JPH0466860A - Electrode for measuring concentration of carbon dioxide - Google Patents

Electrode for measuring concentration of carbon dioxide

Info

Publication number
JPH0466860A
JPH0466860A JP2179332A JP17933290A JPH0466860A JP H0466860 A JPH0466860 A JP H0466860A JP 2179332 A JP2179332 A JP 2179332A JP 17933290 A JP17933290 A JP 17933290A JP H0466860 A JPH0466860 A JP H0466860A
Authority
JP
Japan
Prior art keywords
carbon dioxide
electrode
film
metal complex
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179332A
Other languages
Japanese (ja)
Inventor
Atsushi Sone
曽根 厚
Hideichiro Yamaguchi
秀一郎 山口
Norihiko Ushizawa
牛沢 典彦
Takeshi Shimomura
猛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2179332A priority Critical patent/JPH0466860A/en
Publication of JPH0466860A publication Critical patent/JPH0466860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable execution of accurate measurement even when dissolved oxygen is contained, by a method wherein the film thickness of a cation- exchange film having a terpyridine ligand - transition metal complex fixed, the exchange capacity thereof and the valence of a charge of the metal complex are made to be specific values. CONSTITUTION:In a solid film electrode 1 for measuring concentration of CO2 in a liquid, which is prepared by covering a conductive base 3 with a cation- exchange film 4 containing a terpyridine ligand - transition metal complex, the film thickness of the exchange film 4 is preferably 60 to 100mum. As for a metal complex coordination compound in the exchange film 4, the concentration of the transition metal complex is made to be 1mmol/cm<3> or below, or 0.1 to 0.5mmol/cm<3> preferably, for cation exchange capacity 1meq/g (dry film). It is preferable that the ion exchange capacity of the exchange film 4 is 0.1 to 10meq/g (dry film). For the base 3, graphite of which a reduction current for oxygen is small is preferable. For the exchange film 4, a film of fluorine resin is preferable. As to the terpyridine ligand, terpyridine and bipyridine may be mentioned. For a transition metal, Ru and Co are preferable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体中の二酸化炭素濃度の測定用の電極に関
し、特に二酸化炭素による還元電流を測定するアンペロ
メトリック法による測定用の電極に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electrode for measuring the concentration of carbon dioxide in a liquid, and more particularly to an electrode for measuring the reduction current due to carbon dioxide using an amperometric method. .

[従来の技術] 血液中の二酸化炭素濃度を正確に測定することは手術時
等においてきわめて重要である。
[Prior Art] Accurately measuring the carbon dioxide concentration in blood is extremely important during surgery and the like.

このような水性媒体中の二酸化炭素濃度の測定は、合成
樹脂製の膜を透過した二酸化炭素を炭酸水素ナトリウム
水溶液中に吸収させて、その結果生じる炭酸水素ナトリ
ウム水溶液中での水素イオン濃度の変化をpH測定電極
によって測定することによって行われていたが、直接に
二酸化炭素の電気化学的に還元することによって生じる
電流によって濃度を電気化学的に測定することは困難で
あった。
Measurement of carbon dioxide concentration in such an aqueous medium involves absorbing carbon dioxide that has passed through a synthetic resin membrane into an aqueous sodium bicarbonate solution, and measuring the resulting change in hydrogen ion concentration in the aqueous sodium bicarbonate solution. However, it has been difficult to directly measure the concentration electrochemically using the current generated by the electrochemical reduction of carbon dioxide.

すなわち水溶液中ではグラファイト等の炭素質の電極を
用いて還元しようとすると、水溶液中に存在する水素イ
オンの還元は、 pHが70の場合には−1,1vない
し−1,3V(対飽和塩化ナトリウムカロメル電極)の
電位でおこるが、測定しようとする溶存した二酸化炭素
の還元は、この水素イオンの還元が起こる電位よりも卑
な電位で起こるために二酸化炭素の還元によって生じる
電流のみを観測することはきわめて難しいことでありた
In other words, when attempting to reduce hydrogen ions in an aqueous solution using a carbonaceous electrode such as graphite, the reduction of hydrogen ions present in the aqueous solution will be -1.1V to -1.3V (vs. saturated chloride) when the pH is 70. This occurs at the potential of the sodium calomel electrode), but since the reduction of dissolved carbon dioxide to be measured occurs at a potential that is more base than the potential at which hydrogen ion reduction occurs, only the current generated by the reduction of carbon dioxide is observed. This was extremely difficult.

そこで、本発明者らは二酸化炭素の電気化学的還元を金
属の錯体を有する膜を導電性基体上に形成し、内部に電
解液を必要としない固体型の電極によって、血液中には
共存が避けられない溶存酸素をはじめとして、水素イオ
ン、水酸イオン等に影響を受けない二酸化炭素濃度の測
定が可能であることを特願平2−79573号「二酸化
炭素濃度の測定方法」として提案している。
Therefore, the present inventors have developed a method for electrochemical reduction of carbon dioxide by forming a membrane containing a metal complex on a conductive substrate, and using a solid electrode that does not require an electrolyte inside, the coexistence of carbon dioxide in blood is achieved. We proposed in Japanese Patent Application No. 2-79573 ``Method for Measuring Carbon Dioxide Concentration'' that it is possible to measure carbon dioxide concentration unaffected by unavoidable dissolved oxygen, hydrogen ions, hydroxide ions, etc. ing.

