JPH0467522B2 - - Google Patents
Info
- Publication number
- JPH0467522B2 JPH0467522B2 JP5989687A JP5989687A JPH0467522B2 JP H0467522 B2 JPH0467522 B2 JP H0467522B2 JP 5989687 A JP5989687 A JP 5989687A JP 5989687 A JP5989687 A JP 5989687A JP H0467522 B2 JPH0467522 B2 JP H0467522B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- cement
- iron
- synthetic resin
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 34
- 239000004568 cement Substances 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 239000000057 synthetic resin Substances 0.000 claims description 16
- 229920003002 synthetic resin Polymers 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000003365 glass fiber Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000004570 mortar (masonry) Substances 0.000 claims description 7
- 239000000839 emulsion Substances 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 19
- 239000004567 concrete Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000011384 asphalt concrete Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
Description
(産業上の利用分野)
本発明は、耐摩耗性を必要とする寒冷地の道路
或は空港の滑走路、ダム堤体の洪水吐や圧力トン
ネル、更には海洋コンクリート構造物等の舗装乃
至補修に用いられる耐摩耗性材料の改良に関す
る。尚、以下では上記舗装及び補修に用いられる
ものを総称して舗装材と云う。
(従来の技術)
自動車道路や空港滑走路の表面は、コンクリー
ト若しくはアスフアルトにより舗装がなされる。
亦、上記水利構造物や海洋構造物はコンクリート
により製せられる。
(発明が解決しようとする問題点)
然し乍ら、寒冷地においては、融雪期自動車の
スパイクタイヤ或はチエーンにより道路表面が轍
掘れし、舞い上がつた紛塵が周辺住民に多大な害
をおよぼすことになる為、これが大きな社会問題
となつている。また、寒冷地のトンネル内道路に
於いては、上記轍掘れにより舞い上がつたが粉塵
が視界を遮り、安全性が阻害されると云つた点も
指摘されている。一方、空港滑走路は、その特性
上舗装表面の摩耗が激しく、しかも安全性の観点
から舗装表面の補修が頻多になされる。更に、ダ
ム等の水利構造物或は海洋コンクリート構造物等
の表面は、土砂流等の作用を受けて侵食乃至破壊
され易く、これも定期的な補修が必要とされる。
コンクリート或はアスフアルトは、圧縮強度に
は優れているが、曲げ強度、引つ張り強度及び耐
摩耗性に難があり、これが原因で上記の如き問題
点が惹起されるのである。
本発明は、上記実情に鑑みさなれたもので、衝
撃吸収性に優れ且つ耐摩耗性等の靭性を保有する
新規な耐摩耗性舗装材を提供することより上記問
題点の一掃を図らんとするものである。
(問題点を解決する為の手段)
上記目的を達成する為の本発明の耐摩耗性舗装
材は、セメント、細骨材及び水より成るモルタル
組成物に、合成樹脂若しくは合成ゴムの溶液又は
これらの乳化液と、ガラス繊維、合成樹脂繊維及
びカーボン繊維等より選ばれた1種若しくは数種
の繊維と、鉄粒及び鉄片より選ばれた1種若しく
は2種の硬質骨材とを混練して成ることを要旨と
するものである。
上記セメントとしては、ポルトランドセメン
ト、早強セメント、中庸熱セメント、白色等の着
色セメント、アルミナセメント等が用いられる。
また、細骨材としては、4〜7号硅砂、細砂或は
細粉砕された高炉スラグ等が用いられる。これは
セメント及び細骨材に適量の水を加えてモルタル
組成物となし、これに上記各材料を添加混練すれ
ば本発明の舗装材が得られる。以下にこれら添加
材料について説明する。
() 繊維について;
