JPH0466179B2 - - Google Patents

Info

Publication number
JPH0466179B2
JPH0466179B2 JP62122159A JP12215987A JPH0466179B2 JP H0466179 B2 JPH0466179 B2 JP H0466179B2 JP 62122159 A JP62122159 A JP 62122159A JP 12215987 A JP12215987 A JP 12215987A JP H0466179 B2 JPH0466179 B2 JP H0466179B2
Authority
JP
Japan
Prior art keywords
plastic film
shielding material
film
surface layer
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62122159A
Other languages
Japanese (ja)
Other versions
JPS6485749A (en
Inventor
Hajime Nakayama
Koichi Ooyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62122159A priority Critical patent/JPS6485749A/en
Publication of JPS6485749A publication Critical patent/JPS6485749A/en
Publication of JPH0466179B2 publication Critical patent/JPH0466179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Diaphragms For Cameras (AREA)
  • Shutters For Cameras (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカメラのシヤツター羽根等に用いる複
合プラスチツク遮光材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite plastic light-shielding material used for camera shutter blades and the like.

〔従来技術〕[Prior art]

従来、高速で連動されることが要求される軽量
かつ高剛性なカメラシヤツター羽根材料として
は、例えばチタン材にエツチングにより凹部を設
け窒化処理等の表面硬化層を形成して軽量化と強
度を保持したもの(実開昭54−173742号公報、特
開昭55−161223号公報)、また、高力アルミニウ
ム合金にアルマイト処理を施すもの(特開昭57−
24925号公報)等が提案されている。
Traditionally, lightweight and highly rigid camera shutter blade materials that are required to be linked at high speeds have been made using, for example, titanium material with recesses formed by etching and a hardened surface layer such as nitrided to reduce weight and strength. (JP-A-54-173742, JP-A-55-161223), and high-strength aluminum alloys subjected to alumite treatment (JP-A-57-1999)
24925) etc. have been proposed.

しかしながら、これらの提案に於いては単一材
料としての限界があり、例えば最高シヤツタース
ピード1/4000秒を上廻るシヤツターを実現するこ
とは困難である。
However, these proposals have limitations as a single material, and for example, it is difficult to realize a shutter with a maximum shutter speed of 1/4000 seconds or more.

他方、特開昭59−61827号公報には、中空部分
を有する芯部及び表皮部からなる複合部材で構成
され、これらの少なくとも一方が炭素繊維の連続
繊維で強化された樹脂からなるシヤツター羽根が
開示されている。
On the other hand, Japanese Unexamined Patent Publication No. 59-61827 discloses a shutter blade that is composed of a composite member consisting of a core part having a hollow part and a skin part, at least one of which is made of a resin reinforced with continuous carbon fibers. Disclosed.

又、特開昭60−63826号公報には、連続した炭
素繊維を樹脂で強化してシート状にし、その両面
をプラスチツクシートでラミネートしたシヤツタ
ー羽根が開示されている。
Further, Japanese Patent Application Laid-Open No. 60-63826 discloses a shutter blade in which continuous carbon fibers are reinforced with resin to form a sheet, and both sides of the sheet are laminated with plastic sheets.

又、実開昭60−65726号公報には、連続した炭
素繊維を樹脂で強化してシート状にしたものを2
枚用い、その間に金属箔をサンドイツチし、各炭
素繊維シートの両面に黒色塗料を為したシヤツタ
ー羽根が開示されている。
In addition, Japanese Utility Model Application Publication No. 60-65726 discloses two sheets of continuous carbon fiber reinforced with resin.
A shutter blade is disclosed in which a metal foil is sandwiched between the carbon fiber sheets and black paint is applied to both sides of each carbon fiber sheet.

又、実開昭60−63825号公報には、連続した炭
素繊維を樹脂で強化してシート状にしたものを3
枚用い、炭素繊維方向を隣合う同士、90度ずらし
て積層したシヤツター羽根が開示されている。
In addition, Japanese Utility Model Application Publication No. 60-63825 discloses 3 sheets made of continuous carbon fibers reinforced with resin.
A shutter blade is disclosed in which the carbon fibers are laminated with adjacent carbon fibers shifted by 90 degrees.

これらの炭素繊維シートを用いたものでは熱膨
張率が機械的性質と同じく大きな異方性を示すた
め、他の材料と積層した場合での熱膨張率の差に
よる熱ひずみやクラツクの発生が生じており、特
に平面性にて問題を生じることがあつた。
Products using these carbon fiber sheets exhibit large anisotropy in thermal expansion coefficient as well as mechanical properties, so when laminated with other materials, thermal distortion and cracks may occur due to the difference in thermal expansion coefficient. This has caused problems, especially in flatness.

なお、特開昭61−129629号公報には1枚の炭素
繊維シートの両面をプラスチツクシートでラミネ
ートと、しかもこのプラスチツクシートを炭素繊
維の引揃え方向と直角方向に熱収縮率の大きい方
向を合わせて、炭素繊維シートの熱膨張率の異方
性の対処をしたことが開示されている。
Furthermore, JP-A-61-129629 discloses a method in which both sides of one carbon fiber sheet are laminated with plastic sheets, and the plastic sheet is aligned with the direction of high heat shrinkage perpendicular to the direction in which the carbon fibers are aligned. It is disclosed that the anisotropy of the coefficient of thermal expansion of carbon fiber sheets was addressed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は軽量且つ高剛性を有する複合プ
ラスチツク遮光材を提供することにあり、特には
上記特開昭61−129629号公報の開示技術によつて
得られる炭素繊維シートの熱膨張率の異方性の対
処より優れた特性を持つ複合プラスチツク遮光材
を提供することにある。
The purpose of the present invention is to provide a light-weight and highly rigid composite plastic light-shielding material, and in particular, the purpose of the present invention is to provide a composite plastic light-shielding material that is lightweight and has high rigidity. The object of the present invention is to provide a composite plastic light-shielding material having properties superior to those of the unidirectional one.