[発明が解決しようとする課題] 本発明者らが提案した二酸化炭素濃度の測定に使用する
電極は、ターピリジン系配位子−遷移金属錯体を含有す
る陽イオン交換膜を導電性基体上に設けた電極であるが
、この電極を作用極として対極との間に一定の電位を印
加し、作用極において起こる二酸化炭素の選択的な電気
化学的還元反応によって生じる電流を測定するものであ
る。
[Problems to be Solved by the Invention] The electrode proposed by the present inventors for use in measuring carbon dioxide concentration is a method in which a cation exchange membrane containing a terpyridine-based ligand-transition metal complex is provided on a conductive substrate. This electrode is used as a working electrode, and a constant potential is applied between it and a counter electrode, and the current generated by the selective electrochemical reduction reaction of carbon dioxide that occurs at the working electrode is measured.

このターピリジン系配位子−遷移金属錯体を含有する陽
イオン交換膜を導電性基体上に設けた電極によって二酸
化炭素濃度を測定できる理由は(a)電極としてグラフ
ァイトを用いた場合には、pHが7.0の水溶液中での
水素イオンの還元反応が生じる電位は−1゜1vないし
−13v(対飽和塩化ナトリウムカロメル電極 5SC
E)であるが、これに対してターピリジン系配位子−遷
移金属錯体を含有する陽イオン交換膜を導電性基体上に
設けた電極では、水素イオンの還元反応は卑な方向に大
きく変位し、−2,9Vないし−2,6V(対5SCE
)の電位で起こるので、二酸化炭素の電気化学的な還元
反応である HCOOH生成の2電子還元 Co2+2H”+2 e−−HCOOHEe =−0,
85V対5SCE CO生成 C02+ 2 H” +2 e−→CO+ H20E”
=−0,76V対5SCE これらの反応を検出することができる。
The reason why carbon dioxide concentration can be measured using an electrode in which a cation exchange membrane containing this terpyridine-based ligand-transition metal complex is provided on a conductive substrate is as follows: (a) When graphite is used as an electrode, the pH is The potential at which the reduction reaction of hydrogen ions occurs in an aqueous solution of 7.0 is -1°1v to -13v (vs. saturated sodium chloride calomel electrode 5SC
E) However, in contrast, in an electrode in which a cation exchange membrane containing a terpyridine-based ligand-transition metal complex is provided on a conductive substrate, the reduction reaction of hydrogen ions is largely shifted in the base direction. , -2,9V to -2,6V (vs. 5SCE
), the two-electron reduction of HCOOH production, which is an electrochemical reduction reaction of carbon dioxide, Co2+2H"+2 e--HCOOHEe = -0,
85V vs. 5SCE CO generation C02+ 2 H" +2 e-→CO+ H20E"
=-0,76V vs. 5SCE These reactions can be detected.

(b)また、ターピリジン系配位子−遷移金属錯体を陽
イオン交換膜に固定しているので陽イオン交換膜の作用
によって水の分解によって生じる水酸イオンは排除され
る。
(b) Furthermore, since the terpyridine-based ligand-transition metal complex is fixed on the cation exchange membrane, hydroxide ions generated by water decomposition are eliminated by the action of the cation exchange membrane.

(C)導電性基体上に設けたターピリジン系配位子−遷
移金属錯体を含有する膜が有機物の膜であるので血液中
に溶存することが避けられない酸素の影響を緩和するこ
とができる。
(C) Since the film containing the terpyridine-based ligand-transition metal complex provided on the conductive substrate is an organic film, it can alleviate the influence of oxygen that is inevitably dissolved in blood.

等とみられるが、血液中の二酸化炭素濃度の測定の場合
のように溶存酸素の影響の面では充分なものではなかっ
た。
However, as in the case of measuring carbon dioxide concentration in blood, it was not sufficient in terms of the influence of dissolved oxygen.

[課題を解決するための手段] 本発明は、さきに提案した二酸化炭素濃度の測定方法に
おいて使用する電極の改良について鋭意検討して本発明
を想到した。
[Means for Solving the Problems] The present invention was conceived through intensive study on improvements to the electrodes used in the previously proposed method for measuring carbon dioxide concentration.

すなわち、さきに提案した二酸化濃度の測定方法に使用
する電極はターピリジン系配位子−遷移金属錯体を陽イ
オン交換膜中に固定したものであって、水素イオンの還
元反応については充分な選択性を有しているが、血液中
に二酸化炭素とともに溶存している酸素に対する選択性
が充分ではないという問題点を有していた。そこでこの
問題点を解消するために種々の因子−について検討した
ところ、とりわけ導電性基体上に形成するターピリジン
系配位子−遷移金属錯体を固定した陽イオン交換膜の膜
尾 陽イオン交換膜の交換容量および金属錯体の荷電の
価数を所定の値とすることによって目的を達することが
できることを見いだした。
In other words, the electrode used in the method for measuring the concentration of carbon dioxide proposed earlier has a terpyridine-based ligand-transition metal complex fixed in a cation exchange membrane, and has sufficient selectivity for the reduction reaction of hydrogen ions. However, the problem was that the selectivity for oxygen, which is dissolved together with carbon dioxide in blood, was not sufficient. Therefore, in order to solve this problem, we investigated various factors and found that, in particular, the membrane tail of the cation exchange membrane in which the terpyridine-based ligand-transition metal complex formed on the conductive substrate was fixed. It has been found that the objective can be achieved by setting the exchange capacity and the charge valence of the metal complex to predetermined values.