ガラス繊維としては、ガラス組成物に酸化ジル
コニウムを10〜23%混合溶融した耐アルカリガラ
スの繊維が、また合成樹脂繊維としては塩化ビニ
ル樹脂、ポリエチレン樹脂或はナイロン樹脂等の
繊維が望ましく採用される。更にカーボン繊維、
ケプラー、石綿及び岩綿等も採用可能である。上
記耐アルカリガラス繊維は、繊維の径が0.5mm前
後、50〜400本集束されたもので、アスペクト比
は60位が最適とされる。これら繊維は、いずれも
単独で用いることは可能であるが、ガラス繊維単
独若しくはこれに上記他の繊維を併用して用いる
ことが望ましい。
() 合成樹脂若しくは合成ゴムの溶液若しく
はこれらの乳化液について(以下、合成樹脂液
等と云う);
ポリビニルアルコール、カルボキシメチルセル
ローズ、メチルセルローズ、アクリル等の溶液、
又はエチレン酢酸ビニル、スチレンブタジエン、
クロロプレン等の乳化液が望ましく採用される。
() 硬質骨材について;
鉄粒としては、屑鉄又は鉄鉱石等を高炉や電気
炉にて還元若しくは酸化処理する製鉄過程から排
出された炉砕を粉砕篩分けし、磁力選鉱した粒径
1〜15mm、鉄分40%以上の炉砕粒鉄が最も望まし
く採用される。特にこの粒鉄は、表面に凹凸のあ
る異形の粒体であり、しかも表面にノロや鉱砕が
付着噛み込んでおり、上記セメント及び合成樹脂
液等との接着性が良く且つ舗装構造のマトリツク
スに対するアンカー効果により該構造内に極めて
安定的に保持される。その他、ダライ粉、各種廃
棄鉄粒等も採用可能である。また、鉄片として
は、加工残材等の廃鉄を切断した鉄片が用いられ
る。これら硬質骨材は、単独で用いたり或は両者
を併用することも可能である。
上記各材料を配合調整するにあたつては、セメ
ントと細骨材とを混合し、これに水及び合成樹脂
液等を添加混練した上で、上記繊維を添加して一
様に混合し、最後に硬質骨材を加えて混練する。
この配合割合は、細骨材はセメント100重量部に
対し30〜150重量部が、また、合成樹脂液等は全
体量に対し3〜20重量%(固形分比)が、繊維は
同0.5〜5重量%が、硬質骨材は上記セメントと
略同量乃至2倍(重量)程度が夫々適当とされ
る。
(作用)
上記構成の耐摩耗性舗装材を用いて道路表面等
を舗装する場合、被舗装表面をサンデイングする
など適宜下養生した後、バイブレーシヨンを掛け
ながら舗装する。この時、上記硬質骨材はセメン
トスラリーよりその比重が遥かに大であるが、互
いに絡み合つた繊維により担持され、バイブレー
シヨンによつても沈降することなく、均一分散状
態で舗装される。そして、養生硬化された舗装構
造体に於いては、硬化した合成樹脂等と繊維との
結合効果により通常のコンクリート若しくはモル
タルに較べその引つ張り強度が3〜5倍になり、
耐衝撃性や耐引掻き性が飛躍的に向上する。亦、
硬質骨材がセメントマトリツクス中に均一分散状
態で担持されているので、舗装面上をスパイクタ
イヤやチエーンを着装した車が走行しても摩耗す
ることが極めて少なく、従つて道路周辺部の環境
改善に大きく寄与し或はトンネル内の安全性も確
保される。更に、混練された合成樹脂等の作用に
より吸水率が通常のコンクリートの10分の1程度
となり、凍結によるひび割れ等も生じる懸念がな
い。
更に、空港滑走路を上記舗装材にて舗装すれ
ば、飛行機の離着陸時に加わる衝撃力を吸収し且
つ強大な摩擦力にも摩耗することがなく、その寿
命が長くなる。更に亦、ダムや水利構造物、海洋
コンクリート構造物或は農業用水路等の表面に上
記舗装材を塗着させれば、土砂流による摩耗や破
壊防止が有効になされる。
(実施例)
次に実施例について述べる。
() 第1表に本発明の耐摩耗性舗装材の実施
例と比較例との配合割合を示す。
(Field of Industrial Application) The present invention is suitable for paving or repairing roads in cold regions that require wear resistance, airport runways, spillways and pressure tunnels of dam embankments, and marine concrete structures. This invention relates to improvements in wear-resistant materials used in In addition, hereinafter, the materials used for the above-mentioned paving and repair are collectively referred to as paving materials. (Prior Art) The surfaces of automobile roads and airport runways are paved with concrete or asphalt.
