JPH0466692B2 - - Google Patents

Info

Publication number
JPH0466692B2
JPH0466692B2 JP59152630A JP15263084A JPH0466692B2 JP H0466692 B2 JPH0466692 B2 JP H0466692B2 JP 59152630 A JP59152630 A JP 59152630A JP 15263084 A JP15263084 A JP 15263084A JP H0466692 B2 JPH0466692 B2 JP H0466692B2
Authority
JP
Japan
Prior art keywords
layer
composite plate
thickness
synthetic resin
metal plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59152630A
Other languages
Japanese (ja)
Other versions
JPS6131247A (en
Inventor
Kunio Tsukagoshi
Toshiharu Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUHORITSUKU KK
Original Assignee
ARUHORITSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUHORITSUKU KK filed Critical ARUHORITSUKU KK
Priority to JP15263084A priority Critical patent/JPS6131247A/en
Publication of JPS6131247A publication Critical patent/JPS6131247A/en
Publication of JPH0466692B2 publication Critical patent/JPH0466692B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、二枚の金属板の間に重合体層を接合
してなる複合板及びその製造方法に関するもので
あり、特に二枚の金属板が互いに異なる種類の金
属でありながら反りの抑制がなされた複合板及び
それを連続的に製造し得る方法に関するものであ
る。 従来の技術 アルミニウム、鉄、ステンレス等の金属板2枚
の間に芯材としてポリオレフイン等の合成樹脂を
接合した複合板はよく知られている。(例えば特
公昭39−4739号公報)。 該複合板は軽量性、加工性、耐衝撃性等に優れ
るなど種々の特長を有し、建材、内外装部材、そ
の他に使用され、更に広い分野への適応が期待さ
れると共に用途に応じた改良が検討され続けてい
る。そして、改良の1つとして金属板を表面と裏
面と異なる金属を使用した複合板が挙げられる。 発明が解決しようとする問題点 しかしながら、種類の異なる金属板を使用する
と各金属は固有の熱膨張係数を有するため、表と
裏との間に膨張係数の差があり、同種の金属板2
枚を使用した従来の複合板ではなかつた「反り」
の問題が生じる。この「反り」は従来の方法に従
つて複合板を製造する場合でも起こるが、仮に何
らかの方法により製造直後は平滑にすることがで
きても熱履歴を受けると「反り」が生じて常温と
しても平面に戻せないため、異種の金属板使用の
複合板実用化に先立つて該問題の解決が望まれて
いた。 本発明者等は、上記異種金属を使用する複合板
の「反り」の問題に鑑み種々検討したところ、エ
ラストマーを芯材として使用すると上記問題は改
善されるが得られた複合材の剛性が劣ることを知
得した。本発明はこの知見をもとに従来の複合板
と同等ないしはそれ以上の性能を有し、かつ「反
り」の抑制された複合板を得ることを目的として
なされたものである。 問題点を解決するための手段 本発明は、二枚の異種金属板を使用した複合板
を得る際に、金属板の間に特定の重合体層を接合
し、かつ各層の特定の厚みの結合によつて前記問
題が解決された複合板を得るものである。 すなわち、本発明の要旨は、二枚の金属板の間
に重合体層を接合してなる複合板において、上記
二枚の金属板が合計の厚みが0.1〜1.0mmであつて
各々が異種の金属からなる金属板であり、上記重
合体層がポリエチレンまたはポリプロピレンから
選ばれる熱可塑性合成樹脂層及び厚み0.05〜3mm
で該熱可塑性合成樹脂と相溶性を有するエチレ
ン・プロピレンコポリマー系の熱可塑性エラスト
マー層からなり、かつ複合板の厚みが0.5〜6mm
であることを特徴とする異種金属複合板に存す
る。 更に、本発明の要旨は、二枚の異種金属板の間
に重合体層を加熱圧着することにより上記複合板
を製造する方法に存する。 以下、本発明を詳細に説明する。 本発明に使用する金属板としては、アルミニウ
ム、鉄、銅、錫、ニツケル等の金属又はこれらの
合金、特にアルミニウム、鉄、ステンレスの3種