本発明の二酸化炭素ガス濃度の測定用電極の基体とする
導電性基体には、金属、金属酸化物、炭素系材料等の各
種の材料を使用することができるが、とくに酸素に対す
る還元電流の小さいグラファイトを使用することが好ま
しい。
Various materials such as metals, metal oxides, and carbon-based materials can be used for the conductive substrate used as the base of the electrode for measuring carbon dioxide gas concentration of the present invention. Preference is given to using graphite.

ターピリジン系配位子−遷移金属錯体を固定しする陽イ
オン交換膜には、弗素樹脂系のパーフルオロカーボン系
の陽イオン交換膜や炭化水素系のスチレンとジビニルベ
ンゼンとの共重合体からなる陽イオン交換膜を使用する
ことが可能であるが、弗素樹脂系の陽イオン交換膜が各
種の薬剤あるいは被測定物質に対する耐食性の面で優れ
ているので好ましい。これらの陽イオン交換膜としては
、以下の(1)、 (2)、 (3)で表される化学構
造を有する陽イオン交換膜である。
The cation exchange membrane that fixes the terpyridine-based ligand-transition metal complex includes a cation exchange membrane made of a fluororesin-based perfluorocarbon and a hydrocarbon-based cation made of a copolymer of styrene and divinylbenzene. Although it is possible to use an exchange membrane, a fluororesin-based cation exchange membrane is preferred because it has excellent corrosion resistance against various drugs or substances to be measured. These cation exchange membranes are cation exchange membranes having chemical structures represented by the following (1), (2), and (3).

[(CF2CF2)−CF2CF2 。[(CF2CF2)-CF2CF2.

! F2 (CF2)? (ただし、R1はSO3NaまたはcooNaでありl
m=5ないし135、 n=−1000,X=1ないし
100.Y=1ないし5) (ただし、R1はS O3N a、  R2ハCOON
 aまたはS O2N HCH2CH2N H2テあり
、m=5ないし13.5、n=100.h=125ない
し2700、Xおよびi=1ないし100.  Yおよ
びj=1ないし5) (ただし、R1+1cH2CF2CF2−R2またハc
H2(CF2CF2)、、−R2であり、 R2は5o
3NaまたはCOONaであり、m=5ないし13,5
、n=1000) 本発明の二酸化炭素濃度測定用電極に使用するターピリ
ジン系配位子−遷移金属錯体のターピリジン系配位子と
してはターピリジン、ビピリジンまたはこれらの誘導体
があげられる。
! F2 (CF2)? (However, R1 is SO3Na or cooNa and
m=5 to 135, n=-1000, X=1 to 100. Y=1 to 5) (However, R1 is SO3N a, R2 is COON
a or SO2N HCH2CH2N H2te, m=5 to 13.5, n=100. h=125 to 2700, X and i=1 to 100. Y and j=1 to 5) (However, R1+1cH2CF2CF2-R2 or C
H2(CF2CF2), -R2, R2 is 5o
3Na or COONa, m=5 to 13,5
, n=1000) Examples of the terpyridine-based ligand of the terpyridine-based ligand-transition metal complex used in the electrode for measuring carbon dioxide concentration of the present invention include terpyridine, bipyridine, or derivatives thereof.

ターピリジン系配位子−遷移金属錯体を形成する遷移金
属としては、コバルト、ニッケル、ルテニウム、鉄等が
あげられるがルテニウム、コバルトが好ましい。
Examples of the transition metal that forms the terpyridine-based ligand-transition metal complex include cobalt, nickel, ruthenium, iron, and the like, with ruthenium and cobalt being preferred.

本発明のターピリジン系配位子−遷移金属錯体を含有す
る陽イオン交換膜中の作用を第2図に図示するとターピ
リジン系配位子−遷移金属錯体は金属イオンM2・を囲
む破線で示されるが、これらは陽イオン交換膜中のイオ
ン交換基と弱い相互作用によって陽イオン交換膜中に捉
えられているものとみられる。そして、水溶液中の水酸
イオンは陽イオン交換膜の選択透過性によって膜内に入
ることはできないが、水および溶存した二酸化炭素HC
008生成の2電子還元 CO2+ 2 H” +2 e −−HCOOHEe 
=−0,85V対S 5CE CO生成 C02+ 2 H”+ 26 −CO+H20Ee=−
0,76V対5SCE で示す反応をするので、電流の変化として観測すること
ができる。
The action in the cation exchange membrane containing the terpyridine-based ligand-transition metal complex of the present invention is illustrated in FIG. 2. The terpyridine-based ligand-transition metal complex is shown by the broken line surrounding the metal ion M2. , these appear to be trapped in the cation exchange membrane through weak interactions with the ion exchange groups in the cation exchange membrane. Hydroxyl ions in the aqueous solution cannot enter the membrane due to the selective permselectivity of the cation exchange membrane, but water and dissolved carbon dioxide HC
008 generated two-electron reduction CO2+ 2 H" +2 e --HCOOHEe
=-0,85V vs. S 5CE CO generation C02+ 2 H"+ 26 -CO+H20Ee=-
Since the reaction is shown as 0.76V vs. 5SCE, it can be observed as a change in current.

イオン交換膜のイオン交換基(So3H−)と金属錯体
(2価陽イオン)は、イオン交換容量が0.9 meq
/g (乾燥膜)の膜の場合には10: 3〜10: 
5の比率で相互作用を行うが、イオン交換膜の交換容量
が大きい場合は、イオン交換基と金属錯体の接触する機
会が大きくなり、逆にイオン交換容量が小さい場合には
逆になる。
The ion exchange group (So3H-) and metal complex (divalent cation) of the ion exchange membrane have an ion exchange capacity of 0.9 meq.
/g (dry film): 10:3-10:
When the exchange capacity of the ion exchange membrane is large, the chance of contact between the ion exchange group and the metal complex increases; on the other hand, when the ion exchange capacity is small, the opposite is true.

