JPH0466241B2 - - Google Patents

Info

Publication number
JPH0466241B2
JPH0466241B2 JP60134388A JP13438885A JPH0466241B2 JP H0466241 B2 JPH0466241 B2 JP H0466241B2 JP 60134388 A JP60134388 A JP 60134388A JP 13438885 A JP13438885 A JP 13438885A JP H0466241 B2 JPH0466241 B2 JP H0466241B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
crosslinking agent
polyvinyl chloride
weight
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60134388A
Other languages
Japanese (ja)
Other versions
JPS61293203A (en
Inventor
Tamio Yamato
Kenji Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUN ARROW KAGAKU KK
Original Assignee
SUN ARROW KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUN ARROW KAGAKU KK filed Critical SUN ARROW KAGAKU KK
Priority to JP13438885A priority Critical patent/JPS61293203A/en
Publication of JPS61293203A publication Critical patent/JPS61293203A/en
Publication of JPH0466241B2 publication Critical patent/JPH0466241B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、優れたゴム弾性を有する軟質ポリ塩
化ビニルを得るために好適なポリ塩化ビニルの製
造方法に関する。 〔従来の技術および発明が解決しようとする問題
点〕 近年、軟質ポリ塩化ビニルはゴムに似た軟かさ
を有する一方、ゴムに対して良好な成形性を有
し、しかも低価格であるため、ゴムの代替材料と
して注目されている。しかしながら、一般に軟質
ポリ塩化ビニルは、ゴム弾性を表わす圧縮永久歪
が60%以上であり、ゴムの圧縮永久歪(50%以
下)に対してはるかに大きい。そのため、高度な
ゴム弾性が要求されるパツキン、シール材などの
用途において使用が制限されていた。 従来、軟質ポリ塩化ビニルの圧縮永久歪を低減
させ、ゴム弾性を改良する方法として、架橋剤の
存在下に塩化ビニルを重合させて得られる部分架
橋したポリ塩化ビニルを用いる方法が提案されて
いる。 しかしながら、上記の部分架橋したポリ塩化ビ
ニルを用いた軟質ポリ塩化ビニルにおいて、圧縮
永久歪は架橋によつて生成する塩化ビニルのゲル
分を増すに従つて低減していくが、その反面、成
形加工性が急激に低下するという傾向を示す。そ
のため、軟質ポリ塩化ビニルが元来有する良好な
成形加工性を維持するためには、上記ゲル分を低
く抑える必要があり、かかるゲル分の少ない部分
架橋したポリ塩化ビニルを使用した軟質ポリ塩化
ビニルでは圧縮永久歪の大巾な低減が図れないと
いう問題を有していた。 〔問題点を解決するための手段〕 本発明者等は、良好な加工性を有し、且つ充分
に低減された圧縮永久歪を有する軟質ポリ塩化ビ
ニルを開発すべく鋭意研究を重ねた。その結果、
塩化ビニルの重合において特定の架橋剤を併用す
ることにより得られるポリ塩化ビニルが、ゲル分
の少ない範囲内においても、軟質ポリ塩化ビニル
の圧縮永久歪を著しく低減させることができ、前
記課題を達成し得ることを見い出し、本発明を完
成するに至つた。 本発明は、塩化ビニルまたは塩化ビニルを主体
とするモノマー混合物を、モノマー反応性比が塩
化ビニルに対して大きい架橋剤と小さい架橋剤と
の共存下に重合することを特徴とするポリ塩化ビ
ニルの製造方法である。 本発明において、塩化ビニルに対する架橋剤の
モノマー反応性比の大小は、塩化ビニル(100モ
ル)と架橋剤(1モル)との共重合を実際の重合
条件(例えば45℃)で行い、該重合の過程におけ
る塩化ビニルと架橋剤の消費率を測定して決定し
たものである。即ち、上記重合において、消費率
が塩化ビニルより大きい架橋剤をモノマー反応性
比が塩化ビニルに対して大きい架橋剤とし、逆に
該消費率が塩化ビニルより小さい架橋剤をモノマ
ー反応性比が塩化ビニルに対して小さい架橋剤と
した。 また、塩化ビニルに対する架橋剤のモノマー反
応性比の大小は、モノマーが付加して生じるラジ
カルの共鳴安定性を示す因子の共鳴因子(Q)と
モノマーの二重結合の荷電量に比例する因子の極
性因子(e)の値を文献値より求め、これより塩化ビ
ニルと架橋剤とのモノマー反応性比(r1、r2)を
算出して比較することもできる。これらモノマー
反応性比(r1、r2)は下記の式により算出され
る。 r1=(Q1/Q2)e×p〔−e1(e1−e2)〕 r2=(Q2/Q1)e×p〔−e2(e2−e1)〕 (但しe×pは冪指数である。) 本発明の特徴は、上記したモノマー反応性比が
