JPH046710A - Insulated wire - Google Patents

Insulated wire

Info

Publication number
JPH046710A
JPH046710A JP2107020A JP10702090A JPH046710A JP H046710 A JPH046710 A JP H046710A JP 2107020 A JP2107020 A JP 2107020A JP 10702090 A JP10702090 A JP 10702090A JP H046710 A JPH046710 A JP H046710A
Authority
JP
Japan
Prior art keywords
insulated wire
inorganic filler
coating
resin composition
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107020A
Other languages
Japanese (ja)
Inventor
Kiyoshi Watanabe
清 渡辺
Hideki Yagyu
柳生 秀樹
Kazunori Ozawa
小沢 一則
Koichi Yoshida
孝一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2107020A priority Critical patent/JPH046710A/en
Publication of JPH046710A publication Critical patent/JPH046710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a wire having a good anti-wear property and thin coating by coating a conductor with a resin composition, in which a prescribed amount of an inorganic filler of a prescribed characteristic is added to thermoplastic resin having two or more pieces of aryl radicals. CONSTITUTION:An insulated wire is composed by coating a conductor with a resin composition in which an inorganic filler of 0.05 to 10wt.% having an average grain diameter of 0.5mum is added to thermoplastic resin of 100wt.% having two or more pieces of aryl radicals in a structure unit. Further, the insulated wire is that in which a conductor is coated with a resin composition where an inorganic filler of 0.05 to 10wt.% having an average grain diameter of not exceeding 0.5mum is added to a mixture of polyetherimide and poly- sulphone of 100wt.%. In this way, by using engineering plastics, mechanical strength such as an anti-wear property is excluded from being dropped even when a coating of an insulated wire is made thin so as to be able to obtain the insulated wire where a solvent-resisting property is sharply improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、極めて薄肉の被覆を施すことができ、それに
よって−層の細径化が可能な上、十分な機械的強度や必
要な電気絶縁性能に加え耐溶剤性をも保有する新規な絶
縁電線に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention makes it possible to apply an extremely thin coating, which allows the layer to be made smaller in diameter, while also providing sufficient mechanical strength and the necessary electrical power. This invention relates to a new insulated wire that has not only insulation performance but also solvent resistance.

[従来の技術] 近年、通信機器類や精密電子機器類は小型化あるいは高
密度実装化の傾向が著しく、さらには、このような様々
の機能を有する小型精密機器類か自動車等に数多く搭載
されるようになり、機器内配線は勿論のこと、限られた
スペースを有効に利用する必要上、これらの機器間を接
続する電線に対しても、絶縁体の薄肉化そして電線自体
の細径化への要望が高まってきている。
[Prior Art] In recent years, communication equipment and precision electronic equipment have shown a remarkable trend toward miniaturization and high-density packaging.Furthermore, many small precision equipment with such various functions are being installed in automobiles, etc. In order to make effective use of limited space, not only the internal wiring of devices, but also the wires that connect these devices are being made with thinner insulators and smaller diameter wires. The demand for this is increasing.

上記した精密機器類内における配線や機器間の細物配線
における絶縁体としては、従来より安価なポリ塩化ビニ
ルやポリエチレンを主体とした樹脂組成物が一般に使用
されてきた。
As insulators for the wiring within the precision instruments described above and the fine wiring between devices, resin compositions mainly composed of inexpensive polyvinyl chloride or polyethylene have conventionally been used.

[発明が解決しようとする課題] 上記したような従来のポリ塩化ビニルやポリエチレンを
主体とした樹脂組成物は、薄肉化するにしても限界があ
り、しかもそのように薄肉化した場合の機械的強度とく
に摩耗特性か大きく低下するという問題があった。
[Problems to be Solved by the Invention] Conventional resin compositions mainly made of polyvinyl chloride or polyethylene as described above have a limit even if they can be made thin, and furthermore, the mechanical There was a problem in that the strength, especially the wear characteristics, was greatly reduced.

所謂エンジニアリングプラスチックスは、機械的強度に
優れており、上記したように薄肉化しても耐摩耗性か低
下するおそれかなく、これを絶縁被覆材として使用でき
れば絶縁体の薄肉化という見地からみて非常に好ましい
So-called engineering plastics have excellent mechanical strength, and as mentioned above, even when made thinner, there is no risk of deterioration in wear resistance, and if they can be used as insulation coatings, it is extremely effective from the perspective of thinning insulation materials. preferred.