本発明は上記目的を達成するために、芯材部と
してプラスチツクフイルムを用い、表層部として
略同一方向に引揃えられた連続炭素繊維をマトリ
ツクス樹脂で強化させたシート状炭素繊維形成物
を用い、さらに該プラスチツクフイルムは縦方向
と横方向との熱収縮率特性が異なるものを用い、
且つ熱収縮率の大なる方向を炭素繊維の引揃え方
向に略直交させた複合プラスチツク遮光材を特徴
とする。
In order to achieve the above object, the present invention uses a plastic film as the core part, and a sheet-like carbon fiber formed product made of continuous carbon fibers aligned in substantially the same direction reinforced with a matrix resin as the surface part. Furthermore, the plastic film used has different heat shrinkage characteristics in the vertical direction and the horizontal direction,
Moreover, the present invention is characterized by a composite plastic light-shielding material in which the direction in which the thermal shrinkage rate is high is substantially perpendicular to the direction in which the carbon fibers are aligned.

〔実施例〕 一般に炭素繊維は高強度、高弾性などの特性を
有する軽量構造用材料の強化材として用いること
が主な目的である為、炭素繊維の性能もその機械
的特性が重要な因子となつてくるが、高強度ある
いは高弾性率タイプと呼ばれる引張弾性率が2.3
×104Kg/mm2(高強度)〜3.5×104Kg/mm2
(高弾性)のポリアクリロニトリル系(PAN系)
でフイラメント径が7μm程度の繊維が材料設計
上適している。
[Example] Carbon fiber is generally used as a reinforcing material for lightweight structural materials that have properties such as high strength and high elasticity, so its mechanical properties are an important factor in the performance of carbon fiber. It gets older, but the tensile modulus is 2.3, which is called a high strength or high modulus type.
× 104 Kg/ mm2 (high strength) ~3.5× 104 Kg/ mm2
(high elasticity) polyacrylonitrile type (PAN type)
Therefore, fibers with a filament diameter of about 7 μm are suitable for material design.

他方、マトリツクス樹脂としては熱硬化性樹脂
が好ましく、例えばエポキシ、不飽和ポリエステ
ル、フエノール、ビニルエステル樹脂等である。
樹脂含有量は30〜50wt%が好適である。
On the other hand, the matrix resin is preferably a thermosetting resin, such as epoxy, unsaturated polyester, phenol, or vinyl ester resin.
The resin content is preferably 30 to 50 wt%.

また、連続炭素繊維にマトリツクス樹脂を含浸
させて強化させたシート状炭素繊維形成分(以
下、プリプレグシートと呼ぶ)の厚さは20〜50μ
mが好ましい。
In addition, the thickness of the sheet-like carbon fiber component (hereinafter referred to as prepreg sheet), which is made by impregnating continuous carbon fiber with matrix resin and strengthening it, is 20 to 50 μm.
m is preferred.

本実施例の複合プラスチツク遮光材は上述の如
きプリプレグシートの片面に熱収縮性プラスチツ
クフイルムを積層させた表層部を、プラスチツク
フイルムの芯材部の両面に積層させて構成される
ものである。ここで用いる表層部の熱収縮性プラ
スチツクフイルムとしては厚さが6〜20μmの二
軸延伸タイプのポリエステルフイルムが良い。ま
た芯材部には熱収縮率特性がMD(縦)方向2.0〜
3.0%、TD(横)方向0.1〜0.3%、厚さが15〜50μ
mのポリエステルフイルムが適している。
The composite plastic light-shielding material of this embodiment is constructed by laminating a surface layer portion of a prepreg sheet as described above with a heat-shrinkable plastic film laminated on one side on both sides of a core material portion of the plastic film. The heat-shrinkable plastic film for the surface layer used here is preferably a biaxially stretched polyester film having a thickness of 6 to 20 .mu.m. In addition, the core material has a heat shrinkage rate of 2.0~2.0 in the MD (longitudinal) direction.
3.0%, TD (lateral) direction 0.1~0.3%, thickness 15~50μ
m polyester film is suitable.

本発明によれば、上記の材料構成により、軽量
かつ剛性の高い平面性の良好な複合プラスチツク
遮光材を得ることができる。
According to the present invention, the above-mentioned material structure makes it possible to obtain a light-weight, highly rigid, composite plastic light-shielding material with good flatness.

なお、遮光性を向上させる為に真空蒸着法等に
より金属薄膜をコーテイングしたフイルムやある
いはカーボンブラツク等の黒色顔料を含浸させた
染色フイルムを芯部に用いるのも有効な手段であ
る。
In order to improve light shielding properties, it is also effective to use a film coated with a thin metal film by vacuum evaporation or the like, or a dyed film impregnated with a black pigment such as carbon black, for the core.

更に、表層部に用いる熱収縮性プラスチツクフ
イルムの少なくとも片面に金属薄膜をコーテイン
グして遮光性、平面性などを向上させることも有
効である。蒸着金属はAl、Ti、Cr、Niなどが挙
げられる。金属薄膜の厚さは500〜1000Åの範囲
が好ましく、この範囲外ではピンホールや密着性
の問題が生じてくる。
Furthermore, it is also effective to coat at least one side of the heat-shrinkable plastic film used for the surface layer with a metal thin film to improve light-shielding properties, flatness, and the like. Examples of vapor-deposited metals include Al, Ti, Cr, and Ni. The thickness of the metal thin film is preferably in the range of 500 to 1000 Å, and outside this range pinholes and problems with adhesion may occur.