類から選ばれた二種類の金属板が挙げられ、各金
属板の厚みは通常0.05〜0.5mmとするがこれに限
定されるものではなく、二枚の金属板の合計が
0.1〜1.0mmであれば2枚の厚さを異なるものとす
ることも可能である。なお、2枚の金属板はそれ
らの線膨張係数の比が1.05〜3.0、更には1.1〜2.5
のものを使用することが本発明では特に有効であ
る。 また、重合体層を構成するポリエチレンまたは
ポリプロピレンから選ばれる熱可塑性合成樹脂
(以下、単に「合成樹脂」と略す)としては、通
常の押出成形に用いられるものはいずれでも適宜
使用できる。合成樹脂の厚さは適宜選択できるが
通常0.5〜5.5mm程度である。 本発明は、重合体層が合成樹脂層のみならずエ
チレン・プロピレンコポリマー系の熱可塑性エラ
ストマー(以下、「エラストマー」と略す)層を
も含有することを大きな特徴とする。 エラストマーは、ゴム弾性を有し、使用する合
成樹脂と相溶性を有するものであればいずれでも
良く、使用温度において引張強さ50Kg/cm2以上、
伸び100%以上のものが好ましい。このようなエ
ラストマーとしては、特に非晶質のエチレン・プ
ロピレン・コポリマーが適する。エラストマー層
の厚さは、0.05〜3mm、更には0.1〜2mmとする。
該エラストマー層が薄すぎると複合板の反りが増
大し、厚すぎると複合板の剛性が低下して好まし
くない。 本発明の複合板は、これら金属板、合成樹脂層
及びエラストマー層からなり、合計の厚みを0.5
〜6mm、更には0.5〜4mmとする。この厚みが上
記範囲より小さいと、複合板の反り抑制が困難と
なり、上記範囲より大きいと、エラストマー層を
用いない合成樹脂のみでも反りが抑制され、本発
明の複合板を使用する必要がなくなる。なお、金
属板、エラストマー層の厚みは前述した範囲内と
するが、実際に複合板を得る際には、金属板及び
複合板の厚みが増加するに従いエラストマーの必
要量が減少することを本発明者等は知得したの
で、この事を考慮に入れて各層の厚みを決定し、
それによつて、残りの合成樹脂層の厚みを決定す
ることが好ましい。なお、本発明における合成樹
脂層及びエラストマー層の厚みは、各層が複数に
分割されている場合は、それらを合計したものを
厚みとする。 金属板と重合体層は、2枚の金属板の間に重合
体層が介在するように接合して複合板を得る。複
合板の層構成につき、図面を参照して説明する。
第1図から第3図は複合板の層構成を示した説明
図であり、1と4は金属板(1と4は異種金属で
ある。)、2と2′は合成樹脂層、3と3′はエラス
トマー層を表わす。重合体層中に於ける合成樹脂
層とエラストマー層との配置は特に限定されず、
第1図のように単に一層ずつの合成樹脂層とエラ
ストマー層を接合するのみならず、第2図、第3
図のように各層を複数に分割して積層すること
も、エラストマー層の厚さ合計が前記の範囲内で
ある限りは可能である。 特に、得られた複合板の反り制御を一層少量の
エラストマーにより効率的に行うためには、エラ
ストマー層の両面に合成樹脂層を接合した第2図
の構造が好適である。この場合、各合成樹脂層の
厚さは両面の金属に応じて適宜選択できるが、厚
さの比率は通常1:0.3〜3の範囲であり、各合
成樹脂層は同種のものでも異種のものでも良い。 なお、上記複合材は、合成樹脂層及びエラスト
マー層に充填剤を加えること、複合板の表面に皮
膜処理等の種々の処理を施すこと等も充分可能で
ある。 金属板と重合体層の接合方法は、連続方式、回
分方式を含めた従来公知の方法に従つて実施で
き、加熱圧着することが製造上好ましい。製法の
例としては、予じめ合成樹脂を塗布した二枚の金
属板と溶融状態のエラストマーとを、又は金属板
並びに溶融状態の合成樹脂及びエラストマーと
を、加熱圧着ローラー間に連続的に供給して貼合
せを行う方法、フイルム状に形成した重合体層の
両面に金属板を加熱圧着する方法などが挙げら
れ、金属板2枚の間に、溶融状態のエラストマー
層の上下に溶融状態の合成樹脂を積層したものを
供給して加熱圧着する方法が好ましい。 接合の際には、各層の接合の為に接着剤を使用
し、接着剤層を含ませても良いが、本発明の合成
樹脂層とエラストマー層とは相溶性を有するの
で、これら2層の間には通常、接着剤を使用しな
い。 本発明方法に基づく複合板製造の一例を以下に
説明する。 2枚の金属シートは展張状態で、従来公知の方
法に従つて、脱脂、水洗、乾燥等の必要な表面処
理が施され、後述の加熱圧着温度に近い温度付近
まで予熱される。予熱された金属シートは、押出
機から押出され双方とも溶融状態にあるエラスト
マーとその上下の合成樹脂と共に加熱圧着ローラ
ー間に供給され貼合される。 貼合される時の温度は、使用する樹脂、エラス
トマー、金属との濡れ性を考慮して決定され、概
略150〜250℃の範囲から選定することが好まし
い。 加熱圧着ローラーから得られた複合板は、必要
に応じて加熱熟成などを行ない、その後、重合体
シートが溶融温度以下となるまで冷却し、本発明