構造単位中に2個以上のアリール基(−@−)を有する
熱可塑性樹脂は機能性の高いエンジニアリングプラスチ
ックスとして知られており、機械的強度か極めて大きく
、難燃性、耐熱性、電気絶縁性にも優れているところか
ら、細径絶縁電線の絶縁体として注目されている。
Thermoplastic resins having two or more aryl groups (-@-) in their structural units are known as highly functional engineering plastics, with extremely high mechanical strength, flame retardancy, heat resistance, and electrical insulation properties. Due to its excellent properties, it is attracting attention as an insulator for small-diameter insulated wires.

しかし、この樹脂は伸びが小さくまた曲げ等の応力(ス
トレス)がかがった状態で溶剤と接触するとクレージン
グやクラックが発生するという欠点を有している。
However, this resin has the drawback of low elongation and crazing and cracking when it comes into contact with a solvent under stress such as bending.

また、仮に溶剤を使用していない環境であっても、これ
らの絶縁電線かポリ塩化ビニル絶縁電線と一緒に配線さ
れたりするとポリ塩化ビニル絶縁体から移行した可塑剤
によってクラックが入る可能性がある。
Furthermore, even if the environment does not use solvents, if these insulated wires or PVC insulated wires are wired together, cracks may occur due to the plasticizer transferred from the PVC insulators. .

配線用の絶縁電線は通常直線状態で使用されることは少
く、むしろ曲げた状態で使用されることか前提となって
いるといってもよい。このため、常時的げによるストレ
スが負荷された状態にあるため、上記したエンジニアリ
ングプラスチックスを絶縁体とした電線は極めて限られ
た場合以外は実用化することができなかった。
Insulated wires for wiring are usually not used in a straight state, but rather in a bent state. For this reason, since the wires are constantly subjected to stress due to the damage, the wires using the above-mentioned engineering plastics as an insulator could not be put to practical use except in extremely limited cases.

もしも、上記のエンジニアリングプラスチックスを絶縁
体として使用し、しかも溶剤ストレスクラックを防ぐた
めには、応力のかからない環境や溶剤の全く存在しない
環境で使用するしかないが、そのようなことは実質上不
可能である。
If the above engineering plastics were to be used as an insulator and in order to prevent solvent stress cracks, the only way to do so would be to use them in a stress-free environment or in an environment where there is no solvent at all, which is virtually impossible. It is.

上記構造単位中に2個以上のアリール基を有する熱可塑
性樹脂の中で、ポリエーテルイミドは典型的な樹脂の一
つであるが、この樹脂の伸びを大きくするために、同じ
エンジニアリングプラスチックスの1つであるポリサル
ホンをブレンドする方法(特開昭56−99252)が
提案されている。しかし、このポリサルホンも耐溶剤性
が悪いため、結局ブレンド組成物の耐溶剤性が悪く、曲
げ等を加えた状態で使用することには問題がある。
Among the above thermoplastic resins having two or more aryl groups in the structural unit, polyetherimide is one of the typical resins, but in order to increase the elongation of this resin, the same engineering plastics A method of blending polysulfone (Japanese Unexamined Patent Publication No. 56-99252) has been proposed. However, since this polysulfone also has poor solvent resistance, the resulting blend composition has poor solvent resistance, and there is a problem in using it in a state where it is bent or the like.

本発明の目的は、上記したような実情にがんがみ、上記
それぞれのエンジニアリングプラスチックスが有する耐
溶剤性を大巾に改善し、電線への絶縁被覆材料としての
使用を可能とすることにより、被覆厚さを低減しても十
分な機械的強度及び絶縁性能を有しかつ溶剤ストレスク
ラックの生するおそれをも解消し得た新規な絶縁電線を
提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned circumstances by significantly improving the solvent resistance of each of the above-mentioned engineering plastics, and to enable their use as insulation coating materials for electric wires. The object of the present invention is to provide a novel insulated wire that has sufficient mechanical strength and insulation performance even when the coating thickness is reduced, and eliminates the risk of solvent stress cracks.

[課題を解決するための手段] 本発明は、第1に、構造単位中に2個以上のアリール基
を有する熱可塑性樹脂100重量部に平均粒子径0.5
μm以下の無機質充填剤を0.05〜10重量部加えた
樹脂組成物を導体上に被覆してなるものであり、第2に
、ポリエーテルイミドとポリサルホンの混合物100重
量部に平均粒子径0.5μm以下の無機質充填剤を0.
05〜10重量部加えた樹脂組成物を導体上に被覆して
なるものである。
[Means for Solving the Problems] Firstly, the present invention provides 100 parts by weight of a thermoplastic resin having two or more aryl groups in its structural unit, an average particle size of 0.5
It is made by coating a conductor with a resin composition to which 0.05 to 10 parts by weight of an inorganic filler with a particle diameter of 0.05 to 10 μm or less is added. 0.5 μm or less inorganic filler.
The conductor is coated with a resin composition containing 0.5 to 10 parts by weight.