また、プラスチツクフイルム面に施した金属薄
膜の上に耐摩擦、摩耗性及び耐熱性を有する墨イ
ンキ、あるいは潤滑性黒色塗料を適用することが
できる。なお、上記プラスチツクフイルム面に金
属薄膜のコーテイングなしに墨インキ、塗料を塗
布し遮光性、反射防止、外観などを向上させるこ
ともできる。
Further, black ink having friction resistance, abrasion resistance, and heat resistance, or a lubricating black paint can be applied on the metal thin film applied to the plastic film surface. Note that black ink or paint can be applied to the plastic film surface without coating with a metal thin film to improve light shielding properties, antireflection, appearance, etc.

以下、図面を引用して実施例により本発明を具
体的に説明する。
Hereinafter, the present invention will be specifically explained by examples with reference to the drawings.

〔実施例 1〕 第1図は第1実施例による複合プラスチツク遮
光材の基本構成の部分斜視図である。1−a,1
−bおよび3−a,3−bは表層部、2は芯材部
を表わす。この場合1−a,1−bは引揃えた炭
素繊維束に樹脂を含浸させたプリプレグシート
(繊維方向は1−a,1−b共、同一方向に一致)
で厚さ各25μm、3−a,3−bは熱収縮性プラ
スチツクフイルム(ポリエステルフイルム)で厚
さ各9μm、2は芯材プラスチツクフイルム層
(ポリエステルフイルム)で厚さ25μmである。
この複合プラスチツク遮光材を得るには、先ず定
尺に切断したプリプレグシート上に芯材となるプ
ラスチツクフイルムを熱収縮率特性のMD方向が
炭素繊維方向と90°の角度をなる様に重ね合せ、
その上に別のプリプレグシートを繊維方向と同一
となる様に置き、これらを40〜50℃に過熱後仮圧
着する。方法としてはホツトローラー、ホツトプ
レート等を用いればよい。この後、両サイドに熱
収縮性のプラスチツクフイルムを芯材フイルムと
同様なMD方向で重ね合せ、ホツトプレスを用い
て3〜5Kg/cm2の圧力で120℃−90分間加熱する
ことにより複合プラスチツク遮光材を得る。また
フイルムの接着にはプリプレグシートのマトリツ
クス樹脂を利用する。本実施例により得られる遮
光材は良好な平面性を示し、これをプレス抜きし
て得られるシヤツター羽根は、平面度0.1mm以下
を十分に満足するものである。
[Embodiment 1] FIG. 1 is a partial perspective view of the basic structure of a composite plastic light shielding material according to a first embodiment. 1-a, 1
-b, 3-a, and 3-b represent the surface layer portion, and 2 represents the core material portion. In this case, 1-a and 1-b are prepreg sheets made of aligned carbon fiber bundles impregnated with resin (the fiber directions are the same in both 1-a and 1-b)
3-a and 3-b are heat-shrinkable plastic films (polyester films) with a thickness of 9 μm each, and 2 is a core plastic film layer (polyester film) with a thickness of 25 μm.
To obtain this composite plastic light shielding material, first, a plastic film serving as a core material is superimposed on a prepreg sheet cut to a regular length so that the MD direction of the heat shrinkage characteristic is at a 90° angle with the direction of the carbon fiber.
Another prepreg sheet is placed on top of it in the same direction as the fibers, and after heating to 40-50°C, it is temporarily pressed. As a method, a hot roller, a hot plate, etc. may be used. After this, a heat-shrinkable plastic film is placed on both sides in the same MD direction as the core film, and heated at 120°C for 90 minutes at a pressure of 3 to 5 kg/cm 2 using a hot press to form a composite plastic light-shielding film. Get wood. Additionally, the matrix resin of the prepreg sheet is used to bond the film. The light-shielding material obtained in this example exhibits good flatness, and the shutter blade obtained by pressing it satisfies the flatness of 0.1 mm or less.

これは、上記遮光材の構成に於ける、芯材及び
表層部のプラスチツクフイルムの重ね合せに際し
ての熱収縮率特性のMD、TD方向の設定による
効果であると考える。つまり、プリプレグシート
の熱膨張率を考えると、炭素繊維の引揃え方向
(0°方向)は一般に負の熱膨張率を示す。これに
対し炭素繊維と直角方向(90°方向)の熱膨張率
は、マトリツクス樹脂の膨張率に支配されるもの
である。従つて、これを他の材料と貼り合せる場
合には、その異方性より熱ひずみの問題が生じる
訳であるが、本実施例ではこれをプラスチツクフ
イルムのMD方向とTD方向の熱収縮率の差を利
用して熱ひずみを吸収したものである。当然、成
形条件により有意差が生じるが、特に芯材のプラ
スチツクフイルムに於いて有利である。
This is thought to be due to the effect of setting the MD and TD directions of the heat shrinkage characteristics when the core material and the plastic film of the surface layer are laminated in the structure of the light shielding material. In other words, when considering the coefficient of thermal expansion of a prepreg sheet, the direction in which the carbon fibers are aligned (0° direction) generally exhibits a negative coefficient of thermal expansion. On the other hand, the thermal expansion coefficient in the direction perpendicular to the carbon fiber (90° direction) is controlled by the expansion coefficient of the matrix resin. Therefore, when bonding this material with other materials, the problem of thermal distortion arises due to its anisotropy, but in this example, this problem is solved by changing the thermal shrinkage rate of the plastic film in the MD and TD directions. This difference is used to absorb thermal strain. Naturally, significant differences occur depending on the molding conditions, but this is particularly advantageous for plastic films as core materials.

