JPH0466615A - Method for heat-treating steel material - Google Patents

Method for heat-treating steel material

Info

Publication number
JPH0466615A
JPH0466615A JP17793190A JP17793190A JPH0466615A JP H0466615 A JPH0466615 A JP H0466615A JP 17793190 A JP17793190 A JP 17793190A JP 17793190 A JP17793190 A JP 17793190A JP H0466615 A JPH0466615 A JP H0466615A
Authority
JP
Japan
Prior art keywords
combustion
furnace
steel material
oxide film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17793190A
Other languages
Japanese (ja)
Inventor
Takeo Yoshigae
吉ケ江 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17793190A priority Critical patent/JPH0466615A/en
Publication of JPH0466615A publication Critical patent/JPH0466615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To make oxide film thickness thin in a steel material and to make acid pickling for removing the oxide film unnecessary by specifying air ratio in a combustion burner, oxygen concn. in waste gas and waste gas temp. to execute the combustion control at the time of executing heat treatment to the steel material with combustion of the directly firing type combustion burner. CONSTITUTION:In the method of heat-treating the steel material by combustion of the directly firing type combustion burner, where the fuel is directly burnt in the furnace, the combustion with the combustion burner is executed at a ratio of <=0.5 to air, and also, the oxygen concn. (A) in the waste gas and the waste gas temp. (T) are detected. While executing the combustion control so that the oxygen concn. (A) becomes <=100 ppm and the waste gas temp. (T) becomes the temp. shown by the next inequality (1). [T >= 2.5A + 550... (1).] By executing the heat treatment of the steel material under such a condition, the oxide film thickness on the steel material surface can be made to < 20 Angstrom and treatment of the acid pickling, etc., for removing the oxide film after heat treatment, becomes unnecessary.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、炉内で燃料を直接燃焼させて鋼材を、例えば
光輝焼鈍する直火式熱処理炉における鋼材の熱処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for heat treating steel materials in a direct-fired heat treatment furnace for brightly annealing steel materials, for example, by directly burning fuel in the furnace.

〔従来の技術〕[Conventional technology]

従来、例えば、5Cr−H,SCM材のような低クロム
合金鋼等の鋼材を光輝焼鈍処理する場合、第4図に示す
ような焼鈍炉を用いて雰囲気ガス中で間接加熱する方法
が採用されている。この焼鈍炉21は、箱状に形成され
た焼鈍炉本体22内の上部に多数のラジアントチューブ
23を装入し、また炉床24に被処理材である金属材料
−の載置台(開示せず)を設置し、炉壁25に雰囲気ガ
ス導入孔26を形成して構成されている。この雰囲気ガ
ス導入孔26には、DXガスジェネレータ等の雰囲気ガ
ス発生装置27が接続されている。この装置27は、プ
ロパンまたはブタンガスと空気とを混合させて加熱する
ことによりDXガスを生成する変成炉28と、該DXガ
スを冷却する冷却器29とから構成されている。
Conventionally, when bright annealing steel materials such as low chromium alloy steels such as 5Cr-H and SCM materials, a method of indirect heating in an atmospheric gas using an annealing furnace as shown in Fig. 4 has been adopted. ing. This annealing furnace 21 has a large number of radiant tubes 23 inserted into the upper part of an annealing furnace main body 22 formed in a box shape, and a mounting table (not disclosed) for a metal material to be processed in a hearth 24. ), and atmospheric gas introduction holes 26 are formed in the furnace wall 25. An atmospheric gas generator 27 such as a DX gas generator is connected to the atmospheric gas introduction hole 26 . This device 27 includes a conversion furnace 28 that generates DX gas by mixing propane or butane gas and air and heating the mixture, and a cooler 29 that cools the DX gas.