発明者らは、電線の薄肉化を達成するために、エンジニ
アリングプラスチックスの中がら細径絶縁電線の絶縁体
として注目されている構造単位中に2個以上のアリール
基を有する熱可塑性樹脂について、その耐溶剤性の向上
について鋭意検討を行なった。その結果、意外にも特定
の大きさの粒子からなる無機質充填剤を適当量混和する
ことによってジオクチルフタレートやオイルに対するク
ラック及びクレージング抵抗が著しく改善されることを
確認した。ジオクチルフタレートは塩化ビニル樹脂の可
塑剤として添加されるものであり、塩化ビニル樹脂被覆
電線と併設されたときに接触及び移行が予想されるもの
である。また、オイルはあらゆる環境で遭遇するであろ
う溶剤である。
In order to achieve thinner electric wires, the inventors have developed a thermoplastic resin having two or more aryl groups in its structural unit, which is attracting attention as an insulator for medium-sized and small-diameter insulated electric wires in engineering plastics. We conducted intensive studies to improve its solvent resistance. As a result, it was surprisingly confirmed that cracking and crazing resistance against dioctyl phthalate and oil can be significantly improved by incorporating an appropriate amount of an inorganic filler consisting of particles of a specific size. Dioctyl phthalate is added as a plasticizer for vinyl chloride resin, and contact and migration is expected when it is installed alongside a vinyl chloride resin-coated electric wire. Also, oil is a solvent that may be encountered in any environment.

従って、これらに対し優れた改善効果が得られたことは
、電線の絶縁体としての使用を可能にすることを意味す
るということができる。
Therefore, it can be said that the fact that excellent improvement effects have been obtained in these areas means that it becomes possible to use the material as an insulator for electric wires.

本発明において用いられる構造単位中に2個以上のアリ
ール基を有する熱可塑性樹脂とは次のようなものである
The thermoplastic resin having two or more aryl groups in the structural unit used in the present invention is as follows.

・・・(ポリエーテルケトン) ・・(ポリエーテルイミド) ・・・(ボリアリレート) また、これらの樹脂を2種以上ブレンドした組成物も含
まれる。
...(polyetherketone) ...(polyetherimide) ...(boaryarylate) Also included are compositions in which two or more of these resins are blended.

一方、上記した樹脂の中から前述したように伸びについ
ての改善効果が大きいポリエーテルイミドとポリサルホ
ンの混合物に着目し、その未解決課題である耐溶剤スト
レスクラック性について同様の検討を行ない、この場合
においても特定の大きさの粒子からなる無機質充填剤を
適当量当該樹脂に混和するだけで著しく溶剤ストレスク
ラック性が向上することを確認できた。
On the other hand, from among the resins mentioned above, we focused on a mixture of polyetherimide and polysulfone, which has a large improvement effect on elongation as described above, and conducted a similar study on its resistance to solvent stress cracking, which is an unresolved issue. It was also confirmed that solvent stress cracking properties were significantly improved simply by mixing an appropriate amount of an inorganic filler consisting of particles of a specific size into the resin.

本発明に用いるポリエーテルイミドは、分子中にエーテ
ル結合とイミド結合を有する熱可塑性の樹脂であり、典
型的な構造は次式で表わされる。
Polyetherimide used in the present invention is a thermoplastic resin having an ether bond and an imide bond in its molecule, and its typical structure is represented by the following formula.

・・・(ポリサルホン) ・・・(ポリエーテルサルホン) また、ポリサルホンはアリーレン結合、エーテル結合及
びサルホン結合を有する熱可塑性の樹脂で、典型的なも
のは次式で表わされる。
...(Polysulfone) ...(Polyethersulfone) Polysulfone is a thermoplastic resin having an arylene bond, an ether bond, and a sulfone bond, and a typical one is represented by the following formula.

ポリエーテルイミドとポリサルホンの比率は特に規定、
しないが、ポリサルホンの量は樹脂成分の20重量%以
上とすることが伸び改善の上から好ましい。
The ratio of polyetherimide and polysulfone is specially specified,
However, it is preferred that the amount of polysulfone be 20% by weight or more of the resin component from the viewpoint of improving elongation.