〔実施例 2〕 第2図は、第2実施例の複合プラスチツク遮光
材の部分断面図である。表層部1−a,1−b,
3−a,3−b及び芯材部2は上記第1実施例と
同一であるが、遮光性、摺動性、撥水性の向上と
良好な外観を得る為に、表層部ポリエステルフイ
ルム片面にAl蒸着300〜500Åを施し、もう一方
の片面にウレタン系グラビア用耐熱墨インキを5
〜8μmコートしたものを用いた。(ポリエステル
フイルムとAl蒸着膜との密着性改良の為にアン
ダーコート材を塗布してもよい)。ここで4−a,
4−bはAl蒸着膜、5−a,5−bは墨インキ
層を示す。
[Example 2] FIG. 2 is a partial cross-sectional view of a composite plastic light shielding material of a second example. Surface layer parts 1-a, 1-b,
3-a, 3-b and the core part 2 are the same as those in the first embodiment, but in order to improve light shielding properties, sliding properties, and water repellency, and to obtain a good appearance, a polyester film is added to one side of the surface layer part. Apply 300 to 500 Å of Al vapor deposition, and apply urethane-based gravure heat-resistant black ink on the other side.
A material coated with a thickness of ~8 μm was used. (An undercoat material may be applied to improve the adhesion between the polyester film and the Al deposited film.) Here 4-a,
4-b shows an Al vapor deposited film, and 5-a and 5-b show black ink layers.

第2実施例2により得られた積層シート(図
中、実施例2,2′にて示す)の特性評価を第3図
に示す。また、比較例として、第2実施例と同構
成でプリプレグシート厚を変更したもの、アルミ
ニウム(A2024、A7075)、チタン、高張力合金
鋼、ベリリウム銅の場合を示す。
Characteristic evaluation of the laminated sheet obtained in Example 2 (indicated by Example 2, 2' in the figure) is shown in FIG. In addition, as a comparative example, a prepreg sheet having the same configuration as the second embodiment but with a different prepreg sheet thickness, aluminum (A2024, A7075), titanium, high-strength alloy steel, and beryllium copper is shown.

なお、測定方法は次の通りである。 The measurement method is as follows.

《曲げ剛性》10m/m×50m/m試片における、
両端支持30m/mスパンでの4m/m変位を与え
た時の中央集中荷重を測定する(第4図)。
《Bending rigidity》10m/m x 50m/m specimen,
Measure the concentrated load at the center when a displacement of 4 m/m is applied to a span of 30 m/m supported at both ends (Figure 4).

《復元性》試験片をφ14m/mの円柱に一定時間
巻き付け開放後の残留変形量を読取り顕微鏡にて
測定する(第5図)。
<<Recoverability>> A test piece is wound around a cylinder with a diameter of 14 m/m for a certain period of time, and the amount of residual deformation after unwrapping is measured using a reading microscope (Figure 5).

第3図より本実施例の複合プラスチツク遮光材
が軽量かつ高剛性な高速シヤツター羽根として極
めて有効であることが理解される。
It can be seen from FIG. 3 that the composite plastic light-shielding material of this example is extremely effective as a lightweight and highly rigid high-speed shutter blade.

〔実施例 3〕 第6図は第3実施例の複合プラスチツク遮光材
の部分断面図である。芯材部2は上記第2実施例
と同じであるが、特に薄形化の為に表層部から熱
収縮性プラスチツクフイルムを除いて、プリプレ
グシート1−a,1−b、蒸着アルミ4−a,4
−bにて表層部を構成している。この構成では特
性的には上述第2実施例より劣ることにはなる
が、特に中央(芯材)にプラスチツクフイルム2
を配設していること及びこのプラスチツクフイル
ム2の熱収縮の大きい方向を表層部のプリプレグ
シート1−a,1−bの炭素繊維方向に直交させ
たことにより、従来構成に比べて優れた平面性を
得ることができている。
[Embodiment 3] FIG. 6 is a partial cross-sectional view of a composite plastic light-shielding material of a third embodiment. The core material part 2 is the same as the second embodiment, except that the heat-shrinkable plastic film is removed from the surface layer to make it thinner, and the core material part 2 is made of prepreg sheets 1-a, 1-b and vapor-deposited aluminum 4-a. ,4
-b constitutes the surface layer portion. Although this structure is inferior to the second embodiment in terms of characteristics, there is a plastic film 2 in the center (core material).
and by making the direction of large thermal contraction of the plastic film 2 orthogonal to the direction of the carbon fibers of the prepreg sheets 1-a and 1-b in the surface layer, a flat surface superior to that of the conventional structure is achieved. I am able to have sex.

〔実施例 4〕 第7図は第4実施例の複合プラスチツク遮光材
の部分断面図である。表層部1−a,1−b,3
−a,3−bは上記第1実施例と同じであるが、
芯材部はプラスチツクフイルム2に真空蒸着法に
よりアルミ薄膜をコーテイングしたので、遮光性
を大きく向上させることができた。なお、コーテ
イング材料はアルミ以下にTi、Cr、Ni等が挙げ
られる。
[Embodiment 4] FIG. 7 is a partial sectional view of a composite plastic light shielding material of a fourth embodiment. Surface layer parts 1-a, 1-b, 3
-a and 3-b are the same as in the first embodiment, but
For the core material, the plastic film 2 was coated with a thin aluminum film by vacuum evaporation, making it possible to greatly improve light-shielding properties. Note that coating materials include Ti, Cr, Ni, etc. below aluminum.