上記焼鈍炉21により金属材料Wを光輝焼鈍処理する場
合は、炉内に金属材料−を装入した後、該炉内をDXガ
ス雰囲気に保持した状態で、バーナによりラジアントチ
ューブ23を赤熱し、金属材料旨を所定の焼鈍パターン
になるように加熱、均熱し、しかる後冷却する。このよ
うに光輝焼鈍処理された上記金属材料Uは、酸化皮膜を
除去するために酸洗い処理された後、後工程で所望の製
品に加工される。
When bright annealing the metal material W in the annealing furnace 21, after charging the metal material into the furnace, the radiant tube 23 is heated to red with a burner while the inside of the furnace is maintained in a DX gas atmosphere, The metal material is heated and soaked so as to form a predetermined annealing pattern, and then cooled. The metal material U that has been brightly annealed in this way is subjected to pickling treatment to remove the oxide film, and then processed into a desired product in a post-process.

[発明が解決しようとする課題] しかしながら、上記従来の光輝焼鈍処理方法では、ラジ
アントチューブ23を用いた間接加熱を採用しているこ
とから、熱効率が低く、燃料原単位が大きいという問題
がある。しかも上記焼鈍中における炉内雰囲気ガス中に
は、100〜200ppmの酸素が存在しており、この
ため金属材料−が鋼材の場合は、膜厚700人程程度酸
化皮膜が生じ、特にクロムモリブデン鋼の場合は、酸化
皮膜を除去するための酸洗いを行った後においても、表
面性状が劣化して、後工程で製品品質に悪影響を及ぼす
という問題がある。
[Problems to be Solved by the Invention] However, since the conventional bright annealing method described above employs indirect heating using the radiant tube 23, there are problems in that the thermal efficiency is low and the fuel consumption is large. Moreover, 100 to 200 ppm of oxygen is present in the furnace atmosphere gas during the above-mentioned annealing, and for this reason, when the metal material is steel, an oxide film is formed with a thickness of about 700 mm, especially on chromium molybdenum steel. In this case, there is a problem in that even after pickling to remove the oxide film, the surface quality deteriorates, which adversely affects product quality in subsequent steps.

そこで、本出願人は、上述の如き従来の光輝焼鈍処理方
法における問題点を解消するために鋭意研究を重ね、先
に、熱効率を向上させ燃料原単位を低減させるとともに
、酸化皮膜の膜厚を表面性状の劣化が生しることのない
厚さに低下させた金属材料の熱処理方法として、炉内で
、燃料を直接燃焼させる直火式燃焼バーナの燃焼により
金属材料を熱処理する方法において、炉内ガスの酸素濃
度を検出し、該酸素濃度が金属材料の材質に応した所定
濃度になるように上記直火式燃焼バーナの空気比を制御
しつつ金属材料を熱処理する方法を開発し、出願した。
Therefore, the present applicant has conducted extensive research in order to solve the problems with the conventional bright annealing treatment method as described above, and has first improved the thermal efficiency, reduced the fuel consumption rate, and reduced the thickness of the oxide film. As a heat treatment method for metal materials whose thickness has been reduced to a level that does not cause deterioration of surface properties, a furnace is used to heat treat metal materials by combustion in a direct combustion burner that directly burns fuel in a furnace. We have developed a method for heat treating metal materials by detecting the oxygen concentration in the internal gas and controlling the air ratio of the direct combustion burner so that the oxygen concentration becomes a predetermined concentration depending on the quality of the metal material. did.

(特願昭62−7208号参照)しかし、上記金属材料
の熱処理方法においても鋼材の場合は、酸化を最小限に
押さえることはできても完全に防止(酸化皮膜厚さ22
0人未満)することはできない、そのため、やはり後工
程において酸洗い等の処理が必要となる。
(Refer to Japanese Patent Application No. 62-7208) However, in the case of steel materials, even with the above heat treatment method for metal materials, although oxidation can be suppressed to a minimum, it is completely prevented (oxidation film thickness 22
Therefore, treatment such as pickling is still required in the post-process.