による複合板を得る。 作 用 本発明は、以上のような構成により2種の金属
板を使用した優れた複合板を提供でき、かつ、容
易に該複合板を製造できるものである。 発明の効果 本発明によつて、異なる金属板を使用した複合
板であつても製造時及び温度変化を受けた後にも
「反り」が抑制された複合板を供給でき、かつ、
該複合板は従来の複合板の特徴である軽量性、加
工性、剛性、耐衝撃性、防音防振性をも有するも
のであり、本発明による複合板は極めて有用であ
る。更に、本発明方法はこのような優れた複合板
を連続的に製造し得るものであり、その工業的意
義は極めて大きい。 実施例 以下実施例により、本発明を更に詳細に説明す
る。 実施例1〜7、比較例1〜5 金属板として必要に応じて表面処理を行なつた
ステンレス板(SUB304、厚み0.15mm)、鋼板
(TFS及び冷延鋼板、厚みは共に0.2mm)、及びア
ルミニウム板(厚み0.15mm)を使用し、合成樹脂
層として高密度ポリエチレン(MI:0.2、密度:
0.95)又はポリプロピレン(MFI:0.5、密度
0.91)のシート、エラストマー層としてエチレン
−プロピレンコポリマー(MI:1.9、密度:0.86)
又は該ポリマーと低密度ポリエチレン(MI:
1.8、密度:0.91)等量混合物のシートを使用し
て、プレス機で各層を加熱圧着して第1表に示す
構造の厚さ1mmの複合板を得た。 得られた複合板の反り減少率及び剛性比を測定
した結果を第1表に示す。なお、反り減少率は、
各複合板から220mm×220mmのサンプルを切り出
し、平盤の上に乗せて各4辺の反りの最大値を測
定してその平均値を算出し、エラストマー不使用
の複合板(比較例1,3,4)を反り減少率0
%、完全な平板を反り減少率100%として表わし
た。また、剛性比は複合板から20mm×220mmのサ
ンプルを切り出し、2点支持スパン200mmでその
中央に荷重500gの分銅を乗せ、その時のたわみ
量を測定し、エラストマー不使用の複合板(比較
例1,3,4)のたわみ量を1として計算し、剛
性比として表わした。従つて、剛性比はその値が
小さいほど、剛性は高いこととなる。
INDUSTRIAL APPLICATION FIELD The present invention relates to a composite plate formed by bonding a polymer layer between two metal plates, and a method for manufacturing the same, and particularly relates to a composite plate formed by bonding a polymer layer between two metal plates. The present invention relates to a composite plate that suppresses the above and a method for continuously manufacturing the same. BACKGROUND OF THE INVENTION Composite plates in which a synthetic resin such as polyolefin is bonded as a core material between two metal plates such as aluminum, iron, or stainless steel are well known. (For example, Japanese Patent Publication No. 39-4739). This composite board has various features such as being lightweight, workable, and has excellent impact resistance, and is used for building materials, interior and exterior materials, and other applications. Improvements continue to be considered. One of the improvements is a composite plate in which the front and back sides of the metal plate are made of different metals. Problems to be Solved by the Invention However, when different types of metal plates are used, each metal has its own coefficient of thermal expansion, so there is a difference in expansion coefficient between the front and back sides.