〔実施例 5〕 第8図は第5実施例の複合プラスチツク遮光材
の部分断面図である。表層部1−a,1−b,3
−a,3−bは上記第1実施例と同じであるが、
芯材部はカーボンブラツク等の黒色顔料を含浸さ
せた染色プラスチツクフイルム2′を用いて遮光
性を大きく向上させることができた。
[Embodiment 5] FIG. 8 is a partial cross-sectional view of a composite plastic light shielding material of a fifth embodiment. Surface layer parts 1-a, 1-b, 3
-a and 3-b are the same as in the first embodiment, but
By using a dyed plastic film 2' impregnated with a black pigment such as carbon black for the core material, the light-shielding property could be greatly improved.

〔実施例 6〕 第9図は第6実施例の複合プラスチツク遮光材
の部分断面図である。表層部はプリプレグシート
1−a,1−b、熱収縮性プラスチツクフイルム
3−a,3−b、蒸着アルミ4−a,4−bに加
えて、この蒸着アルミの上に耐摩擦、摩耗性、耐
熱性及び遮光性を有する潤滑性黒色塗料6−a,
6−bを積層させたものであり、特性の向上を果
したものである。なお、潤滑性黒色塗料の代りに
同特性の墨インキを用いても同様の効果を得るこ
とができる。
[Embodiment 6] FIG. 9 is a partial sectional view of a composite plastic light shielding material of a sixth embodiment. In addition to prepreg sheets 1-a and 1-b, heat-shrinkable plastic films 3-a and 3-b, and vapor-deposited aluminum 4-a and 4-b, the surface layer is made of abrasion-resistant and abrasion-resistant materials. , Lubricating black paint 6-a having heat resistance and light blocking properties,
6-b is laminated and has improved characteristics. Note that the same effect can be obtained by using black ink with the same characteristics instead of the lubricating black paint.

〔実施例 7〕 第10図は第7実施例の複合プラスチツク遮光
材の部分断面図である。この実施例は上記第6実
施例での潤滑性黒色塗料6−a,6−bを熱収縮
性プラスチツクフイルム3−a,3−bの上に積
層させたものであり、上述の第6実施例とほぼ同
様な特性を得ることができる。
[Embodiment 7] FIG. 10 is a partial cross-sectional view of a composite plastic light-shielding material according to a seventh embodiment. In this embodiment, the lubricating black paints 6-a and 6-b of the sixth embodiment are laminated on the heat-shrinkable plastic films 3-a and 3-b. Almost the same characteristics as the example can be obtained.

上述した実施例において特徴的なことは、芯材
部としてプラスチツクフイルムを用い、表層部と
してプリプレグシートを用い、さらにはこのプリ
プレグシートの間にサンドイツチされるプラスチ
ツクフイルムは縦方向と横方向との熱収縮率特性
が異なるものを用いると共に熱収縮率の大なる方
向をプリプレグシートの炭素繊維の引揃え方向に
略直交させたことにより、プリプレグシートの異
方性に係る熱ひずみの問題を解決することができ
た。なお、第6図に示したプリプレグシート1−
a,1−bの上に蒸着アルミ4−a,4−bを積
層した例を示したが、ここでのプリプレグシート
と蒸着アルミとの熱ひずみの問題は、該蒸着アル
ミは厚さを500〜1000Å程度とすれば発生するこ
とはない。
The characteristics of the above-mentioned embodiments are that a plastic film is used as the core material, a prepreg sheet is used as the surface layer, and the plastic film sandwiched between the prepreg sheets is heat-resistant in both the longitudinal and lateral directions. To solve the problem of thermal distortion related to the anisotropy of a prepreg sheet by using materials with different shrinkage rate characteristics and by making the direction of high heat shrinkage substantially perpendicular to the alignment direction of the carbon fibers of the prepreg sheet. was completed. In addition, the prepreg sheet 1- shown in FIG.
An example is shown in which vapor-deposited aluminum 4-a and 4-b are laminated on a and 1-b, but the problem of thermal distortion between the prepreg sheet and vapor-deposited aluminum is that the thickness of the vapor-deposited aluminum is 500 mm. It will not occur if the thickness is about 1000 Å.

又、従来技術としての特開昭61−129629号公報
に示されたごとく、芯材としてのプリプレグシー
トを表層部としてのプラスチツクフイルムでサン
ドイツチし、このプラスチツクフイルムを縦方向
と横方向とで熱収縮率特性が異なり且つ熱収縮率
の大なる方向をプリプレグシートの炭素繊維の引
揃え方向に直交させた複合プラスチツク遮光材
と、本実施例との効果上に違いは平面性に関して
いえる。すなわち、複合プラスチツク遮光材の中
央(芯部)にプラスチツクフイルムを位置させた
ものではプリプレグシートの炭素繊維の引揃え方
向に直交する方向での歪みの応力が加つた際での
平面復帰性が良く、特に直方体にて切断されるシ
ヤツター羽根に用いた場合では、各シヤツター羽
根間のすきま(遮光性に影響を与える)の発生防
止に効果を生じる。無論、この際でのプリプレグ
シートの炭素繊維の引揃え方向は、シヤツター羽
根の長手方向に合わせるものである。又、プリプ
レグシートをプラスチツクフイルムを芯材として
サンドイツチして2枚とする構成は、仮に2枚分
ノ厚さを持つプリプレグシートを芯材とする構成
に比べて、剛性の面でも優れている実験結果も出
ている。
In addition, as shown in Japanese Patent Application Laid-Open No. 129629/1984 as a prior art, a prepreg sheet as a core material is sandwiched with a plastic film as a surface layer, and this plastic film is heat-shrinked in the vertical and horizontal directions. The difference in effect between this example and a composite plastic light-shielding material having different thermal shrinkage rates and whose direction of high thermal shrinkage rate is perpendicular to the alignment direction of the carbon fibers of the prepreg sheet can be said to be in terms of flatness. In other words, when a plastic film is placed in the center (core) of a composite plastic light-shielding material, the return to flatness is good when strain stress is applied in a direction perpendicular to the direction in which the carbon fibers of the prepreg sheet are aligned. In particular, when used for shutter blades cut into rectangular parallelepipeds, it is effective in preventing the generation of gaps between the shutter blades (which would affect light-shielding properties). Of course, the alignment direction of the carbon fibers of the prepreg sheet at this time is aligned with the longitudinal direction of the shutter blade. In addition, experiments have shown that the configuration in which two prepreg sheets are sandwiched together using a plastic film as the core material is superior in terms of rigidity compared to the configuration in which the core material is a prepreg sheet as thick as two sheets. The results are also showing.