塩化ビニルに対して大きい架橋剤と小さい架橋剤
とを塩化ビニル又は塩化ビニルを主体とするモノ
マー混合物と重合させる点にある。従来、部分架
橋したポリ塩化ビニルを得る場合、使用する架橋
剤を「一種又は二種以上」使用することは一般に
記載されている。しかしながら、前記特定の性質
を有する架橋剤を組合せて使用することおよびこ
れにより後述する如く少ないゲル分で圧縮永久歪
が著しく低減された軟質ポリ塩化ビニルが得られ
るという効果は、本発明によつて初めて見い出さ
れたものである。 前記したモノマー反応性比が塩化ビニルに対し
て大きい架橋剤とては、塩化ビニルと架橋剤との
モノマー反応性比r1、r2がr1<r2の関係にあれば
よいが、特にr1<1、r2>1の関係にあるものが
好ましい。上記架橋剤としては、例えば、ポリエ
チレングリコールジアクリレート、エチレングリ
コールジメタクリレート、1,3プロピレングリ
コールジメタクリレート等のモノポリアルキレン
グリコールのアクリル酸またはメタクリル酸エス
テル類、ジビニルベンゼン、トリメチロールプロ
パントリアクリレート等が挙げられる。また、モ
ノマー反応性比が塩化ビニルに対して小さい架橋
剤としては、塩化ビニルと架橋剤とのモノマー反
応性比r1、r2がr1>r2の関係にあればよいが、特
にr1>1、r2<1の関係にあるものが好ましい。
上記架橋剤としては、例えば、トリアリルシアヌ
レート、トリアリルイソシアヌレート、ジアリル
タレート、ジアリルマレエート、ジアリルサクシ
ネート等のジもしくはトリアリル化合物等が挙げ
られる。 モノマー反応性比が塩化ビニルに対して大きい
架橋剤と小さい架橋剤との併用は、夫々の架橋剤
を一種又は二種以上を使用して行なうことができ
る。また、各架橋剤の比率は架橋剤の架橋効率を
勘案して、モノマー反応性比が塩化ビニルに対し
て大きい架橋剤と小さい架橋剤との架橋剤のモル
比が9/1〜4/6となるように調整すること
が、得られる軟質ポリ塩化ビニルの圧縮永久歪の
低減効果をより向上させるために好ましい。 本発明において、架橋剤の総添加量は、重合に
よつて得られるポリ塩化ビニルのテトラヒドロフ
ランに不溶なゲル分が5〜50重量%、好ましくは
25〜45重量%となるように決定することが望まし
い。ゲル分が上記範囲より少ないと得られる軟質
ポリ塩化ビニルの圧縮永久歪の低減効果が低下す
る傾向があり、また、ゲル分が上記範囲より多い
と成形加工性が低下する傾向がある。なお、本発
明において、テトラヒドロフランに不溶なゲル分
の割合は、ポリ塩化ビニルを30℃のテトラヒドロ
フラン中に一昼夜浸漬後、これを濾過、乾燥する
ことによつて得られた不溶分の重量(Wb)を浸
漬前のポリ塩化ビニルの全重量(Wa)で除した
値を%で表示したものである。かかる架橋剤の総
添加量は架橋剤の架橋効率、重合温度等によつて
異なり、一概に限定されるものではないが、塩化
ビニルまたは塩化ビニルを主体とするモノマー混
合物に対して0.1〜3.0重量%、好ましくは0.2〜
2.0重量%が一般的である。 本発明において、塩化ビニルを主体とするモノ
マー混合物(以下、単にモノマー混合物という)
は、塩化ビニルとこれと共重合可能なモノマーと
の混合物であり、塩化ビニルを主体とするものが
特に制限なく使用される。上記した塩化ビニルと
共重合可能なモノマーとしては、例えば酢酸ビニ
ル、等の脂肪酸ビニルエステル、アクリル酸、ア
クリル酸メチル等のアクリル酸類、メタクリル
酸、メタクリル酸メチル等のメタクリル酸類、エ
チレン、プロピレン、スチレン等のα−オレフイ
ンなどが挙げられ、これらの一種あるいは二種以
上が使用される。モノマー混合物中におけるこれ
らモノマーの割合は30重量%以下、好ましくは15
重量%以下とすることが望ましい。 本発明において、塩化ビニル又はモノマー混合
物と前記架橋剤との重合方法は、公知の方法が特
に制限なく採用されるが、特に懸濁重合が好適で
ある。かかる懸濁重合において、重合温度は30〜
70℃、重合圧力は4〜12気圧が一般的である。ま
た、重合において、公知の添加剤、例えばポリビ
ニルアルコール、メチルセルロース、エチルセル
ロース、ヒドロキシプロピルセルロースなどの水
溶性セルロースゼラチン等の有機高分子物質の使
用も特に制限されない。また、重合開始剤は、前
記重合条件で作用するものが特に制限なく使用さ
れる。例えば、ジ−2−エチルヘキシルパーオキ
シジカーボネート、イソプロピルパーオキシジカ
ーボネート、ラウロイルパーオキサイド、ターシ
ヤリブチルパーオキシピバレート、ベンゾイルパ
ーオキシサイド等の有機過酸化物、アゾビスイソ
ブチロニトリル、αα′アゾビス4−メトキシ−
2,4,ジメチルバレロニトリル等のアゾ系化合
物等が一般的である。 〔作用および効果〕 本発明によつて得られるポリ塩化ビニルに可塑
剤を配合して得られる軟質ポリ塩化ビニルは、優
れた成形加工性を有すると共に、ゴムに匹敵する
低い圧縮永久歪を有するものであり、ゴムの代替
材料として充分使用することが可能である。 上記可塑剤の配合割合はポリ塩化ビニル100重
量部に対して50〜150重量部が好ましい。また、
可塑剤としては、ジ(2−エチルヘキシル)フタ
レート、ジブチルフタレートなどのフタル酸エス
テル類、ジ(2−エチルヘキシル)アジペートな
どのアジピン酸エステル類、トリオクテルトリメ
リテートなどのトリメリツト酸エステル類、ジ、