このようにして、イオン交換膜のイオン交換容量によっ
てイオン交換膜中の金属錯体濃度制御が行われるが、陽
イオン交換膜中の金属錯体配位化合物は陽イオン交換容
量1 meq/g (乾燥膜)あたり、遷移金属錯体濃
度1 、0 mmol/cm3以下、好ましくは0 、
1 mmol/cm3以上0 、5 mmol/cm3
以下である・また、膜厚を変化させた場合には被測定水
溶液中のイオンの通過と阻止をすることができ、とくに
特定の膜厚とすることによって二酸化炭素濃度の測定を
妨害する酸素の透過を防止でき、酸素による測定の誤差
を防ぐことが可能であること見いだした。イオン交換膜
の交換容量が0.91meq/g(乾燥膜)の場合、陽
イオン交換膜の膜厚が60μm〜100μmであること
が好ましい。
In this way, the metal complex concentration in the ion exchange membrane is controlled by the ion exchange capacity of the ion exchange membrane, but the metal complex coordination compound in the cation exchange membrane has a cation exchange capacity of 1 meq/g (dry membrane ) per transition metal complex concentration of 1,0 mmol/cm3 or less, preferably 0,
1 mmol/cm3 or more 0, 5 mmol/cm3
・Also, by changing the film thickness, it is possible to pass or block ions in the aqueous solution to be measured, and in particular, by setting a specific film thickness, it is possible to prevent oxygen from interfering with the measurement of carbon dioxide concentration. It has been found that it is possible to prevent permeation and to prevent measurement errors caused by oxygen. When the exchange capacity of the ion exchange membrane is 0.91 meq/g (dry membrane), the thickness of the cation exchange membrane is preferably 60 μm to 100 μm.

本発明の電極をpH7,0付近で使用することとして本
発明を説明したが、二酸化炭素の水中での還元反応は、
pH70に[らずpH5,2〜7.0の範囲では悪影響
はなく還元電流の変化がない。
Although the present invention has been explained assuming that the electrode of the present invention is used at around pH 7.0, the reduction reaction of carbon dioxide in water is
In the range of pH 5, 2 to 7.0, there is no adverse effect and there is no change in the reduction current.

第1図に、本発明の電極の断面図を示す。本発明の二酸
化炭素濃度測定用電極1はプラスチックス等の絶縁性の
筒状体2の先端部にグラファイトからなる導電性の基体
3が取り付けられており、導電性基体にはターピリジン
系配位子−遷移金属錯体を含有する陽イオン交換膜4が
被覆されている。導電性基体にはリード線5が取り付け
らね外部の回路に接続している。
FIG. 1 shows a cross-sectional view of the electrode of the present invention. The electrode 1 for measuring carbon dioxide concentration of the present invention has a conductive base 3 made of graphite attached to the tip of an insulating cylindrical body 2 made of plastic or the like, and a terpyridine-based ligand is attached to the conductive base 3. - A cation exchange membrane 4 containing a transition metal complex is coated. A lead wire 5 is attached to the conductive base and connected to an external circuit.

本発明の電極を使用した二酸化濃度測定方法は第3図に
示すように、本発明の電極1を作用極として、白金線等
を対極6とし、飽和塩化ナトリウムカロメル電極(SS
CE)を参照電極7とした三電極セル8に定電位電解装
置9を使用して、作用極に一定電位を印加して一定時間
電解を行った後の定常電流値を二酸化炭素の還元によっ
て流れる電流値として測定する。測定に使用する電解質
水溶液は塩化ナトリウム、塩化カリウム、過塩素酸塩の
水溶液や燐酸塩の緩衝液をあげることができる。また、
二酸化炭素濃度の測定には作用極の電位を−1,IVな
いし−1,3Vの一定電位を印加する。
As shown in FIG. 3, the method for measuring the concentration of carbon dioxide using the electrode of the present invention is as shown in FIG.
Using a constant potential electrolyzer 9 in a three-electrode cell 8 with CE) as the reference electrode 7, a constant electric current value after applying a constant potential to the working electrode and performing electrolysis for a certain period of time flows due to the reduction of carbon dioxide. Measure as a current value. The electrolyte aqueous solution used in the measurement can be an aqueous solution of sodium chloride, potassium chloride, perchlorate, or a phosphate buffer. Also,
To measure the carbon dioxide concentration, a constant potential of -1.IV to -1.3V is applied to the working electrode.

[作用] 本発明は、導電性基体上に、ターピリジン系配位子−遷
移金属錯体を含有する陽イオン交換膜を被覆した液体中
の二酸化炭素濃度の測定用の固体膜電極において、該陽
イオン交換膜の膜厚を特定の厚みとすることにより、被
測定液中に溶存している酸素に対する選択性を高めるこ
とができるので、酸素の溶存が避けられない臨床分野で
の二酸化炭素濃度の測定を正確に行うことができる。
[Function] The present invention provides a solid membrane electrode for measuring carbon dioxide concentration in a liquid in which a cation exchange membrane containing a terpyridine-based ligand-transition metal complex is coated on a conductive substrate. By setting the exchange membrane to a specific thickness, it is possible to increase the selectivity for oxygen dissolved in the liquid to be measured, making it suitable for measuring carbon dioxide concentration in clinical fields where dissolved oxygen is unavoidable. can be done accurately.