本発明は、上記の事情に鑑みてなされたものであって、
その目的は、鋼材を20人未満の酸化皮膜厚さになるよ
うに熱処理し、後工程の酸化皮膜除去のための酸洗い等
の処理を不要とする鋼材の熱処理方法を提供することで
ある。
The present invention has been made in view of the above circumstances, and includes:
The purpose is to provide a heat treatment method for steel materials that heat-treats steel materials to an oxide film thickness of less than 20% and that eliminates the need for post-process treatments such as pickling to remove the oxide film.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明に係わる鋼材の熱
処理方法は、炉内で、燃料を直接燃焼させる直火式燃焼
バーナの燃焼により鋼材を熱処理する方法において、燃
焼バーナによる燃焼を空気比0.5以下で行うとともに
、排ガス中の酸素濃度(A)および排ガス温度(T)を
検出し、酸素濃度(A)を1100pp以下および排ガ
ス温度(T)を下記(1)式で示す温度になるように燃
焼制御しつつ鋼材を熱処理するものである。
In order to achieve the above object, the method for heat treating steel materials according to the present invention is a method for heat treating steel materials by combustion in a direct combustion burner that directly burns fuel in a furnace, in which the combustion by the combustion burner is reduced to an air ratio. 0.5 or less, detect the oxygen concentration (A) in the exhaust gas and the exhaust gas temperature (T), and set the oxygen concentration (A) to 1100 pp or less and the exhaust gas temperature (T) to the temperature shown by the following formula (1). This method heat-treats steel materials while controlling combustion to achieve the desired results.

T≧2.5A + 550−−−−−−−−(1)以下
、本発明の詳細な説明する。
T≧2.5A + 550 (1) The present invention will be described in detail below.

本出願人は、先順に示す熱処理方法において、鋼材の場
合は、酸素atを10pp■以下に制御することが望ま
しいとして提案したが、その後の研究過程において、炉
内の酸素濃度を10pp−以下に制御することは炉外か
らの侵入酸素があって難しく、10〜tooppm程度
まで低下させるのが限界であること、さらに、このよう
な条件下で熱処理した鋼材の中に酸化皮膜の厚さが20
Å以下のものが得られることがあり、酸化皮膜の厚さが
70Å以下の範囲でバラツキのあることを知見した。そ
こで、この原因を把握するために、酸化皮膜の厚さと、
この酸化皮膜の厚さに影響を及ぼす要因と考えられる空
気比、炉内ガス温度、炉内ガスの酸素濃度との関係を、
詳細を後記する第1図に示す熱処理炉を使用して調査し
た。この調査結果を第2図および第3図に示す。
In the heat treatment method shown in the previous order, the applicant proposed that it is desirable to control oxygen at to 10 pp- or less in the case of steel materials, but in the subsequent research process, the oxygen concentration in the furnace was reduced to 10 pp- or less. It is difficult to control the temperature due to the intrusion of oxygen from outside the furnace, and the limit is to reduce the temperature to about 10 to ppm.Furthermore, the thickness of the oxide film on steel materials heat-treated under these conditions is 20 to ppm.
It has been found that the thickness of the oxide film may vary within a range of 70 Å or less. Therefore, in order to understand the cause of this, we investigated the thickness of the oxide film and
The relationship between the air ratio, the furnace gas temperature, and the oxygen concentration of the furnace gas, which are considered to be factors that affect the thickness of this oxide film, is as follows:
The investigation was conducted using a heat treatment furnace shown in FIG. 1, the details of which will be described later. The results of this investigation are shown in Figures 2 and 3.