nブチルセバケートなどのセバシン酸エステル
類、エポキシ化大豆油等公知のものが使用され
る。 本発明のポリ塩化ビニルが上記効果を発揮する
機構は明らかではないが、本発明者等は、モノマ
ー反応性比が塩化ビニルより大きい架橋剤と小さ
い架橋剤とを併用することにより、塩化ビニルの
架橋度が均一化されると共に、2種類の架橋剤の
挙動に起因する何らかの作用が働くことによるも
のと推定している。 また、本発明の方法によつて得られるポリ塩化
ビニルは、優れたつや消し効果をも発揮するもの
であり、前記したゴムの代替材料としての用途の
みでなく、一般の成形材料としても好適に使用す
ることができる。 〔実施例〕 実施例および比較例において、圧縮永久歪、加
工性、つや消性は下記の方法によつて測定した。 () 加工性 ポリ塩化ビニル100重量部にジ−2−エチル
ヘキシルフタレート100重量部、エポキシ大豆
油3重量部、およびバリウム−亜鉛系複合安定
剤2重量部を加えた後、表面温度160℃の蒸気
ロールで混練し、該ロールヘのポリ塩化ビニル
の巻き付き時間、ロールへの付着状態、および
バンクの流動状態などを総合的に観察し、下記
の基準により4段階評価した。 ◎…未架橋ポリ塩化ビニルと比較して加工性の
低下が全くない。 ○…未架橋ポリ塩化ビニルと比較して加工性が
やや悪い。 △…未架橋ポリ塩化ビニルと比較して加工性が
かなり悪い。 ×…未架橋ポリ塩化ビニルと比較して加工性が
きわめて悪い。 () 圧縮永久歪 ()と同様の添加剤を配合したポリ塩化ビ
ニルをシート状に成形して得られた試料を用
い、JIS K 6301に準じて測定した。(70℃×
22時間)。 () つや消性 ポリ塩化ビニル100重量部にジ−2−エチル
ヘキシルフタレート50重量部、エポキシ大豆油
3重量部、バリウム−亜鉛系複合安定剤2重量
部、顔料1.5重量部を加えた後、表面温度160℃
の蒸気ロールで混練し、次いでシート状に成形
し、表面のつや消し状態を光沢計(日本電色工
業製VG−10)で測定し、下記の基準により4
段階評価した。 ◎…光沢度が10以下 ○…光沢度が10〜20 △…光沢度が20〜30 ×…光沢度が30以上 実施例1および比較例1 内容積50の撹拌機付オートクレーブに、イオ
ン交換水20Kgに部分ケン化ポリビニルアルコール
10g、メチルセルロース10gを溶解し、次いでこ
れに重合開始剤としてジ−2−エチルヘキシルパ
ーオキシジカーボネート20gおよび第1表のA欄
およびB欄に示す架橋剤を夫々第1表に示す量と
なるように添加した後、、オートクレーブを脱気
し、塩化ビニル10Kgを仕込み、撹拌下に45℃で重
合を行つた。オートクレーブ内の圧力が初期圧力
より1.5Kg/cm2低下した時点で未反応モノマーを
パージして重合を終了させた。得られたポリ塩化
ビニルを40℃で一昼夜減圧乾燥させた後、圧縮永
久歪、加工性、つや消性、ゲル分を夫々測定し
た。結果を第1表に併せて示す。尚、エチレング
リコールジメタクリレート、トリアリルシアヌレ
ート、トリアリルイソシアヌレート、ジアリルフ
タレートと塩化ビニルの共重合反応に於けるモノ
マー反応性比(r1、r2)を文献値より算出した値
を下記に示す。
[Industrial Application Field] The present invention relates to a method for producing polyvinyl chloride suitable for obtaining soft polyvinyl chloride having excellent rubber elasticity. [Prior art and problems to be solved by the invention] In recent years, flexible polyvinyl chloride has a softness similar to rubber, has good moldability compared to rubber, and is inexpensive. It is attracting attention as an alternative material to rubber. However, soft polyvinyl chloride generally has a compression set representing rubber elasticity of 60% or more, which is much larger than that of rubber (50% or less). Therefore, its use has been limited in applications such as packing and sealing materials that require a high degree of rubber elasticity. Conventionally, a method using partially crosslinked polyvinyl chloride obtained by polymerizing vinyl chloride in the presence of a crosslinking agent has been proposed as a method for reducing the compression set of soft polyvinyl chloride and