〔実施例〕〔Example〕

以下、本発明の二酸化炭素濃度測定用電極に使用する錯
体の合成方法、電極の製造方法および二酸化炭素濃度の
測定結果を示す実施例によりさらに詳細に説明する。
Hereinafter, a more detailed explanation will be given with reference to Examples showing a method for synthesizing a complex used in the electrode for measuring carbon dioxide concentration of the present invention, a method for manufacturing the electrode, and results of measuring carbon dioxide concentration.

錯体の合成例1 2.2“:  6”、2”−ターピリジン(t e r
py)を150 m gとRuC13・3H20を75
mgを、水の含有量が20容量%のエタノール50m1
を溶媒として溶解した。この溶液を9時間還流し、錯体
を形成した。  次いで、得られた溶液中にアセトンを
徐々に加えて、錯体を析出させたところ錯体の収量40
.6mgであり、収率は55%であった。
Complex synthesis example 1 2.2": 6", 2"-terpyridine (ter
py) and 75 mg of RuC13.3H20.
mg, 50 ml of ethanol with a water content of 20% by volume
was dissolved as a solvent. The solution was refluxed for 9 hours to form a complex. Next, acetone was gradually added to the obtained solution to precipitate the complex, and the yield of the complex was 40.
.. 6 mg, yield was 55%.

得られた錯体はIR分析、NMR分析、元素分析の結果
より [Ru (terpy)2) C12と同定した
The obtained complex was identified as [Ru (terpy)2) C12 from the results of IR analysis, NMR analysis, and elemental analysis.

続いて、得られた錯体を水を20容量%含むエタノール
2.5mlに溶解し、飽和過塩素酸ナトリウム溶液的2
mlを加えることによって沈澱した過塩素酸塩をエタノ
ールで再結晶し、得られた結晶の収量は73 m gで
あり収率55%であった。
Subsequently, the obtained complex was dissolved in 2.5 ml of ethanol containing 20% by volume of water, and dissolved in 2.5 ml of saturated sodium perchlorate solution.
The perchlorate precipitated by adding ml of perchlorate was recrystallized with ethanol, and the yield of the obtained crystals was 73 mg, which was a yield of 55%.

得られた結晶は上記と同様の分析方法により〔Ru (
t e r py) 2)  (CI Oa) 2と同
定した。
The obtained crystals were analyzed using the same analytical method as above [Ru (
It was identified as (CI Oa) 2).

電極の作成例1 周囲をエボシキ樹脂およびポリ塩化ビニール樹脂で絶縁
被覆した円柱状のグラファイト電極(日本カーボン社製
 EG−51)(内径2 m m、  面積3.14x
10−2cm”)の端面(リード線の接続面に対向する
面)にパーフルオロカーボン系の陽イオン交換膜である
ナフィオン(デュポン社登録商標)の5%溶液(アルド
リッチ社製27474 ナフィオン117の溶液)を2
0μm滴下して乾燥させ約50μm厚のナフィオンの膜
を被覆した。
Electrode creation example 1 Cylindrical graphite electrode (EG-51 manufactured by Nippon Carbon Co., Ltd.) whose periphery is insulated and coated with epoxy resin and polyvinyl chloride resin (inner diameter 2 mm, area 3.14 x
A 5% solution of Nafion (registered trademark of DuPont), a perfluorocarbon-based cation exchange membrane (solution of 27474 Nafion 117 manufactured by Aldrich), was applied to the end face (the face opposite to the connection surface of the lead wire) of 10-2 cm”). 2
A 0 μm drop was applied and dried to coat a Nafion film with a thickness of about 50 μm.

得られたナフィオン被覆電極を2g/lの濃度の[Ru
 (terpy)2]  (C1○4)2水溶液中に8
時間浸漬してナフィオン膜中に〔Ru(terpy)2
〕”錯体を取り込ませた。
The resulting Nafion-coated electrode was coated with [Ru
(terpy)2] (C1○4)2 8 in aqueous solution
[Ru (terpy)2
]”The complex was incorporated.

電極の作成例2 電極の作成例1と同様にして作製したグラファイト電極
上に、2g/lの[Ru(terpy)2〕(C104
) 2を含む5%ナフィオン溶液(アルドリッチ社!2
747−4)を20μm滴下して乾燥させて、 [Ru
 (terpy)2]”錯体を含有するナフィオン膜を
被覆した電極を得た。
Electrode Creation Example 2 2 g/l of [Ru(terpy)2] (C104
) 5% Nafion solution containing 2 (Aldrich! 2
747-4) was dropped to a thickness of 20 μm and dried,
An electrode coated with a Nafion membrane containing a (terpy)2]" complex was obtained.

実施例1 電極の作成例1で作成した錯体を含有するイオン交換膜
を被覆した電極を作用極とし、参照電極として飽和塩化
ナトリウムカロメル電極(SSCE)、対極には白金線
を用いた3電極系の測定セルを用いて50mM!Jン酸
緩衝溶液(p H= 7.38)に(1)二酸化炭素、
 (2)酸素および(3)窒素の各ガスをそれぞれ15
分間通気してそれぞれの気体で飽和し、液の静止後に1
秒間に50mVの掃引速度で25℃におけるサイクリッ
クポルタンメントリ−測定を行った結果を第4図に示す
Example 1 Electrode Creation A three-electrode system using an electrode coated with an ion exchange membrane containing the complex prepared in Example 1 as a working electrode, a saturated sodium chloride calomel electrode (SSCE) as a reference electrode, and a platinum wire as a counter electrode. 50mM using a measurement cell! Add (1) carbon dioxide to the J acid buffer solution (pH = 7.38),
(2) Oxygen and (3) Nitrogen each at 15
Aerate for 1 minute to saturate with each gas, and after the liquid has settled,
FIG. 4 shows the results of cyclic portamentry measurement at 25° C. at a sweep rate of 50 mV per second.