Additionally, the above-mentioned water conservancy structures and marine structures are made of concrete. (Problem to be Solved by the Invention) However, in cold regions, the spiked tires or chains of cars during the snow melting season can cause ruts on the road surface, and the dust thrown up can cause great harm to surrounding residents. This has become a major social problem. It has also been pointed out that on roads inside tunnels in cold regions, the ruts described above cause the dust thrown up into the air to obstruct visibility and impair safety. On the other hand, the pavement surface of an airport runway is subject to severe wear due to its characteristics, and the pavement surface is frequently repaired from the viewpoint of safety. Furthermore, the surfaces of water conservancy structures such as dams, marine concrete structures, etc. are easily eroded or destroyed by the action of mudflows, etc., and these also require periodic repair. Although concrete or asphalt has excellent compressive strength, it has poor bending strength, tensile strength, and abrasion resistance, which causes the above-mentioned problems. The present invention was developed in view of the above-mentioned circumstances, and aims to eliminate the above-mentioned problems by providing a new wear-resistant pavement material that has excellent shock absorption properties and has toughness such as wear resistance. It is something to do. (Means for Solving the Problems) In order to achieve the above object, the wear-resistant paving material of the present invention is a mortar composition consisting of cement, fine aggregate, and water, mixed with a solution of synthetic resin or synthetic rubber, or by kneading the emulsion, one or more types of fibers selected from glass fibers, synthetic resin fibers, carbon fibers, etc., and one or two types of hard aggregates selected from iron particles and iron pieces. The main purpose of this is to achieve the following goals. As the above-mentioned cement, Portland cement, early strength cement, medium heat cement, colored cement such as white, alumina cement, etc. are used.
Further, as the fine aggregate, No. 4 to No. 7 silica sand, fine sand, finely crushed blast furnace slag, etc. are used. The paving material of the present invention can be obtained by adding an appropriate amount of water to cement and fine aggregate to form a mortar composition, and adding and kneading the above-mentioned materials to the mortar composition. These additive materials will be explained below. () Regarding fibers: Glass fibers include alkali-resistant glass fibers made by mixing and melting 10 to 23% zirconium oxide in a glass composition, and synthetic resin fibers include vinyl chloride resin, polyethylene resin, or nylon resin fibers. is preferably adopted. Furthermore, carbon fiber
Kepler, asbestos, rock wool, etc. can also be used. The above-mentioned alkali-resistant glass fibers have a fiber diameter of around 0.5 mm, are bundled in 50 to 400 fibers, and have an optimal aspect ratio of about 60. Although any of these fibers can be used alone, it is desirable to use glass fiber alone or in combination with the other fibers mentioned above. () Regarding synthetic resin or synthetic rubber solutions or their emulsions (hereinafter referred to as synthetic resin liquids, etc.); Solutions of polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, acrylic, etc.
or ethylene vinyl acetate, styrene butadiene,
Emulsions such as chloroprene are preferably employed. () Regarding hard aggregate; Iron grains are made by crushing and sifting furnace crushed waste discharged from the iron manufacturing process in which scrap iron or iron ore, etc. is reduced or oxidized in a blast furnace or electric furnace, and then magnetically sorted. Furnace crushed iron with a diameter of 15 mm and an iron content of 40% or more is most preferably used. In particular, this iron granule is a irregularly shaped granule with an uneven surface, and has slag and mineral debris stuck to the surface, and has good adhesion with the above cement and synthetic resin liquid, and is suitable for use in the matrix of pavement structures. It is held very stably within the structure due to its anchoring effect. In addition, powder, various types of waste iron particles, etc. can also be used. Further, as the iron piece, an iron piece cut from waste iron such as leftover material is used. These hard aggregates can be used alone or in combination. When adjusting the composition of each of the above materials, cement and fine aggregate are mixed, water and synthetic resin liquid etc. are added and kneaded, and the above fibers are added and mixed uniformly. Finally, hard aggregate is added and kneaded.