improving its rubber elasticity. . However, in soft polyvinyl chloride using partially cross-linked polyvinyl chloride, the compression set decreases as the gel content of the vinyl chloride generated by cross-linking increases, but on the other hand, when molding It shows a tendency for a rapid decline in sexual performance. Therefore, in order to maintain the good moldability inherent in soft polyvinyl chloride, it is necessary to keep the gel content low. However, there was a problem in that it was not possible to achieve a large reduction in compression set. [Means for Solving the Problems] The present inventors have conducted extensive research in order to develop soft polyvinyl chloride that has good processability and has sufficiently reduced compression set. the result,
Polyvinyl chloride obtained by using a specific cross-linking agent in the polymerization of vinyl chloride can significantly reduce the compression set of soft polyvinyl chloride even within a range with a low gel content, achieving the above-mentioned problem. They have discovered that it is possible to do so, and have completed the present invention. The present invention is characterized in that vinyl chloride or a monomer mixture mainly composed of vinyl chloride is polymerized in the coexistence of a crosslinking agent with a high monomer reactivity ratio and a crosslinking agent with a low monomer reactivity ratio with respect to vinyl chloride. This is the manufacturing method. In the present invention, the monomer reactivity ratio of the crosslinking agent to vinyl chloride is determined by copolymerizing vinyl chloride (100 mol) and the crosslinking agent (1 mol) under actual polymerization conditions (for example, 45°C). This was determined by measuring the consumption rate of vinyl chloride and crosslinking agent during the process. That is, in the above polymerization, a crosslinking agent whose consumption rate is higher than vinyl chloride is used as a crosslinking agent whose monomer reactivity ratio is larger than vinyl chloride, and conversely, a crosslinking agent whose consumption rate is smaller than vinyl chloride is used as a crosslinking agent whose monomer reactivity ratio is larger than vinyl chloride. A small crosslinking agent for vinyl. In addition, the magnitude of the monomer reactivity ratio of the crosslinking agent to vinyl chloride is determined by