本発明において、その溶剤ストレスクラックの防止効果
を見出した無機質充填剤は平均粒子径が0.5μm以下
である。これより大きいと充填剤自体に過度の応力集中
が起こり、溶剤ストレスクラックの改善効果が無くなる
場合がある。また、配合量に関しては、0.05重量部
未満では耐溶剤ストレスクラックに対して効果がなく、
10重量部を越えると絶縁体としたときの伸びが大きく
低下してしまう。無機質充填剤としては、形状が球また
は粒に近い、いわゆる非配向性のものが好ましく、この
点から、カーボンブラック、二酸化ケイ素、二酸化チタ
ン、湿式酸化亜鉛、硫酸バリウム、コロイド性炭酸カル
シウム、重質炭酸カルシウム、酸化マグネシウム等を挙
げることかできるが、これらに限定するものではない。
In the present invention, the inorganic filler that has been found to be effective in preventing solvent stress cracking has an average particle size of 0.5 μm or less. If it is larger than this, excessive stress concentration will occur in the filler itself, and the effect of improving solvent stress cracks may be lost. Regarding the blending amount, if it is less than 0.05 parts by weight, it will not be effective against solvent stress cracking.
If it exceeds 10 parts by weight, the elongation when used as an insulator will be greatly reduced. As the inorganic filler, so-called non-oriented fillers whose shape is close to spherical or granular are preferable.From this point of view, carbon black, silicon dioxide, titanium dioxide, wet zinc oxide, barium sulfate, colloidal calcium carbonate, heavy Examples include, but are not limited to, calcium carbonate and magnesium oxide.

また樹脂との密着性を向上させるための表面処理を行な
ったものも含まれる。
It also includes those subjected to surface treatment to improve adhesion with resin.

このような無機質充填剤の作用機構としては、次のよう
なものが考えられる。すなわち、ストレスのかかった樹
脂組成物中の無機質充填剤粒子と樹脂の界面でストレス
と直交する方向に多くの剥離又は微小なキャビティが発
生しクレージングやクラックのような大きな割れに至る
前に破壊エネルギーを散逸させるためと考えられる。し
かし、これは推論の域であり、詳細についてはなお不明
である。
Possible mechanisms of action of such inorganic fillers are as follows. In other words, at the interface between the inorganic filler particles and the resin in the stressed resin composition, many peelings or minute cavities occur in the direction perpendicular to the stress, and the fracture energy is released before large cracks such as crazing or cracks occur. This is thought to be to dissipate the However, this is still in the realm of speculation, and the details are still unclear.

本発明の樹脂組成物には、上記した無機質充填剤に加え
て他の配合剤例えば軟化剤、可塑剤、熱安定剤、老化防
止剤、顔料、難燃剤等を用途に応して配合することがで
きる。
In addition to the above-mentioned inorganic fillers, the resin composition of the present invention may contain other compounding agents such as softeners, plasticizers, heat stabilizers, anti-aging agents, pigments, flame retardants, etc. depending on the purpose. I can do it.

また、必要あれば、樹脂組成物にトリアリルイソシアヌ
レートやジアリルフタレート等の反応性モノマを配合し
、電線に押出被覆した後、電離性放射線を照射すること
によって架橋することも可能である。
Furthermore, if necessary, it is also possible to blend a reactive monomer such as triallyl isocyanurate or diallyl phthalate into the resin composition, extrusion coat it onto an electric wire, and then crosslink it by irradiating it with ionizing radiation.

「実施例コ 以下に、本発明について実施例及び比較例を参照し具体
的に説明する。
``Examples'' The present invention will be specifically explained below with reference to Examples and Comparative Examples.

第1表の上欄に示す配合量よりなる樹脂組成物を調整し
、これを0.3mm’の軟銅撚線導体上に被覆厚0.1
−となるように押出被覆して供試絶縁電線を得た。
A resin composition having the amount shown in the upper column of Table 1 was prepared, and this was applied onto a 0.3 mm' annealed copper stranded wire conductor with a coating thickness of 0.1.
A sample insulated wire was obtained by extrusion coating so as to give -.

評価項目における耐溶剤性については、自己後巻付を行
なった電線試料を50℃のジオクチルフタレートまたは
モータオイルに浸漬し、クレージング及びクラックの発
生を目視で10日間観察したものである。
Regarding solvent resistance as an evaluation item, wire samples subjected to self-post-winding were immersed in dioctyl phthalate or motor oil at 50°C, and the occurrence of crazing and cracking was visually observed for 10 days.