具体的に第11図を用いて説明する。 This will be specifically explained using FIG. 11.

本明細書にて用いている曲げ剛性とは、縦弾性
係数Eと断面2次モーメントIの積で表わされる
ものである。ただし断面2次モーメントIは材料
の寸法により決まる値であるため、実際には定数
と考えることができるので、結論的には縦弾性係
数Eの値が大きい程、曲げ剛性も高くなるという
ことができる。
The bending rigidity used in this specification is expressed as the product of the longitudinal elastic modulus E and the second moment of area I. However, since the cross-sectional moment of inertia I is a value determined by the dimensions of the material, it can actually be considered a constant, so the conclusion is that the larger the value of the longitudinal elastic modulus E, the higher the bending rigidity. can.

第11図aに示すような複合材の縦弾性係数E
は次式より求められる。
Modulus of longitudinal elasticity E of the composite material as shown in Figure 11a
is obtained from the following formula.

E=4E1[(t1−C13+C1 3+E2/E1{(t2
+t1−C13−(t1−C13}/h3※ ※+E3/E1{(t3+t2+t1−C13−(t2
+t1−C13}] [C1=E1t1 2+E2t2(2t1+t2)+E3t3(2t1+2t2+t3
)/2(E1t1+E2t2+E3t3);中立軸からの距離] (h=t1+t2+t3;全体厚さ) ここにおいて、第11図bのように、E1=E3
t1=t3とし表層部E1,E3を同厚;同材料とする
と、 E=E2t2 3+E1{(2t1+t23−t2 3}/h E=E2t2 3+E1(t3−T2 3)/t3となる。
E=4E 1 [(t 1 −C 1 ) 3 +C 1 3 +E 2 /E 1 {(t 2
+t 1 −C 1 ) 3 −(t 1 −C 1 ) 3 }/h 3 * ※+E 3 /E 1 {(t 3 +t 2 +t 1 −C 1 ) 3 −(t 2
+t 1 −C 1 ) 3 }] [C 1 = E 1 t 1 2 + E 2 t 2 (2t 1 + t 2 ) + E 3 t 3 (2t 1 + 2t 2 + t 3
)/2 (E 1 t 1 + E 2 t 2 + E 3 t 3 ); Distance from the neutral axis] (h = t 1 + t 2 + t 3 ; Total thickness) Here, as shown in Fig. 11b, E 1 = E3 ,
If t 1 = t 3 and the surface layers E 1 and E 3 have the same thickness and are made of the same material, then E = E 2 t 2 3 + E 1 {(2t 1 + t 2 ) 3t 2 3 }/h E = E 2 t 2 3 +E 1 (t 3 −T 2 3 )/t 3 .

ここで本実施例のように2枚のプリプレグシー
トにてプラスチツクフイルムをサンドイツチする
複合材A(第11図c参照)と、従来のようにプ
リプレグシートを芯材としてその両面をプラスチ
ツクフイルムにてサンドイツチする複合材B(第
11図d参照)とを、仮に全厚みを等しくする
(6h1)と共に、プリプレグシートの総厚みを等し
くした(4h1)場合での曲げ剛性を求めて見る。
Here, composite material A (see Fig. 11c) is prepared by sandwiching a plastic film with two prepreg sheets as in the present embodiment, and a composite material A (see Fig. 11c) in which a plastic film is sandwiched between two prepreg sheets as in the present example, and a composite material A in which a plastic film is sandwiched between two prepreg sheets as a core material and plastic films are sandwiched on both sides as in the conventional method. The bending rigidity of the composite material B (see Fig. 11 d) is determined and examined when the total thickness is made equal (6h 1 ) and the total thickness of the prepreg sheet is made equal (4h 1 ).

すなわち、上式にあてはめて複合材Aの縦弾性
係数EAを求めると、 EA=E2(2t)3+E1{(6t)3−(2t)3}/(6t)3 =E2+26E1/27となり、 一方、複合材Bの縦弾性係数EBを求めると、 EB=E2(4t)3+E1{(6t)3−(4t)3}/(6t)3 =19E2+8E1/27となる。
In other words, applying the above formula to find the longitudinal elastic modulus E A of composite material A, E A = E 2 (2t) 3 + E 1 {(6t) 3 − (2t) 3 }/(6t) 3 = E 2 +26E 1 /27 On the other hand, when calculating the longitudinal elastic modulus E B of composite material B, E B = E 2 (4t) 3 +E 1 {(6t) 3 − (4t) 3 } / (6t) 3 = 19E 2 + 8E 1 /27.

ここにおいて、プリプレグシートの縦弾性係数
E1とプラスチツクフイルムの縦弾性係数E2を比
較した場合、E1>>E2であるから、上式でE2
無視して考えると、EA/EB≒3.25となる、同厚の
複合材でも本実施例ようにすることにより、約3
倍も縦弾性係数が高くなることになる。
Here, the longitudinal elastic modulus of the prepreg sheet is
When comparing E 1 and the longitudinal elastic modulus E 2 of plastic film, E 1 >> E 2 , so if we ignore E 2 in the above equation, E A /E B ≒ 3.25, which means that the same thickness. By using this example, even with a composite material of about 3
The longitudinal elastic modulus becomes twice as high.

参考までに、縦弾性係数E1,E2に実際に実験
で用いた材料の縦弾性係数値をあてはめて、複合
材AとBの縦弾性係数EAとEBを求めて見ると、 E=13.96×105Kg/cm2 E=43×105Kg/cm2 E1=14.5×105Kg/cm2 E2=200Kg/cm2 となり、 約3倍も本実施例での複合材Aの方が従来の複
合材Bより実質的に曲げ剛性が強くなることが理
解される。
For reference, if we apply the longitudinal elastic modulus values of the materials actually used in the experiment to the longitudinal elastic modulus E 1 and E 2 and find the longitudinal elastic modulus E A and E B of composite materials A and B, we get E = 13.96 x 10 5 Kg/cm 2 E = 43 x 10 5 Kg/cm 2 E 1 = 14.5 x 10 5 Kg/cm 2 E 2 = 200 Kg/cm 2 , which is about three times the composite material in this example. It is understood that A has substantially greater bending stiffness than conventional composite B.

なお、本実施例では表層部としてのプリプレグ
シートの外側にさらに熱収縮性プラスチツクフイ
ルム(芯材のプラスチツクフイルムと同様な熱収
縮特性)を積層した例でも示しているが、この構
成によれば遮光性の向上、反射防止等の為の金属
薄膜コート、黒色塗料の積層のしやすさを得るこ
とができる。
Note that this example also shows an example in which a heat-shrinkable plastic film (having the same heat-shrinkable properties as the core plastic film) is further laminated on the outside of the prepreg sheet as the surface layer. It is possible to obtain a metal thin film coating for improving properties, anti-reflection, etc., and easy lamination of black paint.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば、軽量、
高剛性、平面性に優れ、高速走行用のシヤツター
羽根として用いることが可能な複合プラスチツク
遮光材を提供することができる。
As explained above, according to the present invention, lightweight,
It is possible to provide a composite plastic light-shielding material that has high rigidity and excellent flatness and can be used as a shutter blade for high-speed travel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例としての複合プラ
スチツク遮光材の部分斜視図。第2図は第2実施
例としての複合プラスチツク遮光材の部分断面
図。第3図は第2実施例の複合プラスチツク遮光
材の特性評価を示す表。第4図は複合プラスチツ
ク遮光材の曲げ剛性測定器の正面図。第5図は同
様に復元性をみる為の残留変形量測定器の平面
図。第6図は第3実施例としての複合プラスチツ
ク遮光材の部分断面図。第7図は第4実施例とし
ての複合プラスチツク遮光材の部分断面図。第8
図は第5実施例としての複合プラスチツク遮光材
の部分断面図。第9図は第6実施例としての複合
プラスチツク遮光材の部分断面図。第10図は第
7実施例としての複合プラスチツク遮光材の部分
断面図。第11図は本発明の効果を説明する為の
図。 1−a,1−b……プリプレグシート、2……
芯材としてのプラスチツクフイルム、2−a,2
−b……表層部としてのプラスチツクフイルム。
FIG. 1 is a partial perspective view of a composite plastic light shielding material as a first embodiment of the present invention. FIG. 2 is a partial sectional view of a composite plastic light shielding material as a second embodiment. FIG. 3 is a table showing characteristic evaluation of the composite plastic light shielding material of the second example. FIG. 4 is a front view of the bending stiffness measuring device for composite plastic light shielding materials. FIG. 5 is a plan view of a residual deformation measurement device for measuring restorability. FIG. 6 is a partial sectional view of a composite plastic light shielding material as a third embodiment. FIG. 7 is a partial sectional view of a composite plastic light shielding material as a fourth embodiment. 8th
The figure is a partial sectional view of a composite plastic light shielding material as a fifth embodiment. FIG. 9 is a partial sectional view of a composite plastic light shielding material as a sixth embodiment. FIG. 10 is a partial sectional view of a composite plastic light shielding material as a seventh embodiment. FIG. 11 is a diagram for explaining the effects of the present invention. 1-a, 1-b... prepreg sheet, 2...
Plastic film as core material, 2-a, 2
-b...Plastic film as the surface layer.

Claims (1)

【特許請求の範囲】 1 芯材部の両面に表層部を構成したものをベー
スとして成るラミネート複合プラスチツク遮光材
において、 前記芯材部としてプラスチツクフイルムを用
い、前記表層部として略同一方向に引揃えられた
連続炭素繊維をマトリツクス樹脂で強化させたシ
ート状炭素繊維形成物を用い、さらに、前記芯材
部としてのプラスチツクフイルムは、縦方向と横
方向との熱収縮率特性が異なるものを用い且つ熱
収縮率の大なる方向を前記炭素繊維の引揃え方向
に略直交させたことを特徴とする複合プラスチツ
ク遮光材。 2 特許請求の範囲第1項記載において、上記芯
材部としてのプラスチツクフイルムは、金属薄膜
のコーテイング又は染色されたものより成る複合
プラスチツク遮光材。 3 芯材部の両面に表層部を構成したものをベー
スとして成るラミネート複合プラスチツク遮光材
において、 前記芯材部としてプラスチツクフイルムを用
い、前記表層部として、略同一方向に引揃えられ
た連続炭素繊維をマトリツクス樹脂で強化させた
シート状炭素繊維形成物を用い、さらに、前記シ
ート状炭素繊維形成物の少なくとも片面に熱収縮
性プラスチツクフイルムを積層させて成り、前記
プラスチツクフイルム及び熱収縮性プラスチツク
フイルムは縦方向と横方向との熱収縮率特性が異
なるものを用い、且つ熱収縮率の大なる方向を前
記炭素繊維の引揃え方向に略直交させたことを特
徴とする複合プラスチツク遮光材。 4 特許請求の範囲第3項記載において、上記熱
収縮性プラスチツクフイルムは、少なくとも片面
に金属薄膜をコーテイングし、更に墨インキ又は
塗料を塗布した複合プラスチツク遮光材。
[Scope of Claims] 1. In a laminated composite plastic light-shielding material based on a core material having surface layer portions on both sides, a plastic film is used as the core material portion and aligned in substantially the same direction as the surface layer portion. A sheet-like carbon fiber formed product made by reinforcing continuous carbon fibers with a matrix resin is used, and the plastic film serving as the core material has different heat shrinkage characteristics in the longitudinal and transverse directions. 1. A composite plastic light-shielding material characterized in that the direction in which the thermal shrinkage rate is high is substantially perpendicular to the direction in which the carbon fibers are aligned. 2. The composite plastic light-shielding material according to claim 1, wherein the plastic film as the core material is coated with a metal thin film or dyed. 3. In a laminated composite plastic light-shielding material based on a core material with surface layer portions on both sides, a plastic film is used as the core material portion, and continuous carbon fibers aligned in substantially the same direction are used as the surface layer portion. A sheet-like carbon fiber product reinforced with a matrix resin is used, and a heat-shrinkable plastic film is laminated on at least one side of the sheet-like carbon fiber product, and the plastic film and the heat-shrinkable plastic film are What is claimed is: 1. A composite plastic light-shielding material characterized by using a material having different thermal shrinkage characteristics in the longitudinal direction and in the lateral direction, and in which the direction in which the thermal shrinkage is greater is made substantially perpendicular to the alignment direction of the carbon fibers. 4. A composite plastic light-shielding material according to claim 3, wherein the heat-shrinkable plastic film is coated with a metal thin film on at least one side and further coated with black ink or paint.
JP62122159A 1987-05-19 1987-05-19 Composition plastic light screening material Granted JPS6485749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122159A JPS6485749A (en) 1987-05-19 1987-05-19 Composition plastic light screening material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122159A JPS6485749A (en) 1987-05-19 1987-05-19 Composition plastic light screening material

Publications (2)

Publication Number Publication Date
JPS6485749A JPS6485749A (en) 1989-03-30
JPH0466179B2 true JPH0466179B2 (en) 1992-10-22

Family

ID=14829055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122159A Granted JPS6485749A (en) 1987-05-19 1987-05-19 Composition plastic light screening material

Country Status (1)

Country Link
JP (1) JPS6485749A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532442Y2 (en) * 1991-07-22 1997-04-16 セイコープレシジョン株式会社 Sliding sheet
JPH1138466A (en) 1997-07-16 1999-02-12 Copal Co Ltd Light shielding blade for camera
JP3215815B2 (en) 1998-09-02 2001-10-09 日本電産コパル株式会社 Light shielding blades for optical equipment
KR20020086784A (en) * 2001-05-11 2002-11-20 린통샨 Method for forming carbon fiber layer
WO2008156006A1 (en) * 2007-06-20 2008-12-24 Kimoto Co., Ltd. Light shielding member for optical instrument
JP6434275B2 (en) * 2014-01-08 2018-12-05 キヤノン電子株式会社 Fiber reinforced laminate, shutter device and camera

Also Published As

Publication number Publication date
JPS6485749A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JP2007521995A5 (en)
JPH02238930A (en) Hollow cylindrical molded item
JP5423387B2 (en) Sheet-like prepreg and manufacturing method thereof
JPH0466179B2 (en)
WO2017048122A1 (en) Laminate of mutually bonded adhesive layers and metal sheets, and method to obtain such laminate
JP4107475B2 (en) Reinforcing fibers for fiber reinforced composites
JPS60225101A (en) Optical member made of plastics
JPS61129629A (en) Light shielding composite plastic material
LU88739A1 (en) Non-metallic honeycomb structure of high thermal conductivity with laminated cell walls
JP2019503909A5 (en) A laminate consisting of a first layer made of the first material and a second layer made of a polymer reinforced with continuous filament fibers.
JPS6317435A (en) Shutter vane made of carbon fiber reinforced thermosetting resin for camera
EP0394996B1 (en) Light-shielding blade
JPH04215599A (en) Super-lightweight sandwich panel
JPH01316728A (en) Plate material for light shielding vane
JPH04125135A (en) Carbon fiber reinforced resin molded form having fine uneven surface and production thereof
JP2011020397A (en) Box type molded article
JPH1138466A (en) Light shielding blade for camera
JPH0284329A (en) Fiber reinforced composite material
JPS62199439A (en) Extremely thin board made of carbon-fiber reinforced thermo-setting resin
JPH0617530Y2 (en) Honeycomb structure
JPH0466184B2 (en)
JP2532442Y2 (en) Sliding sheet
CN214395770U (en) High-light-transmittance composite fabric
CN221456996U (en) High-strength photo base film and photo film with ink layer
JPH0630439Y2 (en) Decorative plywood for vehicle interior

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 15