the resonance factor (Q), which is a factor indicating the resonance stability of the radical generated by the addition of the monomer, and the factor proportional to the charge amount of the double bond of the monomer. It is also possible to obtain the value of the polarity factor (e) from literature values, calculate the monomer reactivity ratio (r 1 , r 2 ) between vinyl chloride and the crosslinking agent from this value, and compare the values. These monomer reactivity ratios (r 1 , r 2 ) are calculated by the following formula. r 1 = (Q 1 / Q 2 ) e x p [-e 1 (e 1 - e 2 )] r 2 = (Q 2 / Q 1 ) e x p [-e 2 (e 2 - e 1 )] (However, e x p is a power exponent.) The feature of the present invention is that the above-mentioned crosslinking agent and crosslinking agent having a large monomer reactivity ratio with respect to vinyl chloride are mixed into vinyl chloride or a monomer mixture mainly composed of vinyl chloride. The point is to polymerize with. Conventionally, when obtaining partially crosslinked polyvinyl chloride, it has been generally described that "one or more" crosslinking agents are used. However, the use of crosslinking agents having the above-mentioned specific properties in combination and the effect of obtaining soft polyvinyl chloride with significantly reduced compression set with a small gel content as described later are achieved by the present invention. This is the first time it has been discovered. The above-mentioned crosslinking agent having a large monomer reactivity ratio with respect to vinyl chloride may be one in which the monomer reactivity ratios r 1 and r 2 of vinyl chloride and the crosslinking agent satisfy the relationship r 1 < r 2 , but especially It is preferable that the relationship satisfies r 1 <1 and r 2 >1. Examples of the crosslinking agent include acrylic acid or methacrylic acid esters of monopolyalkylene glycols such as polyethylene glycol diacrylate, ethylene glycol dimethacrylate, and 1,3 propylene glycol dimethacrylate, divinylbenzene, trimethylolpropane triacrylate, and the like. It will be done. In addition, as a crosslinking agent whose monomer reactivity ratio is smaller than that of vinyl chloride, it is sufficient that the monomer reactivity ratios r 1 and r 2 of vinyl chloride and the crosslinking agent satisfy the relationship r 1 > r 2 , but especially r It is preferable that 1 > 1 and r 2 <1.
