−n接合またはショットキ
接合を越えて流れる漏洩電流を測定する工程と、上記p
−n接合またはショットキ接合に印加する電圧を変化さ
せ、空乏層の幅を半導体材科の深さ方向に変更する工程
と、上記p−n接合またはショットキ接合を越えて流れ
る漏洩電流を測定し、漏洩電流の測定値の変化に基づき
発生キャリアのライフタイムの変化を推定する工程と、
上記発生ライフタイムの変化に基づき半導体材科の深さ
方向の結晶状態を評価する工程とを含む半導体材科の結
晶評価方法である。
Therefore, the gist of the present invention is to form a p-n junction or a Schottky junction in a semiconductor material, a step of applying a voltage to the p-n junction or a Schottky junction to form a depletion layer of a predetermined width, a step of measuring a leakage current flowing across the p-n junction or the Schottky junction;
- changing the voltage applied to the n-junction or Schottky junction to change the width of the depletion layer in the depth direction of the semiconductor material, and measuring the leakage current flowing beyond the p-n junction or Schottky junction, a step of estimating a change in the lifetime of generated carriers based on a change in a measured value of leakage current;
This method includes the step of evaluating the crystalline state of the semiconductor material in the depth direction based on the change in the generation lifetime.

[発明の作用および効果コ 所定の温度条件下で測定される漏洩電流は、空乏層内で
発生するキャリアでほぼ占められており、その発生キャ
リアによる電流Jはキャリアの発生率をU、バイアス電
圧V印加時の空乏層幅をW、キャリアの電荷量をqとす
ると式1で示される。
[Operations and Effects of the Invention] The leakage current measured under a predetermined temperature condition is almost entirely occupied by carriers generated within the depletion layer, and the current J due to the generated carriers is determined by the carrier generation rate U and the bias voltage. When the width of the depletion layer when V is applied is W, and the amount of charge of carriers is q, it is expressed by Equation 1.

J=qj:Udw        (式1)ここで、バ
イアス電圧をdV変化させると、変化後の発生キャリア
による電流はdJだけ増加し、全電流は式2で表される
J=qj:Udw (Equation 1) Here, when the bias voltage is changed by dV, the current due to the generated carriers after the change increases by dJ, and the total current is expressed by Equation 2.

J+dJ=qJ:dIIUdw     (式2)式2
から電流の変化量dJは dJ=qUdw=qU (dw/dv)dV(式3) また、キャリアの発生率Uは U= (1/q)(d J/dV)/ (dw/dv)
(式4) 一方、キャリアの発生率Uは真性キャリア濃度をn11
 キャリアのライフタイムをτθとすると式5%式% U=n i/ (271! (w) )     (式
5)式4を式5に代入してライフタイムγe(w)につ
いて解くと式6が得られる。
J+dJ=qJ:dIIUdw (Formula 2) Formula 2
From this, the amount of change in current dJ is dJ = qUdw = qU (dw/dv) dV (formula 3), and the carrier generation rate U is U = (1/q) (d J/dV)/ (dw/dv)
(Formula 4) On the other hand, the carrier generation rate U is the intrinsic carrier concentration n11
If the lifetime of the carrier is τθ, then the formula 5% formula % U = n i / (271! (w) ) (Formula 5) When formula 4 is substituted into formula 5 and solved for the lifetime γe (w), formula 6 is obtained. can get.

r[l(w)= (qn i/2)(dw/dv)/(
dj/dv)      (式6) バイアス電圧V印加時の空乏層幅Wは空乏層近似により
式7で示される。
r[l(w)= (qn i/2)(dw/dv)/(
dj/dv) (Equation 6) The depletion layer width W when applying the bias voltage V is expressed by Equation 7 using depletion layer approximation.

w= ((2E9ε9 (vb+十V))/qNb) 
”2(式7) 式7でε3、ε8はそれぞれ比誘電率と真空誘電率とを
示しており、V b iは内部ポテンシャルを示し、N
bは半導体材科の不純物濃度である。
w= ((2E9ε9 (vb+10V))/qNb)
2 (Equation 7) In Equation 7, ε3 and ε8 represent the relative permittivity and vacuum permittivity, respectively, V b i represents the internal potential, and N
b is the impurity concentration of the semiconductor material.