"Warpage" that does not occur with conventional composite boards that use
The problem arises. This "warping" occurs even when manufacturing composite boards according to conventional methods, but even if you can make them smooth immediately after manufacturing by some method, "warping" will occur when subjected to thermal history, even at room temperature. Since it cannot be returned to a flat surface, it has been desired to solve this problem before putting composite plates using different metal plates into practical use. The present inventors conducted various studies in view of the problem of "warping" of composite plates using dissimilar metals, and found that using an elastomer as a core material improves the above problem, but the resulting composite material is inferior in rigidity. I learned that. The present invention has been made based on this knowledge with the aim of obtaining a composite board that has performance equivalent to or better than conventional composite boards and that has suppressed "warpage". Means for Solving the Problems The present invention involves bonding a specific polymer layer between the metal plates and bonding each layer with a specific thickness when obtaining a composite plate using two dissimilar metal plates. Thus, a composite plate is obtained in which the above-mentioned problems are solved. That is, the gist of the present invention is to provide a composite plate formed by bonding a polymer layer between two metal plates, in which the two metal plates have a total thickness of 0.1 to 1.0 mm, and each plate is made of different metals. The polymer layer is a thermoplastic synthetic resin layer selected from polyethylene or polypropylene and has a thickness of 0.05 to 3 mm.
The composite plate is made of a thermoplastic elastomer layer based on ethylene-propylene copolymer that is compatible with the thermoplastic synthetic resin, and the thickness of the composite plate is 0.5 to 6 mm.
The present invention resides in a dissimilar metal composite plate characterized by the following. Furthermore, the gist of the present invention resides in a method for producing the above-mentioned composite plate by hot-pressing a polymer layer between two dissimilar metal plates. The present invention will be explained in detail below. Examples of the metal plate used in the present invention include metals such as aluminum, iron, copper, tin, and nickel, or alloys thereof, particularly two types of metal plates selected from the three types of aluminum, iron, and stainless steel. The thickness of the metal plate is usually 0.05 to 0.5 mm, but is not limited to this, and the total thickness of the two metal plates is
It is also possible to make the two sheets have different thicknesses as long as they are 0.1 to 1.0 mm. In addition, the ratio of the linear expansion coefficients of two metal plates is 1.05 to 3.0, and even 1.1 to 2.5.
It is particularly effective in the present invention to use the following. Further, as the thermoplastic synthetic resin selected from polyethylene or polypropylene (hereinafter simply referred to as "synthetic resin") constituting the polymer layer, any resin used in ordinary extrusion molding can be used as appropriate. The thickness of the synthetic resin can be selected as appropriate, but is usually about 0.5 to 5.5 mm. A major feature of the present invention is that the polymer layer contains not only a synthetic resin layer but also an ethylene-propylene copolymer-based thermoplastic elastomer (hereinafter abbreviated as "elastomer") layer. The elastomer may be any material as long as it has rubber elasticity and is compatible with the synthetic resin used, and has a tensile strength of 50 kg/cm 2 or more at the operating temperature,
Preferably, the elongation is 100% or more. Amorphous ethylene-propylene copolymers are particularly suitable as such elastomers. The thickness of the elastomer layer is 0.05 to 3 mm, more preferably 0.1 to 2 mm.