The mixing ratio is 30 to 150 parts by weight of fine aggregate to 100 parts by weight of cement, 3 to 20 parts by weight of synthetic resin liquid etc. (solid content ratio) to 100 parts of cement, and 0.5 to 100 parts of fiber. 5% by weight, and approximately the same amount to twice (by weight) of the hard aggregate as the above cement. (Function) When paving a road surface or the like using the abrasion-resistant paving material having the above structure, the surface to be paved is properly cured by sanding, and then paved while applying vibration. At this time, although the hard aggregate has a much higher specific gravity than the cement slurry, it is supported by the intertwined fibers, and the paving is done in a uniformly dispersed state without settling due to vibration. In cured and cured pavement structures, the tensile strength is 3 to 5 times that of ordinary concrete or mortar due to the bonding effect between the cured synthetic resin and fibers.
Impact resistance and scratch resistance are dramatically improved. also,
Since the hard aggregate is supported in a uniformly dispersed state in the cement matrix, there is extremely little wear even when cars equipped with spiked tires or chains drive on the paved surface, thus reducing the environmental impact around the road. This greatly contributes to improvements and also ensures safety within the tunnel. Furthermore, due to the action of the kneaded synthetic resin, etc., the water absorption rate is about one-tenth that of normal concrete, so there is no concern that it will crack due to freezing. Furthermore, if an airport runway is paved with the above-mentioned paving material, it will absorb the impact force applied during takeoff and landing of airplanes, and will not be worn out by strong frictional forces, extending its lifespan. Furthermore, if the above-mentioned paving material is applied to the surface of a dam, water conservancy structure, marine concrete structure, agricultural waterway, etc., abrasion and destruction caused by mudflow can be effectively prevented. (Example) Next, an example will be described. () Table 1 shows the blending ratios of the examples and comparative examples of the wear-resistant pavement material of the present invention.
【表】
() 上記各サンプルにてテストピースを作成
しその曲げ強度及び耐摩耗性テストを実施し
た。その結果を第2表に示す。[Table] () Test pieces were prepared from each of the above samples and tested for bending strength and abrasion resistance. The results are shown in Table 2.
【表】【table】
【表】
尚、曲げ強度はJISR5201に準拠して測定し、
亦耐摩耗性のテストは、ボール摩耗試験機により
1時間当りの摩耗深さを測定することにより行な
つた。
第2表の結果より、本発明の舗装材は耐摩耗性
が優れていることが理解される。因みに、一般道
路の舗装に用いられるセメントコンクリート及び
アスフアルトコンクリートについて同テストを実
施したところ、前者が平均3.3mm/hr及び後者が
平均4.3mm/hrであり、これと較べても本発明の
舗装材による耐摩耗性の優れていることが理解さ
れる。特に(*3)の粒鉄を用いたものは、表面
が極めて強靭で、これを自動車道路の舗装に用い
ればスパイクタイヤやチエーン等による摩耗が極
めて少なくなることが予想される。亦、曲げ強度
は全般的に比較例と大差がないが、通常のコンク
リート若しくはモルタルに較べて3〜5倍の強度
を有しており、これは繊維及び混練された合成樹
脂液の相乗効果により付与されたものと推察され
る。更に、上記サンプルの調整過程で、混練物を
強く撹拌したが、硬質骨材の沈降はなく均一に分
散されることも確認された。これは、硬質骨材が
混練物中で互いに絡み合つた繊維により担持され
その沈降が阻止される為である。
(発明の効果)
叙上の如く、本発明の耐摩耗性舗装材は、モル
タル組成物中にガラス繊維等の繊維及び合成樹脂
液更に鉄粉若しくは鉄片の硬質骨材が混練されて
いるから、繊維及び合成樹脂等の結合による相乗
作用により舗装構造体の曲げ及び引つ張り強度が
強化され、且つ硬質骨材により表面の耐摩耗性が
飛躍的に増大する。これを自動車道路或は空港滑
走路の舗装に利用すれば、スパイクタイヤやチエ
ーン等による摩耗が著減され、発塵による周辺部