第2図は、酸化皮膜の厚さと空気比との関係を示す図で
あって、鋼材として、酸化皮膜の厚さが20人のもの(
B)と、150人のもの(C)とを用い、空気比を0.
5. 0.7. 0.9. 1.0と変化させた時の焼
鈍後の鋼材の酸化皮膜の厚さを測定したものである。こ
の図より明らかなように、空気比を増加させると、綱材
の表面が酸化され酸化皮膜の厚さが増加するが、空気比
が0.5では鋼材(B)および(C)共、酸化皮膜の厚
さが10人程度まで薄くなり、鋼材表面が還元されなが
ら焼鈍されていた。しかし、空気比が0.5に制御され
ていても、第3図に炉内ガス温度、炉内ガスの酸素濃度
と酸化、還元の関係を示すように、炉内ガスの酸素濃度
が1100pp以下であっても炉内ガス温度が低い場合
は鋼材が酸化されることが分かった。そしてこの図より
明らかなように、炉内ガス温度が同じ場合、炉内ガスの
酸素濃度が増加するにつれ酸化し易くなるが、炉内ガス
温度を上げることにより還元状態が得られること、その
還元領域は、炉内ガス温度を〔T)、炉内ガスの酸素濃
度を(A)とすると、前記(1)弐(T≧2.5A→ 
550)により示される領域にあることを知見した。
Figure 2 is a diagram showing the relationship between the thickness of the oxide film and the air ratio.
B) and 150 people (C) were used, and the air ratio was set to 0.
5. 0.7. 0.9. The thickness of the oxide film on the steel material after annealing was measured when the value was changed to 1.0. As is clear from this figure, when the air ratio is increased, the surface of the steel material is oxidized and the thickness of the oxide film increases, but when the air ratio is 0.5, both steel materials (B) and (C) are oxidized. The thickness of the coating was reduced to about 10 mm, and the steel surface was being annealed while being reduced. However, even if the air ratio is controlled to 0.5, the oxygen concentration of the furnace gas is below 1100 pp, as shown in Figure 3, which shows the relationship between the furnace gas temperature, furnace gas oxygen concentration, and oxidation and reduction. However, it was found that the steel material was oxidized when the gas temperature in the furnace was low. As is clear from this figure, when the furnace gas temperature is the same, as the oxygen concentration of the furnace gas increases, it becomes more likely to oxidize, but by increasing the furnace gas temperature, a reduced state can be obtained. The area is (1) 2 (T≧2.5A→
550).

本発明は、上記の知見を元になしたもので、その要旨は
、炉内で、燃料を直接燃焼させる直火式燃焼バーナの燃
焼により鋼材を熱処理する方法において、燃焼バーナに
よる燃焼を空気比0.5以下で行うとともに、排ガス中
の酸素濃度(A)および排ガス温度(T)を検出し、酸
素濃度(A)を100p四以下および(Jl−ガス温度
(T)を下記(1)式で示す温度になるように燃焼制御
しつつ鋼材を熱処理するものである。
The present invention is based on the above knowledge, and its gist is that in a method for heat treating steel materials by combustion in a direct combustion burner that directly combusts fuel in a furnace, the combustion by the combustion burner is reduced to an air ratio. 0.5 or less, detect the oxygen concentration (A) in the exhaust gas and the exhaust gas temperature (T), and calculate the oxygen concentration (A) to 100 p4 or less and (Jl - gas temperature (T) using the following formula (1). This method heat-treats the steel material while controlling combustion so that it reaches the temperature shown in .

T≧2.5A + 550−−−−−−−−(1)この
ような条件下で鋼材を熱処理することにより、鋼材表面
の酸化皮膜厚さを20人未満にすることができ、熱処理
後の酸化皮膜除去のための酸洗い等の処理が不要となる
T≧2.5A + 550 (1) By heat-treating the steel material under these conditions, the thickness of the oxide film on the surface of the steel material can be reduced to less than 20, and after heat treatment Processing such as pickling to remove the oxide film becomes unnecessary.

〔寞 施 例〕[Example of implementation]

以下、本発明の実施例を興について説明する。 Embodiments of the present invention will be described below.

第1図は、本発明に係わる鋼材の熱処理方法を実施する
ための直火式焼鈍炉を示す。図において1は算型の直火
式焼鈍炉本体であり、これは型鋼で形成された炉殻の内
面に耐火断熱材をライニングして構成されており、該炉
本体1の側壁には図示しない開閉扉が昇降自在に配設さ
れている。
FIG. 1 shows a direct-fired annealing furnace for carrying out the method of heat treating steel materials according to the present invention. In the figure, reference numeral 1 denotes a direct-fired annealing furnace body, which is constructed by lining the inner surface of a furnace shell made of shaped steel with a refractory insulation material, and the side wall of the furnace body 1 is not shown. The opening/closing door is arranged so that it can be raised and lowered.