If the elastomer layer is too thin, warping of the composite plate will increase, and if it is too thick, the rigidity of the composite plate will decrease, which is undesirable. The composite plate of the present invention consists of these metal plates, synthetic resin layers, and elastomer layers, and has a total thickness of 0.5
~6 mm, furthermore 0.5~4 mm. If this thickness is smaller than the above range, it will be difficult to suppress the warping of the composite plate, and if it is larger than the above range, the warp will be suppressed even with the synthetic resin alone without using an elastomer layer, making it unnecessary to use the composite board of the present invention. Note that the thickness of the metal plate and the elastomer layer is within the above-mentioned range, but when actually obtaining a composite plate, the present invention is based on the fact that as the thickness of the metal plate and composite plate increases, the required amount of elastomer decreases. The thickness of each layer was determined by taking this into consideration,
It is preferable to determine the thickness of the remaining synthetic resin layer accordingly. In addition, in the case where each layer is divided into a plurality of parts, the thickness of the synthetic resin layer and the elastomer layer in the present invention is the total thickness of the parts. The metal plate and the polymer layer are bonded together such that the polymer layer is interposed between the two metal plates to obtain a composite plate. The layer structure of the composite board will be explained with reference to the drawings.
Figures 1 to 3 are explanatory diagrams showing the layer structure of the composite plate, where 1 and 4 are metal plates (1 and 4 are different metals), 2 and 2' are synthetic resin layers, and 3 and 4 are metal plates (1 and 4 are different metals). 3' represents the elastomer layer. The arrangement of the synthetic resin layer and the elastomer layer in the polymer layer is not particularly limited.
In addition to simply bonding the synthetic resin layer and elastomer layer one by one as shown in Figure 1,
It is also possible to divide each layer into a plurality of layers and laminate them as shown in the figure, as long as the total thickness of the elastomer layers is within the above range. In particular, in order to efficiently control the warpage of the obtained composite plate using a smaller amount of elastomer, the structure shown in FIG. 2 in which synthetic resin layers are bonded to both sides of the elastomer layer is suitable. In this case, the thickness of each synthetic resin layer can be appropriately selected depending on the metal on both sides, but the thickness ratio is usually in the range of 1:0.3 to 3, and each synthetic resin layer can be made of the same or different types. But it's okay. It should be noted that the above-mentioned composite material can be used to add a filler to the synthetic resin layer and the elastomer layer, and to perform various treatments such as film treatment on the surface of the composite plate. The metal plate and the polymer layer can be joined by conventionally known methods including a continuous method and a batch method, and thermocompression bonding is preferable from the viewpoint of production. An example of a manufacturing method is to continuously supply two metal plates coated with a synthetic resin in advance and a molten elastomer, or a metal plate and a molten synthetic resin and elastomer between heated pressure rollers. Examples include a method in which metal plates are bonded under heat and pressure on both sides of a polymer layer formed into a film. A preferred method is to supply a laminated layer of synthetic resin and bond it under heat and pressure. At the time of bonding, an adhesive may be used to bond each layer, and an adhesive layer may be included. However, since the synthetic resin layer and elastomer layer of the present invention are compatible, these two layers may be No adhesive is usually used in between. An example of manufacturing a composite plate based on the method of the present invention will be described below. The two metal sheets in a stretched state are subjected to necessary surface treatments such as degreasing, washing, and drying according to conventionally known methods, and are preheated to a temperature close to the heat-pressing temperature described below. The preheated metal sheet is extruded from an extruder, and together with the elastomer, both of which are in a molten state, and the synthetic resin above and below the elastomer, the sheet is fed between heated pressure rollers and bonded together. The temperature at the time of lamination is determined by considering the wettability with the resin, elastomer, and metal used, and is preferably selected from a range of approximately 150 to 250°C. The composite plate obtained from the hot pressure roller is heated and aged as necessary, and then cooled until the polymer sheet reaches a melting temperature or lower to obtain a composite plate according to the present invention. Effects The present invention can provide an excellent composite plate using two types of metal plates with the above configuration, and can easily manufacture the composite plate. Effects of the Invention According to the present invention, it is possible to supply a composite plate in which "warpage" is suppressed even during manufacturing and after being subjected to temperature changes, even when the composite plate uses different metal plates, and