Examples of the crosslinking agent include di- or triallyl compounds such as triallyl cyanurate, triallyl isocyanurate, diallyltalate, diallyl maleate, and diallyl succinate. The combination of a crosslinking agent with a high monomer reactivity ratio and a crosslinking agent with a low monomer reactivity ratio with respect to vinyl chloride can be carried out by using one type or two or more types of each crosslinking agent. In addition, the ratio of each crosslinking agent is determined by taking into consideration the crosslinking efficiency of the crosslinking agent, and the molar ratio of the crosslinking agent with a large monomer reactivity ratio and a crosslinking agent with a small monomer reactivity ratio with respect to vinyl chloride is 9/1 to 4/6. It is preferable to adjust it so that it becomes more effective in reducing the compression set of the obtained soft polyvinyl chloride. In the present invention, the total amount of the crosslinking agent added is 5 to 50% by weight, preferably 5 to 50% by weight of gel insoluble in tetrahydrofuran of polyvinyl chloride obtained by polymerization.
It is desirable to determine the content to be 25 to 45% by weight. When the gel content is less than the above range, the effect of reducing the compression set of the resulting soft polyvinyl chloride tends to be reduced, and when the gel content is more than the above range, the moldability tends to be reduced. In addition, in the present invention, the ratio of the gel content insoluble in tetrahydrofuran is the weight (Wb) of the insoluble content obtained by immersing polyvinyl chloride in tetrahydrofuran at 30°C for a day and night, filtering it, and drying it. is divided by the total weight (Wa) of polyvinyl chloride before dipping, expressed as a percentage. The total amount of the crosslinking agent added varies depending on the crosslinking efficiency of the crosslinking agent, the polymerization temperature, etc., and is not absolutely limited, but it is 0.1 to 3.0% by weight based on vinyl chloride or a monomer mixture mainly composed of vinyl chloride. %, preferably 0.2~
2.0% by weight is common. In the present invention, a monomer mixture mainly composed of vinyl chloride (hereinafter simply referred to as a monomer mixture)
is a mixture of vinyl chloride and a monomer copolymerizable with vinyl chloride, and those containing vinyl chloride as a main component can be used without particular limitation. Examples of monomers copolymerizable with vinyl chloride include fatty acid vinyl esters such as vinyl acetate, acrylic acids such as acrylic acid and methyl acrylate, methacrylic acids such as methacrylic acid and methyl methacrylate, ethylene, propylene, and styrene. and the like, and one or more of these may be used. The proportion of these monomers in the monomer mixture is not more than 30% by weight, preferably 15% by weight.