また上記炉本体1の右側壁1aの下部には排気ガス通路
2が形成されている。さらに上記炉本体lの左側壁1b
の上部には燃焼バーナ挿入孔3が炉幅方向に複数形成さ
れており、該挿入孔3には低空気比の直下式燃焼バーナ
4が挿入固着されている。
Further, an exhaust gas passage 2 is formed in the lower part of the right side wall 1a of the furnace body 1. Furthermore, the left side wall 1b of the furnace body l
A plurality of combustion burner insertion holes 3 are formed in the upper part of the furnace in the furnace width direction, and a low air ratio direct type combustion burner 4 is inserted and fixed into the insertion holes 3.

この燃焼バーナ4の前方部周壁には、燃焼状態を安定化
させるためのエクステンンヨンタイル5が設置されてい
る。さらに該バーナ4のノズル部分は、燃料と燃焼用空
気との混合を促進させて燃焼性を向上させるために、上
記空気の流れ方向に対して燃料を直角に噴出させる構造
になっている。
An extension tile 5 is installed on the front peripheral wall of the combustion burner 4 to stabilize the combustion state. Furthermore, the nozzle portion of the burner 4 is structured to eject fuel at right angles to the flow direction of the air in order to promote mixing of the fuel and combustion air and improve combustibility.

また、上記燃焼バーナ4には、燃料供給管6および燃焼
空気供給管7が接続されており、各供給管6.7にはそ
れぞれ流量検出器6a、 7a、流量調節弁6b、 7
bが配設されている。
Further, a fuel supply pipe 6 and a combustion air supply pipe 7 are connected to the combustion burner 4, and each supply pipe 6.7 has a flow rate detector 6a, 7a and a flow rate control valve 6b, 7, respectively.
b is provided.

8は排気ガス中の酸素濃度を検出する酸素製炭検出器で
ある。該検出器8には、先端が排気ガス通路2内に挿入
された排気ガス抽出管9の後端が接続されており、該抽
出管9の途中には上記先端側から順次流!調節弁10、
フィルタ11が配設されている。尚、12は排気ガスを
上記検出器8に導入するための吸引ポンプである。
8 is an oxygen coal making detector that detects the oxygen concentration in exhaust gas. The rear end of an exhaust gas extraction pipe 9 whose tip is inserted into the exhaust gas passage 2 is connected to the detector 8, and a stream of gas flows sequentially from the tip side to the middle of the extraction pipe 9. control valve 10,
A filter 11 is provided. Note that 12 is a suction pump for introducing exhaust gas into the detector 8.

13は排気ガスの温度を検出する温度検出器である。該
検出器13には、排気ガス通路2内に挿入された測温素
子14が接続されている。
13 is a temperature detector that detects the temperature of exhaust gas. A temperature measuring element 14 inserted into the exhaust gas passage 2 is connected to the detector 13 .

15は鋼材Sの材質に応じた炉温設定器、16は該炉温
設定器15に設定された炉温を実現するための燃料流量
を演算し、上記燃料流量検出器6aからの検出流量が、
上記演算流量になるように上記燃料流!i調節弁6bを
開閉制御する一方、上記酸素製産検出rI8からの検出
酸素濃度(A)および上記温度検出器13からの排気ガ
ス温度(T)が入力され、予め人力された前記(1)式
(T≧2.5A±550)が満たされているか否かを演
算するとともに、満たされていない場合に、上記炉温設
定器15に設定された炉温範囲内で満たすように上記燃
料流量調節弁6bを開閉制御する炉温制御装置である。
15 is a furnace temperature setting device according to the material of the steel material S; 16 is a fuel flow rate to realize the furnace temperature set in the furnace temperature setting device 15, and the detected flow rate from the fuel flow rate detector 6a is ,
The above fuel flow should be as the above calculated flow rate! While controlling the opening and closing of the i control valve 6b, the detected oxygen concentration (A) from the oxygen production detector rI8 and the exhaust gas temperature (T) from the temperature detector 13 are inputted, and the above (1), which has been manually input in advance, is input. It is calculated whether the formula (T≧2.5A±550) is satisfied or not, and if it is not satisfied, the fuel flow rate is adjusted so that the formula (T≧2.5A±550) is satisfied within the furnace temperature range set in the furnace temperature setting device 15. This is a furnace temperature control device that controls opening and closing of the control valve 6b.