The composite board also has the characteristics of conventional composite boards, such as lightness, workability, rigidity, impact resistance, and sound and vibration damping properties, and the composite board according to the present invention is extremely useful. Furthermore, the method of the present invention enables continuous production of such excellent composite plates, and has extremely great industrial significance. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Examples 1 to 7, Comparative Examples 1 to 5 Stainless steel plates (SUB304, thickness 0.15 mm), steel plates (TFS and cold rolled steel plates, both thickness 0.2 mm), which were subjected to surface treatment as necessary as metal plates, and An aluminum plate (thickness: 0.15 mm) is used, and the synthetic resin layer is made of high-density polyethylene (MI: 0.2, density:
0.95) or polypropylene (MFI: 0.5, density
0.91) sheet, ethylene-propylene copolymer (MI: 1.9, density: 0.86) as elastomer layer
or the polymer and low density polyethylene (MI:
1.8, density: 0.91) using a sheet of the mixture in equal amounts, each layer was heat-pressed using a press to obtain a composite plate with a thickness of 1 mm having the structure shown in Table 1. Table 1 shows the results of measuring the warpage reduction rate and rigidity ratio of the composite plate obtained. In addition, the warpage reduction rate is
A sample of 220 mm x 220 mm was cut out from each composite plate, placed on a flat plate, and the maximum value of warp on each four sides was measured and the average value was calculated. ,4) Warpage reduction rate 0
%, a complete flat plate is expressed as a warpage reduction rate of 100%. In addition, the rigidity ratio was determined by cutting a 20 mm x 220 mm sample from a composite plate, placing a weight with a load of 500 g on the center with a two-point support span of 200 mm, and measuring the amount of deflection at that time. , 3, 4) was calculated by setting the amount of deflection to 1, and expressed as a stiffness ratio. Therefore, the smaller the value of the stiffness ratio, the higher the stiffness.

【表】 実施例8及び比較例6 幅650mm、厚み0.15mmのステンレス板
(SUS304)と、幅650mm、厚み0.2mmの鋼板
(TFS)を一定の張力を加えつつ予熱ヒーターに
て圧着ローラー温度まで徐々に昇温した。また、
合成樹脂として高密度ポリエチレン(MI:0.2、
密度:0.95)、エラストマーとしてエチレン−プ
ロピレンコポリマー(MI:1.9、密度0.86)を使
用し、エラストマー層の厚みが0.1mmとなるよう
各層の押出量を調整して、共押出しシートダイよ
り合成樹脂−エラストマー合成樹脂の3層重合体
溶融シートを押出し、上記予熱されたステンレス
板と鋼板の間に介在するように、約1mmの間〓に
調整した圧着ローラー間に供給して貼合せた。そ
の後、室温まで冷却し、各合成樹脂層の厚み
0.275mm、エラストマー層の厚み0.1mmの複合板を
得た。(実施例8) また、上記3層重合体溶融シートの代りに、エ
ラストマーを使用しない高密度ポリエチレンのみ
の溶融シートを用いた以外は、上述したと同様に
複合板を得た。(比較例6) 得られた複合板の反り減少率及び剛性比を測定
した結果を第2表に示す。なお、反り減少率は、
各複合板から600mm×600mmのサンプルを切り出
し、実施例1〜7と同様に測定し、比較例6の複
合板の反り減少率を0%とし表わした。また、剛
性比は、複合板から100mm×600mmのサンプルを切
り出し、2点支持、スパン500mmでその中央に1
Kgの荷重をかけ、その時のたわみ量を測定し、比
較例6の複合板のたわみ量を1として換算し、剛
性比として表わした。
[Table] Example 8 and Comparative Example 6 A stainless steel plate (SUS304) with a width of 650 mm and a thickness of 0.15 mm and a steel plate (TFS) with a width of 650 mm and a thickness of 0.2 mm were heated to the pressure roller temperature using a preheating heater while applying constant tension. The temperature rose gradually. Also,
High-density polyethylene (MI: 0.2,
Density: 0.95), ethylene-propylene copolymer (MI: 1.9, density 0.86) was used as the elastomer, and the extrusion amount of each layer was adjusted so that the thickness of the elastomer layer was 0.1 mm. A three-layer polymer molten sheet of synthetic resin was extruded and bonded by being supplied between pressure rollers adjusted to a distance of about 1 mm so as to be interposed between the preheated stainless steel plate and the steel plate. After that, it is cooled to room temperature and the thickness of each synthetic resin layer is
A composite plate with a thickness of 0.275 mm and an elastomer layer of 0.1 mm was obtained. (Example 8) A composite plate was also obtained in the same manner as described above, except that a molten sheet of only high-density polyethylene without using an elastomer was used instead of the 3-layer polymer molten sheet. (Comparative Example 6) Table 2 shows the results of measuring the warpage reduction rate and rigidity ratio of the obtained composite plate. In addition, the warpage reduction rate is
A sample of 600 mm x 600 mm was cut out from each composite plate and measured in the same manner as in Examples 1 to 7, and the warpage reduction rate of the composite plate of Comparative Example 6 was expressed as 0%. In addition, the rigidity ratio was determined by cutting out a 100 mm x 600 mm sample from a composite board, supporting it at two points, and setting one point in the center with a span of 500 mm.