酸素の還元電流ピークは−0,6V(対S S CE)
近傍に、また二酸化炭素の還元電流ピークは−1,4V
(対5SCE)に観測された。この結果から、水溶液中
の酸素と二酸化炭素との還元電流ピーク値はほぼ800
 m V離れている。
Oxygen reduction current peak is -0.6V (vs. S S CE)
Nearby, the reduction current peak of carbon dioxide is -1.4V
(vs. 5SCE). From this result, the peak value of the reduction current between oxygen and carbon dioxide in an aqueous solution is approximately 800.
mV away.

したがって、酸素共存下で二酸化炭素濃度測定ができる
ことがわかる。
Therefore, it can be seen that carbon dioxide concentration can be measured in the presence of oxygen.

実施例2 電極の作成例2の方法によって[Ru(terpy)2
]”錯体を取り込ませた膜を有する電極を作用極として
、次の様に酸素の共存下での二酸化炭素濃度の濃度の測
定を行った。
Example 2 [Ru(terpy)2
]'' Using an electrode having a membrane incorporating the complex as a working electrode, the concentration of carbon dioxide in the presence of oxygen was measured as follows.

印加電圧を水素イオンの還元による電流の影響を受けな
い−1,4V(対5SCE)として作用極、飽和塩化ナ
トリウムカロメル電極からなる参照電極、白金からなる
対極の3電極系の測定セル中において、 50mMリン
酸緩衝溶液(pH=7.38)中に二酸化炭素と窒素の
混合気体中の二酸化炭素の分圧および酸素と窒素の混合
気体中の酸素の分圧をそれぞれOmmHgから670 
m m HEまで変化させて還元電流をサイクリックポ
ルタンメトリーによって測定した。
The applied voltage was set to -1.4 V (vs. 5SCE), which is not affected by the current due to the reduction of hydrogen ions, in a measurement cell with a three-electrode system consisting of a working electrode, a reference electrode made of a saturated sodium chloride calomel electrode, and a counter electrode made of platinum. The partial pressure of carbon dioxide in a gas mixture of carbon dioxide and nitrogen and the partial pressure of oxygen in a gas mixture of oxygen and nitrogen in a 50 mM phosphate buffer solution (pH = 7.38) were adjusted from OmmHg to 670 mmHg, respectively.
The reduction current was measured by cyclic portammetry by changing up to m m HE.

その結果を第5図に示すが、溶存酸素の影響をほとんど
受けないで二酸化炭素濃度を測定することが可能である
The results are shown in FIG. 5, and it is possible to measure the carbon dioxide concentration almost unaffected by dissolved oxygen.

作用極の膜厚80μmの際の二酸化炭素の分圧変化より
、残余電流値は3X10−6A、感度3125x 10
−”A/mmHgであり、一方酸素の分圧変化では残余
電流値は2.375xlO−’A、感度0.938xl
 O−”A/mmHgである。このことから、残余電流
値はPCO2,PO2共に1O−6Aオーダーの電流値
を示す。
Based on the change in partial pressure of carbon dioxide when the film thickness of the working electrode is 80 μm, the residual current value is 3 x 10-6 A, and the sensitivity is 3125 x 10
-"A/mmHg, while when the partial pressure of oxygen changes, the residual current value is 2.375xlO-'A, sensitivity 0.938xl
O-"A/mmHg. From this, the residual current values for both PCO2 and PO2 show current values on the order of 1O-6A.

しかし、感度は二酸化炭素のほうが、 1桁大きい・ 
したがって、本発明のナフィオンの膜に担持した〔Ru
 (t r epy) 2) ”膜を使用することによ
って、酸素の共存下で溶存二酸化炭素濃度の測定が可能
となる。
However, the sensitivity is one order of magnitude higher for carbon dioxide.
Therefore, [Ru] supported on the Nafion membrane of the present invention
(tr repy) 2) By using a membrane, it becomes possible to measure the concentration of dissolved carbon dioxide in the presence of oxygen.

実施例3 電極の作成例2の方法によって作成した膜電極において
、グラファイト上に形成する膜の厚みを10pm、40
μm、80μmおよび100μmと変化させた際の残余
電流値(単位μAで示す)を第1表に示し、二酸化炭素
および酸素に対する感度(気体の分圧の変化に対する電
流値の変化)と膜厚の関係を第6図(A)に示し、第6
図(B)に膜厚に対する二酸化炭素と酸素に対する選択
比を示す。
Example 3 Electrode Creation In the membrane electrode created by the method of Example 2, the thickness of the film formed on graphite was 10 pm and 40 pm.
Table 1 shows the residual current value (expressed in μA) when changing the thickness to μm, 80 μm, and 100 μm, and shows the sensitivity to carbon dioxide and oxygen (change in current value with respect to change in gas partial pressure) and film thickness. The relationship is shown in Figure 6 (A),
Figure (B) shows the selectivity ratio for carbon dioxide and oxygen with respect to film thickness.