17は空気比を0.5以下で設定するための空気比設定
器、18は該空気比設定器17に設定された空気比を実
現するための空気流量を演算し、上記空気流量検出器7
aからの検出流量が、上記演算流量になるように上記空
気流量調節弁7bを開閉制御する燃焼空気調節装置であ
る。
17 is an air ratio setter for setting the air ratio to 0.5 or less; 18 is the air flow rate detector 7 which calculates the air flow rate to realize the air ratio set in the air ratio setter 17;
This combustion air regulating device controls the opening and closing of the air flow regulating valve 7b so that the detected flow rate from point a becomes the calculated flow rate.

またこの例では、排気ガス通路2に二次燃焼室19およ
び熱交換器20が接続され、上記炉本体1からの排気ガ
スは、二次燃焼室19において二次燃焼され完全燃焼さ
せた後、熱交換器20、続く煙道を通って大気に排出さ
れる。熱交換器20では、上記燃焼バーナ4用の空気お
よび二次燃焼用の空気を昇温しで供給するようにしであ
る。
Further, in this example, a secondary combustion chamber 19 and a heat exchanger 20 are connected to the exhaust gas passage 2, and the exhaust gas from the furnace body 1 is subjected to secondary combustion in the secondary combustion chamber 19 and is completely combusted. The heat exchanger 20 is then discharged to the atmosphere through a flue. In the heat exchanger 20, air for the combustion burner 4 and air for secondary combustion are heated and supplied.

次に、本実施例の直火式焼鈍炉1により鋼材Sを光輝焼
鈍する方法について説明する。
Next, a method of brightly annealing the steel material S using the direct-fired annealing furnace 1 of this embodiment will be described.

本実施例の焼鈍炉1では、炉内に鋼材Sを2!置する。In the annealing furnace 1 of this embodiment, two steel materials S are placed in the furnace! place

そして、燃焼バーナ4に点火し、上記鋼材Sが所定の焼
鈍パターンになるように、昇温、均熱、冷却する。そし
てこの時、空気比設定器17に0.5以下の空気比より
選択された鋼材Sに応した空気比を設定し、その条件で
燃焼バーナ4を燃焼させ、その燃焼により得られた燃焼
排気ガスを雰囲気ガスとして利用するとともに、該雰囲
気ガスの温度、つまり炉内の温度が、上記炉温設定ri
15に設定された所定範囲の炉温になるように、且つこ
の所定範囲の炉温にあって雰囲気ガスが還元雰囲気状態
になるように制御される。即ち、酸素濃度検出器8から
の検出酸素濃K (A)および温度検出器13からの排
気ガス温度(T)が炉温制御装置16に入力され、該炉
温制御装置16により、予め入力された前記(1)式(
T≧2.5A+550)が満たされているか否かが演算
され、満たされていない場合に、上記炉温設定器15に
設定された所定範囲の炉温内で満たすように上記燃料流
量調節弁6bを開閉制御する。このようにして、上記燃
焼バーナ4は空気比0.5以下で燃焼し、排ガス中の酸
素濃度(A)は1100pp以下に、且つ排ガス温度(
T)は前記(1)式(T≧2.5A −550)を満た
す温度に保持される。
Then, the combustion burner 4 is ignited, and the temperature is raised, soaked, and cooled so that the steel material S has a predetermined annealing pattern. At this time, an air ratio corresponding to the steel material S selected from an air ratio of 0.5 or less is set in the air ratio setting device 17, the combustion burner 4 is combusted under that condition, and the combustion exhaust gas obtained by the combustion is Gas is used as an atmospheric gas, and the temperature of the atmospheric gas, that is, the temperature inside the furnace, is adjusted to the above-mentioned furnace temperature setting ri.
The furnace temperature is controlled to be within a predetermined range set at 15, and the atmospheric gas is controlled to be in a reducing atmosphere state within this predetermined range of furnace temperature. That is, the detected oxygen concentration K (A) from the oxygen concentration detector 8 and the exhaust gas temperature (T) from the temperature detector 13 are input to the furnace temperature control device 16. The above formula (1) (
It is calculated whether T≧2.5A+550) is satisfied, and if it is not satisfied, the fuel flow rate control valve 6b is adjusted so that the furnace temperature is satisfied within a predetermined range set in the furnace temperature setting device 15. Control opening and closing. In this way, the combustion burner 4 burns at an air ratio of 0.5 or less, the oxygen concentration (A) in the exhaust gas is 1100 pp or less, and the exhaust gas temperature (
T) is maintained at a temperature that satisfies the above formula (1) (T≧2.5A −550).