また、伸びについては、J l5C3005に準拠し、
導体を引抜いてチューブ状とした試験片を用いて測定し
た。
In addition, regarding elongation, it is based on J I5C3005,
The measurement was performed using a test piece made into a tube shape by pulling out the conductor.

それぞれの評価結果を第1表の下欄に示した。The respective evaluation results are shown in the lower column of Table 1.

実施例1〜3は樹脂としてポリエーテルイミドを用い本
発明で規定する平均粒子径をもつ二酸化ケイ素を所定量
配合した例であり、クレイズやクラックは見られず伸び
も大きい。実施例4.5は樹脂としてポリサルホンを用
い、無機質充填剤として本発明で規定する範囲の二酸化
チタンを用いた例であり、ここでもクラックやクレイ脅
ズは全く見られない。樹脂にボリアリレートを、無機質
充填剤としてカーボンブラックを用いた実施例6゜7も
同様に優れた結果を示している。
Examples 1 to 3 are examples in which polyetherimide was used as the resin and a predetermined amount of silicon dioxide having an average particle diameter defined by the present invention was blended, and no crazes or cracks were observed and the elongation was large. Examples 4 and 5 are examples in which polysulfone was used as the resin and titanium dioxide within the range specified by the present invention was used as the inorganic filler, and no cracks or clay damage were observed here either. Examples 6 and 7 in which polyarylate was used as the resin and carbon black was used as the inorganic filler also showed excellent results.

これに対し、ポリエーテルイミド、ポリサルホン、ボリ
アリレートを単独で用い無機質充填剤を用いていない比
較例1〜3ではジオクチルフタレート、モータオイル共
にクレイズもしくはクラックが発生している。また無機
質充填剤を用いてもその平均粒子径、配合量が本発明の
規定する範囲を外れる比較例4〜9の場合、クラックま
たはクレイズの発生もしくは伸びの低下が生している。
On the other hand, in Comparative Examples 1 to 3 in which polyetherimide, polysulfone, and polyarylate were used alone and no inorganic filler was used, crazes or cracks occurred in both dioctyl phthalate and motor oil. Further, even if an inorganic filler is used, in the case of Comparative Examples 4 to 9, in which the average particle size and the blending amount are out of the range specified by the present invention, cracks or crazes occur or the elongation is decreased.

さらに、第2表に示す配合量よりなる樹脂組成物をを調
整し、これを0.3mm2の軟銅撚線導体上に被覆厚0
.1mmとなるように押出被覆して供試絶縁電線を得た
Furthermore, a resin composition having the amount shown in Table 2 was prepared, and this was applied onto a 0.3 mm2 annealed copper stranded wire conductor with a coating thickness of 0.
.. A sample insulated wire was obtained by extrusion coating to a thickness of 1 mm.

評価項目における耐溶剤性及び伸びについての測定方法
は第1表における場合と同じである。
The measurement methods for solvent resistance and elongation in the evaluation items are the same as in Table 1.

それぞれの評価結果を第2表の下欄に示した。The respective evaluation results are shown in the lower column of Table 2.

実施例1〜7は本発明の規定する樹脂組成物を被覆した
電線についての結果を示すものであり、耐溶剤性、伸び
ともに良好である。
Examples 1 to 7 show the results for electric wires coated with the resin composition defined by the present invention, and both solvent resistance and elongation are good.

これに対し、本発明の範囲を外れる平均粒子径の無機質
充填剤を用いた比較例4,5.6及び添加量が規定範囲
を外れる比較例2,3並びに全く無機質充填剤を添加し
ていない比較例1ては耐溶剤性または伸びが不十分であ
る。
On the other hand, Comparative Examples 4, 5.6, in which an inorganic filler with an average particle diameter outside the range of the present invention was used, Comparative Examples 2, 3, in which the amount added was out of the specified range, and no inorganic filler was added at all. Comparative Example 1 has insufficient solvent resistance or elongation.

[発明の効果] 以上説明した通り、本発明によれば、所謂エンジニアリ
ングプラスチックスを用いたことにより絶縁電線の被覆
を薄くしても耐摩耗性なとの機械的強度か低下するおそ
れがなく、耐溶剤性が大巾に改善されたことで優れた特
性を有する薄肉細径絶縁電線を得ることができるもので
あり、今日の機器類の小型軽量化に適切に対応し得る工
業上の意義は大きなものがある。
[Effects of the Invention] As explained above, according to the present invention, by using so-called engineering plastics, even if the coating of the insulated wire is made thinner, there is no risk of deterioration of mechanical strength such as wear resistance. This greatly improved solvent resistance makes it possible to obtain thin-walled, small-diameter insulated wires with excellent properties, and its industrial significance is that it can appropriately respond to the miniaturization and weight reduction of today's equipment. There's something big.