の環境悪化が防止されると共に、トンネル内の安
全性も確保され、更に滑走路のメインテナンスに
も多大の利益をもたらす。亦、各種水利構造物、
海洋コンクリート構造物の補修にこれを採用すれ
ば、土砂流による摩耗破壊も著減される。更に
亦、上記セメントとして白セメントを用い、これ
を上記道路の舗装の際に標識白線の代用として舗
装すれば、この白線自体も摩耗することが少な
く、半永久的な標識機能が約束される。加えて本
発明の舗装材には合成樹脂等が含有されるから、
舗装表面の吸水率が低く、従つて含水の凍結によ
るひび割れ等も生じる懸念がない。
このように多くの特筆すべき効果を有する本発
明はその社会的有用性極めて大である。[Table] The bending strength is measured in accordance with JISR5201.
The wear resistance test was conducted by measuring the wear depth per hour using a ball wear tester. From the results in Table 2, it is understood that the pavement material of the present invention has excellent wear resistance. Incidentally, when the same test was conducted on cement concrete and asphalt concrete used for paving general roads, the former had an average of 3.3 mm/hr and the latter had an average of 4.3 mm/hr. It is understood that the wear resistance is excellent. In particular, those using granulated iron (*3) have extremely tough surfaces, and if used for paving automobile roads, it is expected that wear caused by spiked tires, chains, etc. will be extremely reduced. In addition, the bending strength is generally not much different from the comparative example, but it is 3 to 5 times stronger than ordinary concrete or mortar, and this is due to the synergistic effect of the fibers and the kneaded synthetic resin liquid. It is assumed that this was granted. Furthermore, although the kneaded material was strongly stirred in the process of preparing the sample, it was confirmed that the hard aggregate did not settle and was uniformly dispersed. This is because the hard aggregate is supported by fibers intertwined with each other in the kneaded material and its settling is prevented. (Effects of the Invention) As described above, the wear-resistant paving material of the present invention has fibers such as glass fibers, synthetic resin liquid, and hard aggregate such as iron powder or iron pieces mixed in the mortar composition. The synergistic effect of the combination of fibers, synthetic resins, etc. strengthens the bending and tensile strength of the pavement structure, and the hard aggregate dramatically increases the wear resistance of the surface. If this is used for paving automobile roads or airport runways, wear caused by spiked tires and chains will be significantly reduced, environmental deterioration in the surrounding areas due to dust generation will be prevented, and safety in tunnels will also be ensured. , it also brings great benefits to runway maintenance. In addition, various water conservancy structures,
If this method is adopted for repairing marine concrete structures, wear and tear caused by mudflows will be significantly reduced. Furthermore, if white cement is used as the cement and is used as a substitute for the white marking line when paving the road, the white line itself is less likely to wear out and a semi-permanent marking function is guaranteed. In addition, since the paving material of the present invention contains synthetic resin etc.
The water absorption rate of the pavement surface is low, so there is no concern that cracks will occur due to freezing of water. The present invention, which has many noteworthy effects as described above, is extremely useful to society.