而して、本実施例による鋼材Sの焼鈍方法によれば、上
記直火式焼鈍炉内の雰囲気ガスの酸素濃度を1100p
p以下に調整するとともに、排ガス温度を調整して還元
雰囲気状態に制御しつつ光輝焼鈍処理を行うので、鋼材
Sに付着する酸化皮膜の膜厚を20人未満に押さえるこ
とができる。
According to the method for annealing steel material S according to this embodiment, the oxygen concentration of the atmospheric gas in the direct-fired annealing furnace is set to 1100p.
Since bright annealing is performed while adjusting the exhaust gas temperature to below p and controlling the exhaust gas temperature to a reducing atmosphere state, the thickness of the oxide film adhering to the steel material S can be kept to less than 20.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明に係わる鋼材の熱処理方法によ
れば、鋼材表面の酸化皮膜の厚さを20人未満に押さえ
ることができ、熱処理後の酸化皮膜除去のための酸洗い
等の処理が不要となり、熱処理鋼材の生産性が向上する
As described above, according to the heat treatment method for steel materials according to the present invention, the thickness of the oxide film on the surface of the steel material can be kept to less than 20, and treatments such as pickling to remove the oxide film after heat treatment can be carried out. It is no longer necessary, improving the productivity of heat-treated steel materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる鋼材の熱処理方法を説明する
ための直火式焼鈍炉の概略構成図、第2図は、酸化皮膜
の厚さと空気比の関係を示す図、第3図は、炉内ガス温
度、炉内ガスの酸素濃度と酸化、還元の関係を示す図、
第4図は、従来の光輝焼鈍方法を説明するための概略構
成図である。 1i!j火式焼鈍炉本体 2 排気ガス通路3 燃焼バ
ーナ挿入孔 4 直下式燃焼バーナ6 燃料供給管  
  7 燃焼空気供給管6a、 7a  流量検出器 
 6b、 7b  流量調節弁8 酸素濃度検出器  
13  温度検出器14  測温素子     15 
 炉温設定器16  炉温制御装置   17 燃焼空
気調節公賓19  二次燃焼室    20  熱交換
器第1図 特許出願人 株式会社神戸製鋼所
Fig. 1 is a schematic configuration diagram of a direct-fired annealing furnace for explaining the method of heat treatment of steel materials according to the present invention, Fig. 2 is a diagram showing the relationship between the thickness of the oxide film and the air ratio, and Fig. 3 is a diagram showing the relationship between the thickness of the oxide film and the air ratio. , A diagram showing the relationship between furnace gas temperature, furnace gas oxygen concentration, oxidation, and reduction,
FIG. 4 is a schematic configuration diagram for explaining a conventional bright annealing method. 1i! j Fire type annealing furnace main body 2 Exhaust gas passage 3 Combustion burner insertion hole 4 Direct type combustion burner 6 Fuel supply pipe
7 Combustion air supply pipe 6a, 7a flow rate detector
6b, 7b Flow control valve 8 Oxygen concentration detector
13 Temperature detector 14 Temperature measuring element 15
Furnace temperature setting device 16 Furnace temperature control device 17 Combustion air adjustment official guest 19 Secondary combustion chamber 20 Heat exchanger Fig. 1 Patent applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 炉内で、燃料を直接燃焼させる直火式燃焼バーナの燃焼
により鋼材を熱処理する方法において、燃焼バーナによ
る燃焼を空気比0.5以下で行うとともに、排ガス中の
酸素濃度(A)および排ガス温度(T)を検出し、酸素
濃度(A)を100ppm以下および排ガス温度(T)
を下記(1)式で示す温度になるように燃焼制御しつつ
鋼材を熱処理することを特徴とする鋼材の熱処理方法。 T≧2.5A+550−−−−−−−−(1)
[Claims] In a method of heat treating steel materials by combustion in a direct combustion burner that directly burns fuel in a furnace, the combustion in the combustion burner is performed at an air ratio of 0.5 or less, and the oxygen concentration in the exhaust gas is (A) and the exhaust gas temperature (T), and keep the oxygen concentration (A) below 100 ppm and the exhaust gas temperature (T).
A method for heat treating steel materials, the method comprising heat treating the steel materials while controlling combustion so that the temperature reaches the temperature expressed by the following equation (1). T≧2.5A+550---(1)
JP17793190A 1990-07-04 1990-07-04 Method for heat-treating steel material Pending JPH0466615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17793190A JPH0466615A (en) 1990-07-04 1990-07-04 Method for heat-treating steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17793190A JPH0466615A (en) 1990-07-04 1990-07-04 Method for heat-treating steel material