It is desirable that the amount is less than % by weight. In the present invention, as a method for polymerizing vinyl chloride or a monomer mixture with the crosslinking agent, any known method can be employed without particular limitation, but suspension polymerization is particularly preferred. In such suspension polymerization, the polymerization temperature is 30~
The polymerization pressure is generally 70°C and 4 to 12 atmospheres. Furthermore, in the polymerization, there are no particular restrictions on the use of known additives, such as polyvinyl alcohol, organic polymeric substances such as water-soluble cellulose gelatin such as methyl cellulose, ethyl cellulose, and hydroxypropyl cellulose. Further, as the polymerization initiator, any one that acts under the above-mentioned polymerization conditions can be used without particular limitation. For example, organic peroxides such as di-2-ethylhexyl peroxydicarbonate, isopropyl peroxydicarbonate, lauroyl peroxide, tertiary butyl peroxypivalate, benzoyl peroxide, azobisisobutyronitrile, αα′ Azobis4-methoxy-
Azo compounds such as 2,4, dimethylvaleronitrile, etc. are common. [Functions and Effects] The soft polyvinyl chloride obtained by blending a plasticizer with the polyvinyl chloride obtained by the present invention has excellent moldability and low compression set comparable to that of rubber. Therefore, it can be fully used as a substitute material for rubber. The blending ratio of the plasticizer is preferably 50 to 150 parts by weight per 100 parts by weight of polyvinyl chloride. Also,
Examples of plasticizers include phthalic acid esters such as di(2-ethylhexyl) phthalate and dibutyl phthalate, adipic acid esters such as di(2-ethylhexyl) adipate, trimellitic acid esters such as triocter trimellitate, di,
Known sebacic acid esters such as n-butyl sebacate, epoxidized soybean oil, etc. are used. Although the mechanism by which the polyvinyl chloride of the present invention exhibits the above effects is not clear, the present inventors have found that by using a crosslinking agent with a monomer reactivity ratio higher than that of vinyl chloride and a crosslinking agent with a lower monomer reactivity ratio, It is presumed that this is due to the fact that the degree of crosslinking is made uniform and that some kind of effect is caused by the behavior of the two types of crosslinking agents. In addition, the polyvinyl chloride obtained by the method of the present invention also exhibits an excellent matting effect, and can be suitably used not only as a substitute material for rubber as described above, but also as a general molding material. can do. [Example] In Examples and Comparative Examples, compression set, workability, and mattability were measured by the following methods. () Processability After adding 100 parts by weight of di-2-ethylhexyl phthalate, 3 parts by weight of epoxy soybean oil, and 2 parts by weight of a barium-zinc composite stabilizer to 100 parts by weight of polyvinyl chloride, steam with a surface temperature of 160°C was added. The mixture was kneaded with a roll, and the time for which the polyvinyl chloride was wrapped around the roll, the state of adhesion to the roll, the flow state of the bank, etc. were comprehensively observed, and evaluated in four stages according to the following criteria. ◎...Compared to uncrosslinked polyvinyl chloride, there is no decrease in processability at all. ○...Processability is slightly worse than uncrosslinked polyvinyl chloride. △...Processability is considerably poorer than uncrosslinked polyvinyl chloride. ×... Processability is extremely poor compared to uncrosslinked polyvinyl chloride. () Compression set: Measured according to JIS K 6301 using a sample obtained by molding polyvinyl chloride containing the same additives as in () into a sheet. (70℃×
22 hours). () Matte After adding 50 parts by weight of di-2-ethylhexyl phthalate, 3 parts by weight of epoxy soybean oil, 2 parts by weight of barium-zinc composite stabilizer, and 1.5 parts by weight of pigment to 100 parts by weight of polyvinyl chloride, the surface Temperature 160℃
The matte state of the surface was measured using a gloss meter (VG-10 manufactured by Nippon Denshoku Kogyo Co., Ltd.) according to the following standards.
Graded evaluation. ◎...Glossiness is 10 or less ○...Glossiness is 10-20 △...Glossiness is 20-30 ×...Glossiness is 30 or more Example 1 and Comparative Example 1 In an autoclave with an internal volume of 50 and equipped with a stirrer, ion-exchanged water was added. 20Kg partially saponified polyvinyl alcohol
10 g of methylcellulose was dissolved, and then 20 g of di-2-ethylhexyl peroxydicarbonate as a polymerization initiator and the crosslinking agent shown in columns A and B of Table 1 were added in the amounts shown in Table 1, respectively. After the autoclave was degassed, 10 kg of vinyl chloride was charged, and polymerization was carried out at 45°C with stirring. When the pressure inside the autoclave decreased to 1.5 Kg/cm 2 from the initial pressure, unreacted monomers were purged to terminate the polymerization. The obtained polyvinyl chloride was dried under reduced pressure at 40° C. for a day and night, and then the compression set, workability, mattability, and gel content were measured. The results are also shown in Table 1. In addition, the monomer reactivity ratio (r 1 , r 2 ) in the copolymerization reaction of ethylene glycol dimethacrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate and vinyl chloride is calculated from literature values and is shown below. show.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 塩化ビニルまたは塩化ビニルを主体とするモ
ノマー混合物を、モノマー反応性比が塩化ビニル
に対して大きい架橋剤と小さい架橋剤との共存下
に重合することを特徴とするポリ塩化ビニルの製
造方法。 2 テトラヒドロフランに不溶なゲル分が5〜50
重量%となるように重合を行なう特許請求の範囲
第1項記載の方法。
[Scope of Claims] 1. A polyester polymer characterized in that vinyl chloride or a monomer mixture mainly composed of vinyl chloride is polymerized in the coexistence of a crosslinking agent with a large monomer reactivity ratio and a crosslinking agent with a small monomer reactivity ratio with respect to vinyl chloride. Method for producing vinyl chloride. 2 Gel content insoluble in tetrahydrofuran is 5-50
% by weight.