式7をdvで微分すると、 dw/dv= (εsεe/2qNb (vbt+v)) ”2(式8
) 式8を式6に代入すると、ライフタイムτe(w)は τll(w)=  (qn i/2) (tsεa/2
qNb(vb:十v))”2/ (dj/dv)(式9
) 式9から明らかなように、印加バイアス電圧に対する発
生電流の変化(dj/dw)を測定すると、空乏層幅の
変化に伴う、発生ライフタイムの分布τB(W)を知る
ことができる。
Differentiating Equation 7 with dv, dw/dv= (εsεe/2qNb (vbt+v)) ”2 (Equation 8
) Substituting Equation 8 into Equation 6, the lifetime τe(w) is τll(w) = (qn i/2) (tsεa/2
qNb (vb: 10v))”2/ (dj/dv) (Equation 9
) As is clear from Equation 9, by measuring the change in the generated current (dj/dw) with respect to the applied bias voltage, it is possible to know the distribution τB (W) of the generated lifetime due to the change in the depletion layer width.

一般に、半導体材科中の結晶欠陥はキャリアの再結合を
促し、発生ライフタイムを短くするので、空乏層を拡張
しつつ印加バイアス電圧に対する発生電流の変化を測定
すれば、半導体材科中の深さ方向の結晶状態を推定する
ことができる。かかる印加バイアス電圧に対する発生電
流の変化は非破壊で測定できるので、半導体材科の深さ
方向の結晶状態を出荷前に検査でき、不良品を排除てき
るという効果が得られる。
In general, crystal defects in semiconductor materials promote recombination of carriers and shorten the generation lifetime. It is possible to estimate the crystal state in the horizontal direction. Since the change in the generated current with respect to the applied bias voltage can be measured nondestructively, the crystalline state of the semiconductor material in the depth direction can be inspected before shipping, and defective products can be eliminated.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図〜第2図は本発明の一実施例に係る工程を示す断
面図であり、1はp形の単結晶シリコンウェハである。
FIGS. 1 and 2 are cross-sectional views showing steps according to an embodiment of the present invention, and 1 is a p-type single crystal silicon wafer.

この単結晶シリコンウェハ1の表面近傍には高不純物濃
度のn影領域2が形成されており、このn影領域2は例
えば燐を拡散、またはイオン注入して形成する。
An n-shaded region 2 with a high impurity concentration is formed near the surface of the single-crystal silicon wafer 1, and this n-shaded region 2 is formed, for example, by diffusing phosphorus or by implanting ions.

次に、単結晶シリコンウェハ1を摂氏10度の低温下で
接地し、n形不純物領域2に正電圧を印加し、空乏層を
発生させる。この時の電圧および電流をそれぞれ電圧計
3と電流計4で測定する。
Next, the single crystal silicon wafer 1 is grounded at a low temperature of 10 degrees Celsius, and a positive voltage is applied to the n-type impurity region 2 to generate a depletion layer. The voltage and current at this time are measured using a voltmeter 3 and an ammeter 4, respectively.

次に、単結晶シリコンウェハ1とn形不純物領域2との
間に印加されているバイアス電圧を可変抵抗器5を操作
して変更し、再び、電圧と電流とを測定する。このよう
にして、バイアス電圧に対する電流値の変化を測定すれ
ば、上記式9から発生ライフタイムの分布を知ることが
でき、結晶状態を深さ方向に推定することができる。
Next, the bias voltage applied between single crystal silicon wafer 1 and n-type impurity region 2 is changed by operating variable resistor 5, and the voltage and current are measured again. By measuring the change in the current value with respect to the bias voltage in this way, the distribution of generation lifetime can be determined from the above equation 9, and the crystal state can be estimated in the depth direction.

なお、n形不純物領域2は単結晶シリコンウェハのサン
プリング検査ならいずれの任意の位置にも形成できるが
、製品の非破壊検査では、集積回路の形成に不都合の無
い部分を選んで形成すればよい。
Note that the n-type impurity region 2 can be formed at any arbitrary position for sampling inspection of single-crystal silicon wafers, but for non-destructive inspection of products, it may be formed in a selected area that is not inconvenient for the formation of integrated circuits. .

第3図〜第4図は本発明の他の実施例に係る評価方法を
示す断面図であり、11は化合物半導体、例えばガリウ
ムひ素のウェハである。このウェハ11の主面上には金
属、例えば金−ニッケル合金の電極12が形成されてお
り、この電極12は例えば選択成長または蒸着で形成す
ることができる。
3 and 4 are cross-sectional views showing an evaluation method according to another embodiment of the present invention, and 11 is a wafer of a compound semiconductor, for example, gallium arsenide. An electrode 12 of metal, for example a gold-nickel alloy, is formed on the main surface of the wafer 11, and this electrode 12 can be formed, for example, by selective growth or vapor deposition.