Publications (1)

Publication Number Publication Date
JPH0466615A true JPH0466615A (en) 1992-03-03

Family

ID=16039575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17793190A Pending JPH0466615A (en) 1990-07-04 1990-07-04 Method for heat-treating steel material

Country Status (1)

Country Link
JP (1) JPH0466615A (en)

Similar Documents

Publication Publication Date Title
US20190119777A1 (en) Method and Furnace Installation for Heat Treating Metal Strip
US6183246B1 (en) Method of heating a continuously charged furnace particularly for steel-making products, and continuously charged heating furnace
US4760995A (en) Continuously treating line for steel bands having a heating furnace by directly flaming
JP4585666B2 (en) Control method of externally heated rotary kiln
JPH0466615A (en) Method for heat-treating steel material
JP2002213879A (en) Atmosphere control method for heating furnace, and the heating furnace
JPS63176424A (en) Heat treatment of metallic material
EP0522407A1 (en) Blackening treating method of stainless steel strip surface and blackening treating furnace
JPH0230720A (en) Method for heating steel sheet
CA1103569A (en) Preheat and cleaning system
JPH07126759A (en) Method for heating metallic strip and device therefor
JP4352499B2 (en) Continuous multi-band heating method and continuous multi-band heating furnace
US2307522A (en) Bright-finish metal-treating furnace
JP3364091B2 (en) Temperature control method for continuous annealing furnace
JPS63157819A (en) Heat treatment of steel strip
JPH01119628A (en) Heat treatment method for stainless steel cold rolled strip
JPH0322266Y2 (en)
JPH1112658A (en) Method for preheating steel sheet in continuous annealing equipment
JPH0441621A (en) Continuous heat treatment for steel strip
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
JPH0472023A (en) Direct firing type continuous annealing method for steel strip and apparatus thereof
JPH0553848B2 (en)
JPS6335681B2 (en)
JPS6160899B2 (en)
JPH0693341A (en) Continuous heat treatment method for steel strip