Claims (2)

【特許請求の範囲】[Claims] (1) 構造単位中に2個以上のアリール基を有する熱
可塑性樹脂100重量部に平均粒子径 0.5μm以下の無機質充填剤を0.05〜10重量部
加えた樹脂組成物を導体上に被覆してなる絶縁電線。
(1) A resin composition prepared by adding 0.05 to 10 parts by weight of an inorganic filler with an average particle size of 0.5 μm or less to 100 parts by weight of a thermoplastic resin having two or more aryl groups in the structural unit is placed on a conductor. A coated insulated wire.
(2) ポリエーテルイミドとポリサルホンの混合物1
00重量部に平均粒子径0.5μm以下の無機質充填剤
を0.05〜10重量部加えた樹脂組成物を導体上に被
覆してなる絶縁電線。
(2) Mixture 1 of polyetherimide and polysulfone
An insulated wire comprising a conductor coated with a resin composition obtained by adding 0.05 to 10 parts by weight of an inorganic filler having an average particle size of 0.5 μm or less to 0.00 parts by weight.
JP2107020A 1990-04-23 1990-04-23 Insulated wire Pending JPH046710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107020A JPH046710A (en) 1990-04-23 1990-04-23 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107020A JPH046710A (en) 1990-04-23 1990-04-23 Insulated wire

Publications (1)

Publication Number Publication Date
JPH046710A true JPH046710A (en) 1992-01-10

Family

ID=14448480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107020A Pending JPH046710A (en) 1990-04-23 1990-04-23 Insulated wire

Country Status (1)

Country Link
JP (1) JPH046710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776048B2 (en) * 1997-10-24 2011-09-21 古河電気工業株式会社 Multilayer insulated wire and transformer using the same
JP4776047B2 (en) * 1997-10-14 2011-09-21 古河電気工業株式会社 Multi-layer insulated wire and transformer using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776047B2 (en) * 1997-10-14 2011-09-21 古河電気工業株式会社 Multi-layer insulated wire and transformer using the same
JP4776048B2 (en) * 1997-10-24 2011-09-21 古河電気工業株式会社 Multilayer insulated wire and transformer using the same

Similar Documents

Publication Publication Date Title
JPH0222350A (en) Fire-retardant ethylene polymer compound
KR101601286B1 (en) Highly flame-resistant polymer composition for electrical wire insulation and electrical wire produced therewith
AU2017421247B2 (en) Flame retardant, low smoke, cold resistant electric cable
EP2444980A1 (en) A cable comprising a layer which is formed of a composition containing epoxy-groups
EP2444455A1 (en) A semiconductive polymer composition which contains epoxy-groups
JP2009528401A (en) Polyolefin-based high dielectric strength (HDS) nanocomposites, compositions therefor, and related methods
EP1528574B1 (en) Low voltage power cable with insulation layer comprising polyolefin having polar groups
WO1989000763A1 (en) Electrical wire
JPH0778518A (en) Fire-resistant thin thickness insulated electric wire
JPH046710A (en) Insulated wire
JP2016519168A (en) Synergistic blend of calcium carbonate and calcined clay
JP2002146118A (en) Flame-retardant resin composition and flame-retardant insulated wire using the same as coating material
JP2001236830A (en) Cladding material for electric wire and electric cable using the same
JP2006265507A (en) Flame retardant polyolefin resin composition, and insulated wire/cable using the same
JP2021155592A (en) Heat-resistant flame-retardant crosslinked fluororubber molding, method for producing the same, and heat-resistant product
JP3897373B2 (en) Heat-resistant insulating composition and electric wire
JP2909576B2 (en) Fluororesin insulated wire
JPH03297011A (en) Thin insulated wire
JP2000207937A (en) Flame-retardant resin composition for electric wire and cable
JP2015118817A (en) Cable using non-halogen flame-retardant resin composition
JPH10334738A (en) Wire/cable covered with elastomer containing fluorine
JP2004339317A (en) Non-halogen flame retardant resin composition
JPH07179705A (en) Method for crosslinking fluororubber composition and its crosslinked molded product
JP2004256621A (en) Nonhalogen flame-retardant resin composition
JPH05303909A (en) Insulated electric wire