このように、化合物半導体のウェハ11と金属電極12
とを接触させると、その界面にショットキ障壁が発生し
、バイアス電圧によりショットキ障壁から化合物半導体
ウェハ11中に空乏層が延びス 次に、ウェハ11を摂氏20度の温度下で接地し、電極
12に正電圧を印加し、空乏層を発生させる。この時の
電圧および電流をそれぞれ電圧計13と電流計14で測
定する。
In this way, the compound semiconductor wafer 11 and the metal electrode 12
When the wafer 11 is brought into contact with the compound semiconductor wafer 11, a Schottky barrier is generated at the interface thereof, and a depletion layer is extended from the Schottky barrier into the compound semiconductor wafer 11 by the bias voltage.Then, the wafer 11 is grounded at a temperature of 20 degrees Celsius, and the electrode 12 A positive voltage is applied to generate a depletion layer. The voltage and current at this time are measured using a voltmeter 13 and an ammeter 14, respectively.

次に、ウェハ11と電極12との間に印加されているバ
イアス電圧を可変抵抗器15を操作して変更し、再び、
電圧と電流とを測定する。このようにして、バイアス電
圧に対する電流値の変化を測定すれば、p−n接合の場
合と同様に発生ライフタイムの分布を知ることができ、
結晶状態を深さ方向に推定することができる。
Next, the bias voltage applied between the wafer 11 and the electrode 12 is changed by operating the variable resistor 15, and again,
Measure voltage and current. In this way, by measuring the change in current value with respect to the bias voltage, it is possible to know the distribution of the generation lifetime in the same way as in the case of p-n junctions.
The crystal state can be estimated in the depth direction.

なお、金属電極12はウェハのサンプリング検査ならい
ずれの任意の位置にも形成できるが、製品の非破壊検査
では、集積回路の形成に不都合の無い部分を選んで形成
すればよい。
Note that the metal electrode 12 can be formed at any arbitrary position for sampling inspection of a wafer, but for non-destructive inspection of a product, it may be formed at a selected location that is not inconvenient for forming an integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例に係る評価方法
の工程を示す断面図、 第3図および第4図は本発明の他の実施例に係る評価方
法の工程を示す断面図である。 1.、、、、、単結晶シリコンウェハ、2、、、、、、
Il形不純物領域、 3.13.、、、電圧計、 4.14.、、、電流計、 5.15.、、、可変抵抗器、 11、、、、、、化合物半導体のウェハ、12、、、、
、、金属電極。 特許出願人  三菱金属株式会社 代理人 弁理士  桑 井 清 −(外1名)ニ 一実施例の工程を示す断面図
1 and 2 are cross-sectional views showing steps of an evaluation method according to one embodiment of the present invention, and FIG. 3 and FIG. 4 are cross-sectional views showing steps of an evaluation method according to another embodiment of the present invention. It is. 1. , , , , Single crystal silicon wafer , 2 , , , , ,
Il type impurity region, 3.13. ,,,voltmeter, 4.14. ,,,Ammeter, 5.15. ,,,Variable resistor, 11,,, Compound semiconductor wafer, 12,,,
,,metal electrode. Patent Applicant Mitsubishi Metals Co., Ltd. Agent Patent Attorney Kiyoshi Kuwai - (1 other person) Cross-sectional diagram showing the process of the second embodiment

Claims (2)