Claims (1)
成物に、合成樹脂若しくは合成コムの溶液又はこ
れらの乳化液と、ガラス繊維、合成樹脂繊維及び
カーボン繊維等より選ばれた1種若しくは数種の
繊維と、鉄粒及び鉄片より選ばれた1種若しくは
2種の硬質骨材とを混練して成る耐摩耗性舗装
材。1 A mortar composition consisting of cement, fine aggregate, and water, a solution of synthetic resin or synthetic comb, or an emulsion thereof, and one or more types of fibers selected from glass fibers, synthetic resin fibers, carbon fibers, etc. and one or two types of hard aggregate selected from iron particles and iron pieces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5989687A JPS63226401A (en) | 1987-03-14 | 1987-03-14 | Abrasion resistant paving material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5989687A JPS63226401A (en) | 1987-03-14 | 1987-03-14 | Abrasion resistant paving material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63226401A JPS63226401A (en) | 1988-09-21 |
JPH0467522B2 true JPH0467522B2 (en) | 1992-10-28 |
Family
ID=13126337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5989687A Granted JPS63226401A (en) | 1987-03-14 | 1987-03-14 | Abrasion resistant paving material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63226401A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0293306U (en) * | 1989-01-06 | 1990-07-25 | ||
GB2378470A (en) * | 2001-08-10 | 2003-02-12 | Raymond Paul Dunn | Reinforced concrete systems |
CN110845202A (en) * | 2019-12-20 | 2020-02-28 | 石旭艳 | High-strength wear-resistant mortar and preparation method thereof |
-
1987
- 1987-03-14 JP JP5989687A patent/JPS63226401A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63226401A (en) | 1988-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101773932B1 (en) | High Grade Mastic Waterproofing Asphalt Concrete Composition of Low-Temperature Cure Type Having Crack Reducing Effects and Constructing Methods for Using Thereof | |
CN201280677Y (en) | Improved ultrathin antiskid paving structure of epoxy resins | |
KR101835081B1 (en) | High Grade Waterproofing Asphalt Concrete Composition of Low-Temperature Cure Type Having Crack Reducing Effects and Constructing Methods for Using Thereof | |
US7939154B2 (en) | Road and repair materials including magnetite and methods regarding same | |
KR101323022B1 (en) | Method of road repairing by using urethane sealant for repairing broken concrete near expansion joint | |
KR102011923B1 (en) | High grade asphalt concrete composition for excellent workability with low viscosity at high temperature having rubber powder and constructing methods using the same | |
KR102146982B1 (en) | Asphalt Concrete Compositions Having Low Noise and Permeable Using Styrene Isoprene Styrene, Styrene Ethylene Butylene Styrene and Aggregate-powder of Improved Grain Size for Anti-freezing and Constructing Methods Using Thereof | |
KR101999968B1 (en) | Asphalt Recycling Concrete Compositions for Cast-in-place Comprising Stylene Isoprene Stylene and Stylene Butadien Stylene and Constructing Methods Using Thereof | |
JP5189535B2 (en) | Road pavement composition and road pavement method | |
CN103232206A (en) | Thin slurry mixture paved on thin-layer cover on ice and snow melting micro-surface and paving method | |
KR101880473B1 (en) | Construction Method using Non-slip Mixture with Snow-melting Additives for Roadway | |
Jamshidi et al. | Use of recyclable materials in pavement construction for environmental sustainability | |
Dahir | A review of aggregate selection criteria for improved wear resistance and skid resistance of bituminous surfaces | |
JP2019011231A (en) | Road repairing material | |
KR20100083444A (en) | A non-slip and fastly hardened thin layer pavement composition without heating | |
KR101835083B1 (en) | High Grade Waterproofing Asphalt Concrete Composition Comprising Recycling Asphalt and Constructing Methods Using Thereof | |
JPH0467522B2 (en) | ||
US3776748A (en) | Method of preparing surfacing composition for roads;airfield runways and the like | |
Shaffie et al. | Investigation on rutting performance of nanopolyacrylate and natural rubber latex polymer modified asphalt binder mixes | |
KR101001949B1 (en) | Pavement method for easy maintenance in winter | |
JP2005048001A (en) | Asphalt mixture | |
Sprinkel | Polymer concrete bridge overlays | |
CN108483960A (en) | A kind of wear-resisting admixture for wear-resisting road concrete | |
KR100774448B1 (en) | Latex modified concrete composition using high early strength cement | |
CN101172809A (en) | Prescription of fibre modified slurry sealing layer and construction method |