A load of Kg was applied, the amount of deflection at that time was measured, the amount of deflection of the composite plate of Comparative Example 6 was set as 1, and the result was converted and expressed as a rigidity ratio.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明の異種金属複合板の
層構成を示した説明図である。図面の符号は、1
と4は金属板(1と4は異種金属である。)、2と
2′は合成樹脂層、3と3′はエラストマー層であ
る。
FIGS. 1 to 3 are explanatory diagrams showing the layer structure of the dissimilar metal composite plate of the present invention. The drawing code is 1
and 4 are metal plates (1 and 4 are different metals), 2 and 2' are synthetic resin layers, and 3 and 3' are elastomer layers.

Claims (1)

【特許請求の範囲】 1 二枚の金属板の間に重合体層を接合してなる
複合板において、上記二枚の金属板が合計の厚み
が0.1〜1.0mmであつて各々が異種の金属からなる
金属板であり、上記重合体層がポリエチレンまた
はポリプロピレンから選ばれる熱可塑性合成樹脂
層及び厚み0.05〜3mmで該熱可塑性合成樹脂と相
溶性を有するエチレン・プロピレンコポリマー系
の熱可塑性エラストマー層からなり、かつ複合板
の厚みが0.5〜6mmであることを特徴とする異種
金属複合板。 2 上記重合体層が、熱可塑性エラストマー層の
両面に熱可塑性合成樹脂層を接合してなることを
特徴とする特許請求の範囲第1項記載の異種金属
複合板。 3 二枚の異種金属板の間に重合体層を加熱圧着
する厚み0.5〜6mmの異種金属複合板の製造方法
において、上記重合体層がポリエチレンまたはポ
リプロピレンから選ばれる熱可塑性合成樹脂層及
び該熱可塑性合成樹脂と相溶性を有するエチレ
ン・プロピレンコポリマー系の熱可塑性エラスト
マー層からなり、かつ得られた複合板中の金属板
二枚の合計厚みが0.1〜1.0mmであり、上記熱可塑
性エラストマー層の厚みが0.05〜3mmであること
を特徴とする異種金属複合板の製造方法。
[Claims] 1. A composite plate formed by bonding a polymer layer between two metal plates, wherein the two metal plates have a total thickness of 0.1 to 1.0 mm and are each made of different metals. It is a metal plate, and the polymer layer is composed of a thermoplastic synthetic resin layer selected from polyethylene or polypropylene, and an ethylene-propylene copolymer thermoplastic elastomer layer having a thickness of 0.05 to 3 mm and having compatibility with the thermoplastic synthetic resin, A dissimilar metal composite plate characterized in that the thickness of the composite plate is 0.5 to 6 mm. 2. The dissimilar metal composite plate according to claim 1, wherein the polymer layer is formed by bonding thermoplastic synthetic resin layers to both sides of a thermoplastic elastomer layer. 3. A method for producing a dissimilar metal composite plate having a thickness of 0.5 to 6 mm in which a polymer layer is heat-pressed between two dissimilar metal plates, wherein the polymer layer is a thermoplastic synthetic resin layer selected from polyethylene or polypropylene, and the thermoplastic synthetic resin layer is selected from polyethylene or polypropylene. The composite plate is composed of a thermoplastic elastomer layer made of ethylene-propylene copolymer that is compatible with the resin, and the total thickness of the two metal plates in the obtained composite plate is 0.1 to 1.0 mm, and the thickness of the thermoplastic elastomer layer is A method for manufacturing a dissimilar metal composite plate, characterized in that the thickness is 0.05 to 3 mm.