M1表 これらの結果から、膜厚が60μmないし100μmの
範囲で二酸化炭素濃度に対する感度および選択比が大き
く選択、 とくに膜厚が80μmでは二酸化炭素濃度は
酸素濃度に対して約4.13倍も感度が大きく、酸素の
共存下での二酸化炭素の分離能が最も大きいことが確認
された。
Table M1 From these results, the sensitivity and selectivity to carbon dioxide concentration are selected to be large in the film thickness range of 60 μm to 100 μm. In particular, when the film thickness is 80 μm, carbon dioxide concentration is about 4.13 times more sensitive than oxygen concentration. It was confirmed that the carbon dioxide separation capacity was the highest in the presence of oxygen.

実施例4 実施例3で明らかなように最も酸素に対する選択比が大
きい膜厚である80μmの膜厚について、電極の作成例
2による膜電極に関して陽イオン交換膜中に[Ru (
t e r py) 2] ”錯体をそれぞれ0 、2
5 mmol/ c m3.0 、5 mmol/ c
 m3.1.0mmol/ c m3.2.0mmol
/ c m 3を担持させた場合の錯体濃度と感度(A
 / m m Hg )の関係を調べた。この結果を第
7図に示す。
Example 4 As is clear from Example 3, [Ru (
ter py) 2] ”complexes respectively 0 and 2
5 mmol/c m3.0, 5 mmol/c
m3.1.0mmol/c m3.2.0mmol
Complex concentration and sensitivity (A
/ mm Hg) was investigated. The results are shown in FIG.

この結果から明らかなように、錯体の担持量は0 、1
 mmol/cm3以上0 、5 mmol/cm”以
下の範囲であるのがとくに好ましい。
As is clear from this result, the supported amount of the complex is 0, 1
A range of 0.5 mmol/cm" or more is particularly preferable.

実施例5 電極の作成例2の電極を用いて、実施例1と同様の方法
で窒素雰囲気下の溶液中でpHを5.2から7.0まで
変化させたところ電流値の変化は第8図に示すとおりで
あった。
Example 5 Using the electrode of Electrode Creation Example 2, the pH was changed from 5.2 to 7.0 in a solution under a nitrogen atmosphere in the same manner as in Example 1, and the change in current value was 8th. It was as shown in the figure.

pH6,0〜7.0でほとんど見られず、このpHの範
囲内では二酸化炭素の電気化学的な還元反応による水素
イオン濃度の変化はほとんど影響を与えない。しかしp
H6,0以下になると電流変化が見ら札 二酸化炭素の
電気化学的な還元反応による酸性副生成物が産生ずるこ
とが確かめられたが、血液中の二酸化炭素濃度の測定に
は問題なく使用することが可能である。
It is hardly observed at pH 6.0 to 7.0, and within this pH range, changes in hydrogen ion concentration due to the electrochemical reduction reaction of carbon dioxide have almost no effect. But p
When the temperature drops below H6.0, a change in current is observed.Although it was confirmed that acidic by-products were produced due to the electrochemical reduction reaction of carbon dioxide, it can be used without any problem for measuring carbon dioxide concentration in blood. Is possible.

〔発明の効果〕〔Effect of the invention〕

本発明の二酸化炭素濃度測定用の電極は、特定の膜厚と
したターピリジン系配位子−遷移金属錯体を含有する陽
イオン交換膜を導電性基体上に直接被覆した固体膜電極
であり、二酸化炭素の還元電流値をアンペロメトリック
法で測定する際には二酸化炭素とともに溶存する酸素に
よる影響が小さいので、血液中の二酸化炭素濃度の測定
の場合のような溶存酸素が含まれている場合であっても
正確な測定が可能となるので、臨床目的をはじめとする
各種の測定に優れた特性を発揮する電極である。
The electrode for measuring carbon dioxide concentration of the present invention is a solid membrane electrode in which a cation exchange membrane containing a terpyridine-based ligand-transition metal complex with a specific membrane thickness is directly coated on a conductive substrate. When measuring the reduction current value of carbon using the amperometric method, the effect of dissolved oxygen along with carbon dioxide is small, so when measuring the carbon dioxide concentration in blood, it is It is an electrode that exhibits excellent characteristics for various measurements including clinical purposes, as it allows accurate measurements even if there is a problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電極の断面図を示し、第2図はター
ピリジン系配位子−遷移金属錯体を含有する陽イオン交
換膜の作用を示す図であり、第3図は、二酸化濃度測定
方法を示し、第4図は1秒間に50 m Vの掃引速度
で25℃におけるサイクリックポルタンメントリ−測定
を行った結果を示し、第5図に分圧の変化に対する感度
を示し、第6図(A)に二酸化炭素および酸素に対する
感度(気体の分圧の変化に対する電流値の変化)と膜厚
の関係を示し、第6図(B)に膜厚に対する二酸化炭素
と酸素に対する選択比を示し、第7図には錯体濃度と感
度の関係を示し、第8図には窒素雰囲気下の溶液中でp
Hを52から7.0まで変化させた場合の電流値の変化
を示す。 筒状弧 3・・・導電性基イ本 4・・・ターピリジン
系配位子−遷移金属錯体を含有する陽イオン交換膜5・
・・リード線、 6・・・対極、 7・・・参照電極、
 8・・・三電極セル、 9・・・定電位電解装置
Figure 1 shows a cross-sectional view of the electrode of the present invention, Figure 2 shows the action of a cation exchange membrane containing a terpyridine-based ligand-transition metal complex, and Figure 3 shows the concentration of carbon dioxide. The measurement method is shown. Figure 4 shows the results of cyclic portamentry measurement at 25°C at a sweep rate of 50 mV per second. Figure 5 shows the sensitivity to changes in partial pressure. Figure 6 (A) shows the relationship between the sensitivity to carbon dioxide and oxygen (change in current value with respect to change in gas partial pressure) and film thickness, and Figure 6 (B) shows the relationship between film thickness and selectivity for carbon dioxide and oxygen. Figure 7 shows the relationship between complex concentration and sensitivity, and Figure 8 shows the relationship between complex concentration and sensitivity.
It shows the change in current value when H is changed from 52 to 7.0. Cylindrical arc 3... Conductive base 4... Cation exchange membrane containing terpyridine-based ligand-transition metal complex 5.
...Lead wire, 6...Counter electrode, 7...Reference electrode,
8... Three-electrode cell, 9... Constant potential electrolysis device