【特許請求の範囲】[Claims] (1)半導体材料にp−n接合またはシヨットキ接合を
形成する工程と、 該p−n接合またはシヨットキ接合に電圧を印加して所
定幅の空乏層を形成する工程と、上記p−n接合または
シヨットキ接合を越えて流れる漏洩電流を測定する工程
と、 上記p−n接合またはシヨットキ接合に印加する電圧を
変化させ、空乏層の幅を半導体材料の深さ方向に変更す
る工程と、 上記p−n接合またはシヨットキ接合を越えて流れる漏
洩電流を測定し、漏洩電流の測定値の変化に基づき発生
キャリアのライフタイムの変化を推定する工程と、 上記発生ライフタイムの変化に基づき半導体材料の深さ
方向の結晶状態を評価する工程とを含む半導体材科の結
晶評価方法。
(1) A step of forming a p-n junction or a Schottky junction in a semiconductor material; a step of applying a voltage to the p-n junction or Schottky junction to form a depletion layer of a predetermined width; a step of measuring the leakage current flowing across the Schottky junction; a step of changing the voltage applied to the p-n junction or the Schottky junction to change the width of the depletion layer in the depth direction of the semiconductor material; A step of measuring the leakage current flowing across the n-junction or the Schottky junction and estimating the change in the lifetime of the generated carriers based on the change in the measured value of the leakage current, and the step of estimating the change in the lifetime of the generated carriers based on the change in the generated lifetime. A method for evaluating crystals of semiconductor materials, including a step of evaluating crystal states in directions.
(2)上記半導体材料を拡散電流に対して発生電流が優
勢である温度(一般に低温)にして上記漏洩電流の測定
を実施する特許請求の範囲第1項記載の半導体材料の結
晶評価方法。
(2) A crystal evaluation method for a semiconductor material according to claim 1, wherein the leakage current is measured at a temperature (generally low temperature) at which the generated current is dominant over the diffusion current.
JP18105890A 1990-07-09 1990-07-09 Evaluation of crystal of semiconductor material Pending JPH0467646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18105890A JPH0467646A (en) 1990-07-09 1990-07-09 Evaluation of crystal of semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18105890A JPH0467646A (en) 1990-07-09 1990-07-09 Evaluation of crystal of semiconductor material

Publications (1)

Publication Number Publication Date
JPH0467646A true JPH0467646A (en) 1992-03-03

Family

ID=16094045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18105890A Pending JPH0467646A (en) 1990-07-09 1990-07-09 Evaluation of crystal of semiconductor material

Country Status (1)

Country Link
JP (1) JPH0467646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303280A (en) * 2012-06-15 2015-01-21 信越半导体株式会社 Semiconductor substrate evaluating method, semiconductor substrate for evaluation, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303280A (en) * 2012-06-15 2015-01-21 信越半导体株式会社 Semiconductor substrate evaluating method, semiconductor substrate for evaluation, and semiconductor device

Similar Documents

Publication Publication Date Title
US6037797A (en) Measurement of the interface trap charge in an oxide semiconductor layer interface
Yamasaki et al. Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes
US7103484B1 (en) Non-contact methods for measuring electrical thickness and determining nitrogen content of insulating films
Elmiger et al. Recombination at the silicon nitride/silicon interface
Pierret A linear-sweep MOS-C technique for determining minority carrier lifetimes
De Souza et al. Minority‐carrier lifetime in p‐type (111) B HgCdTe grown by molecular‐beam epitaxy
Wilson et al. Recent Advancement in Charge-and Photo-Assisted Non-Contact Electrical Characterization of SiC, GaN, and AlGaN/GaN HEMT
JPH0467646A (en) Evaluation of crystal of semiconductor material
EP0511145A2 (en) Method for determining the thickness of an interfacial polysilicon/silicon oxide film
Kida et al. Measurement of deep states in undoped amorphous silicon by current transient spectroscopy
Lee et al. Measurement time reduction for generation lifetimes
Nanver et al. Test structures without metal contacts for DC measurement of 2D-materials deposited on silicon
Harten The surface recombination on silicon contacting an electrolyte
JP3250158B2 (en) Analysis method of leakage current of PN junction
US7405580B2 (en) Self-calibration in non-contact surface photovoltage measurement of depletion capacitance and dopant concentration
JP3632364B2 (en) Method for measuring carrier concentration of p-type silicon epitaxial layer
EP1610373A2 (en) Method and apparatus for determining generation lifetime of product semiconductor wafers
JP4894104B2 (en) Method for measuring carrier concentration of silicon epitaxial layer
Jastrzebski et al. Deep levels study in float zone Si used for fabrication of CCD imagers
JPH10270516A (en) Semiconductor-wafer evaluation and its device
WO2006103832A1 (en) Method for evaluating semiconductor wafer dopant contamination
Hässler et al. Grain boundaries in multicrystalline silicon. Characterization by admittance and EBIC measurements
Madenach et al. Deep-level-noise spectroscopy of ion-implanted polysilicon thin films
Wang Characterization of EL2 distribution on semi‐insulating GaAs wafer by optically assisted imperfection profile
Chen et al. A model for analyzing the interface properties of a semiconductor-insulator-semiconductor structure. II. Transient capacitance technique