JP15263084A 1984-07-23 1984-07-23 Different-kind metallic composite plate and manufacture thereof Granted JPS6131247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15263084A JPS6131247A (en) 1984-07-23 1984-07-23 Different-kind metallic composite plate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15263084A JPS6131247A (en) 1984-07-23 1984-07-23 Different-kind metallic composite plate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6131247A JPS6131247A (en) 1986-02-13
JPH0466692B2 true JPH0466692B2 (en) 1992-10-26

Family

ID=15544583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15263084A Granted JPS6131247A (en) 1984-07-23 1984-07-23 Different-kind metallic composite plate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6131247A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7457123B2 (en) * 2020-07-13 2024-03-27 日本製鉄株式会社 Steel plate-fiber reinforced resin composite and method for manufacturing the steel plate-fiber reinforced resin composite
JP7148021B1 (en) * 2021-01-07 2022-10-05 日本製鉄株式会社 machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106190A (en) * 1975-03-14 1976-09-20 Nippon Steel Corp BOSHINYOFUKUGOKINZOKUBAN
JPS549230A (en) * 1977-06-17 1979-01-24 Lummus Co Hydrogenating decomposition method of polycyclic aromatic hydrocarbonn containing material
JPS5987148A (en) * 1982-10-08 1984-05-19 チバ−ガイギ−・アクチエンゲゼルシヤフト Laminate consisting of metallic sheet and thermoplastic plastic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106190A (en) * 1975-03-14 1976-09-20 Nippon Steel Corp BOSHINYOFUKUGOKINZOKUBAN
JPS549230A (en) * 1977-06-17 1979-01-24 Lummus Co Hydrogenating decomposition method of polycyclic aromatic hydrocarbonn containing material
JPS5987148A (en) * 1982-10-08 1984-05-19 チバ−ガイギ−・アクチエンゲゼルシヤフト Laminate consisting of metallic sheet and thermoplastic plastic material

Also Published As

Publication number Publication date
JPS6131247A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
CA1269605A (en) Thin, deformable composite laminate
US4994130A (en) Method for producing a composite laminate
JPH0130621B2 (en)
JP4381941B2 (en) Laminate for automotive interior ceiling materials
JPH0428545B2 (en)
JPH0466692B2 (en)
JPS63170423A (en) Molding of multilayer composite panel having mirror surface
JPH025176B2 (en)
JP3170956B2 (en) Surface adjustment method of electrolytic copper foil
JPH0361011A (en) Mold release film and manufacture thereof
JP2530732B2 (en) Laminated film for thermocompression lamination
JPS5897404A (en) Production of metallic foil laminate
JP3884670B2 (en) Method for producing laminated composite
CN220447402U (en) Multifunctional composite material structure
JPH04319432A (en) Steel sheet-clad aluminum sheet for automobile, having superior vibration-damping properties, and manufacture thereof
JP4133136B2 (en) Manufacturing method of thick resin panel bonded metal sheet
JPS5935936A (en) Composite board for molding
JP2596086B2 (en) Manufacturing method of composite board
JPH0790621B2 (en) Foam plastic composite board
JP2002012093A (en) Member for forming automobile interior trim ceiling, and automobile interior trim ceiling member using it
JPS61152443A (en) Laminate and manufacture thereof
JPS6348692B2 (en)
JPS63218336A (en) Manufacture of multi-layer sheet
JPS62152751A (en) Viscoelastic multilayer body for manufacturing composite type vibration-damping material
JPH04101841A (en) Release film