Claims (3)

【特許請求の範囲】[Claims] (1)導電性基体上に、ターピリジン系配位子−遷移金
属錯体を含有する陽イオン交換膜を被覆した液体中の二
酸化炭素濃度の測定用の固体膜電極において、該陽イオ
ン交換膜の膜厚が60μm〜100μmであることを特
徴とする二酸化炭素濃度測定用電極。
(1) In a solid membrane electrode for measuring carbon dioxide concentration in a liquid, in which a cation exchange membrane containing a terpyridine-based ligand-transition metal complex is coated on a conductive substrate, the membrane of the cation exchange membrane An electrode for measuring carbon dioxide concentration, having a thickness of 60 μm to 100 μm.
(2)陽イオン交換膜中の金属錯体配位化合物は陽イオ
ン交換容量1meq/g(乾燥膜)あたり、遷移金属錯
体濃度1.0mmol/cm^3以下、好ましくは0.
1mmol/cm^3以上0.5mmol/cm^3以
下であることを特徴とする請求項1記載の二酸化炭素測
定用電極。
(2) The metal complex coordination compound in the cation exchange membrane has a transition metal complex concentration of 1.0 mmol/cm^3 or less, preferably 0.0 mmol/cm^3 or less, per 1 meq/g of cation exchange capacity (dry membrane).
The electrode for measuring carbon dioxide according to claim 1, characterized in that the carbon dioxide concentration is 1 mmol/cm^3 or more and 0.5 mmol/cm^3 or less.
(3)陽イオン交換膜のイオン交換容量が0.1〜10
meq/g(乾燥膜)であることを特徴とする請求項1
〜2項のいずれかに記載の二酸化炭素濃度測定用電極。
(3) The ion exchange capacity of the cation exchange membrane is 0.1 to 10
Claim 1 characterized in that it is meq/g (dry film).
The electrode for measuring carbon dioxide concentration according to any one of items 1 to 2.
JP2179332A 1990-07-06 1990-07-06 Electrode for measuring concentration of carbon dioxide Pending JPH0466860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179332A JPH0466860A (en) 1990-07-06 1990-07-06 Electrode for measuring concentration of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179332A JPH0466860A (en) 1990-07-06 1990-07-06 Electrode for measuring concentration of carbon dioxide

Publications (1)

Publication Number Publication Date
JPH0466860A true JPH0466860A (en) 1992-03-03

Family

ID=16063989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179332A Pending JPH0466860A (en) 1990-07-06 1990-07-06 Electrode for measuring concentration of carbon dioxide

Country Status (1)

Country Link
JP (1) JPH0466860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor

Similar Documents

Publication Publication Date Title
CN101458225B (en) Electrochemical gas sensors
JPH0362227B2 (en)
Thewalt et al. Structures of the cations of Werner's green and red. mu.-amido-. mu.-peroxobis [bis (ethylenediamine) cobalt (III)] salts
US11307165B2 (en) Electrochemical sensors with a chemically attached molecular redox buffer
CN105928996B (en) Electrochemical detection device for preparing and assembling graphene oxide and polyaniline modified electrode
TW542912B (en) Acid gas measuring sensors and method of making same
Mounesh et al. Novel tetracinnamide cobalt (II) phthalocyanine immobilized on MWCNTs for amperometic sensing of glucose
Hao et al. Facile synthesis of a 3D MnO 2 nanowire/Ni foam electrode for the electrochemical detection of Cu (ii)
JP4883796B2 (en) Electrochemical measurement method
Vans et al. Effect of pH on the electrochemical reduction of some heterocyclic quinones
JPH0370782B2 (en)
Qu et al. Application of Multi‐walled Carbon Nanotube Modified Carbon Ionic Liquid Electrode for the Voltammetric Detection of Dopamine
JPH0466860A (en) Electrode for measuring concentration of carbon dioxide
Hampton et al. Response of poly (vinyl chloride) electrodes based on the neutral carrier 1, 4, 7, 10-tetraoxacyclododecane
CA2106463A1 (en) Magnesium electrode
Kukovec et al. A cobalt (ii) coordination polymer with 6-aminonicotinate and 1, 2-bis (4-pyridyl) ethane as a new electrochemical sensor for determination of dopamine
CN211825808U (en) Oxygen-enriched anti-interference electrochemical detection device
Galli et al. Use of amalgam concentration cells for determination of transference numbers in solid electrolytes—I. Electronic transference numbers of β-aluminas
Reilley Potentiometric titrations
US3615840A (en) Fuel cell and fuel cell electrode comprising a sulfurated compound of tungsten and oxygen
JP4382088B2 (en) Superoxide anion electrode and sensor using the same
JPH0239740B2 (en)
JPH0375063B2 (en)
CN115128142B (en) Preparation method and application of biosensor based on red blood cells
JPH03277960A (en) Method for measuring concentration of carbon dioxide