JP13438885A 1985-06-21 1985-06-21 Production of polyvinyl chloride Granted JPS61293203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13438885A JPS61293203A (en) 1985-06-21 1985-06-21 Production of polyvinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13438885A JPS61293203A (en) 1985-06-21 1985-06-21 Production of polyvinyl chloride

Publications (2)

Publication Number Publication Date
JPS61293203A JPS61293203A (en) 1986-12-24
JPH0466241B2 true JPH0466241B2 (en) 1992-10-22

Family

ID=15127231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13438885A Granted JPS61293203A (en) 1985-06-21 1985-06-21 Production of polyvinyl chloride

Country Status (1)

Country Link
JP (1) JPS61293203A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539545B2 (en) * 1990-11-29 1996-10-02 チッソ株式会社 Matte vinyl chloride resin composition
CN103289003B (en) * 2013-05-23 2016-03-09 吴江市风尚鞋厂 A kind of HPVC resin material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134793A (en) * 1978-04-12 1979-10-19 Sumitomo Chem Co Ltd Preparation of vinyl chloride resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134793A (en) * 1978-04-12 1979-10-19 Sumitomo Chem Co Ltd Preparation of vinyl chloride resin

Also Published As

Publication number Publication date
JPS61293203A (en) 1986-12-24

Similar Documents

Publication Publication Date Title
JPS6144883B2 (en)
JP3339257B2 (en) Vinyl chloride resin composition
JPH0466241B2 (en)
US4115480A (en) Method of production of acrylic resin for film use and an acrylic resin obtained therefrom
JPH10511735A (en) Polymer emulsifier for vinyl chloride polymerization
JPS6312089B2 (en)
JP3210408B2 (en) Method for producing vinyl chloride polymer
JPS5847011A (en) Production of vinyl chloride polymer
JPH02305804A (en) Production of vinyl chloride polymer
PT98360A (en) VINYL CHLORIDE MATE POLYMER PRODUCTION PROCESS
JP2686564B2 (en) Method for producing vinyl chloride resin
JP3922966B2 (en) Method for producing vinyl chloride polymer
JPS58183710A (en) Non-rigid plastic resin for covering electric wire
JPS58127717A (en) Production of vinyl chloride graft copolymer
JPH0529641B2 (en)
JPS6173713A (en) Production of vinyl chloride resin
JPH10110014A (en) Preparation of vinyl chloride polymer
JPS61266421A (en) Production of vinyl chloride resin excellent in flow and heat stability
JPS58213009A (en) Crosslinked vinyl chloride resin
JPS621606B2 (en)
JPH0347807A (en) Production of matte vinyl chloride polymer
JPH01311110A (en) Production of vinyl chloride copolymer
JPH0493301A (en) Dispersing agent and dispersion stabilizer for suspension polymerization of vinyl monomer
JPS61141703A (en) Suspension polymerization of vinyl chloride monomer
JPH09302003A (en) Polymerization of vinyl chloride monomer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees