JPH0466059A - Heating device for thermally solidifiable aqueous emulsion - Google Patents

Heating device for thermally solidifiable aqueous emulsion

Info

Publication number
JPH0466059A
JPH0466059A JP2178579A JP17857990A JPH0466059A JP H0466059 A JPH0466059 A JP H0466059A JP 2178579 A JP2178579 A JP 2178579A JP 17857990 A JP17857990 A JP 17857990A JP H0466059 A JPH0466059 A JP H0466059A
Authority
JP
Japan
Prior art keywords
heating
heated
heating device
electrode
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2178579A
Other languages
Japanese (ja)
Other versions
JPH0738776B2 (en
Inventor
Shozo Uno
宇野 省三
Tetsuro Harada
原田 哲朗
Hiroyuki Kawade
川出 啓之
Katsuyoshi Matsuo
松尾 勝義
Tsuyoshi Katsuta
勝田 強
Katsumi Suehiro
末広 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Kawasaki Heavy Industries Ltd
Original Assignee
Fuji Oil Co Ltd
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd, Kawasaki Heavy Industries Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2178579A priority Critical patent/JPH0738776B2/en
Publication of JPH0466059A publication Critical patent/JPH0466059A/en
Publication of JPH0738776B2 publication Critical patent/JPH0738776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly and quickly heat a food and obtain a thermally solidifiable food having high homogeneous properties by providing a conductor in a part of side plate and/or bottom plate made of an insulating material separately from an electrode plate made of a conductive material. CONSTITUTION:A pair of side plates 2a and 2b of a box-like body opposite each other and bottom plate 3 are composed of an insulating material and a pair of residual side plates is composed of conductive materials 1a and 1b and conductors 4 and 4 are provided so as not to come into contact with these conductive materials in a part of these side plates 2a and 2b and/or bottom plate 3.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

〔産業上の利用分野〕 この発明は、熱凝固性水性エマルジョンの加熱装置、よ
り詳しくは、熱凝固性水性エマルジョンを加熱、凝固さ
せてソーセージ、水産練り製品、豆腐等の比較的水分の
高い食品を得るに際し、加熱を迅速かつ均一化すること
により、均質性の高い熱凝固食品を得る為の加熱装置に
関するものである。 〔従来の技術〕 (+)発明の背景 近年、植物性蛋白質又は魚肉摺身の栄養学的価値が見直
され、大豆蛋白や魚肉摺身を利用した食品が数多く見ら
れるようになった。 これら大豆蛋白や魚肉摺身等を利用した食品は、固形分
中の大豆蛋白や魚肉摺身の配合割合によって食品に特長
を付与できる。即ち、大豆蛋白を主体とする豆腐又は豆
腐利用食品、魚肉摺身を主体とする蒲鉾、竹輪等の既知
食品の他に、大豆蛋白と摺身とを配合することにより、
豆腐と蒲鉾の中間的な風合を持つ種々様々な食品が提案
されている。 (2)従来技術の問題点 しかし、上記大豆蛋白や魚肉摺身等の、蛋白の熱凝固性
を利用した食品は、その製造面に於て生産性、均質性又
は製品の保存性等で種々の問題を含む。 即ち、大豆蛋白や魚肉摺身等又はこれらを主体とする熱
凝固性蛋白質の水性エマルジョンの加熱凝固方法として
は、従来、水分含量の高い場合は該エマルジョンをケー
シング内に充填した後、沸騰水中で加熱する方法が用い
られていた。また。 エマルジョンの水分含量が比較的低く流動性が小さいも
のは、リテーナ−等に充填成形し、蒸気で型蒸しする方
法も採られていた。 これらの方法は、目的によっては充分に満足できるもの
であるが、製品の品種の増加や生産性向との要求に伴な
う加熱の迅速性、品質の均質性及び製品の保存性等の面
で充分に満足できない場合があった。 例えば、エマルジョンの成形形態が薄層状の場合は、全
体への熱伝達が瞬間的になされるため、全体を均一に昇
温させることができるので、エマルジョンは均質に加熱
され凝固するが、成形エマルジョンの層が厚い場合は、
内部まで均一に熱が伝達されるのに時間が掛かり、その
間にエマルジョン表面と中心部の間に温度勾配を生じ、
不均一な加熱状態となることが屡々あった。この加熱む
らを解消させるには、全体を長時間加熱する方法が採ら
れるが、これは生産性を低下させるばかりでなく、甚だ
しい場合には、表面部分が過加熱状態となって組織、食
感等を劣化させる原因となること屡々であった。 一方、導電性の被加熱物に直接電流を通じてジュール熱
により加熱する通電加熱方式は、古く第二次大戦直後か
らパン焼き器等に応用されてきた。この通電加熱方式に
よれば、電流が流れる部分が加熱される為、被加熱体の
表面部分と中心部分に温度勾配が生じることが少ないだ
けでなく、パン生地の様に水分の低い被加熱物の場合は
、加熱による被加熱物の水分の蒸散によって、該蒸散部
分の導電性が次第に低下するため、未加熱の乃至は不完
全に加熱された高水分部分の電流密度が上昇し、全体と
して略々均一な加熱が行われる。 しかし1例えば蛋白の水性エマルジョンのような比較的
含水量の高い原料の場合は、正確な理由は不明ながら加
熱むらを生じることがあり、特に、箱状加熱装置を構成
する導電材製の一対の側板(電極)と、該側板と対向す
る絶縁材製の一対の側板(非電極側側壁)との隣接部近
辺では、電流密度が異常に低下するため、屡々不均一な
加熱部分を残したまま加熱を終えなければならなくなる
ことが多い。 通電加熱方式における加熱むら発生の要因としては、な
お被加熱物の不均一性が挙げられる。即ち、被加熱物が
不均一であれば、被加熱物の表面に凹凸が生じるが、該
凹部面は電極面と当接しないから、加熱は全体として不
均一となる。この問題を解決せんがため、既に特開昭5
9−151873号公報は、被加熱物と電極との間に含
塩水接電体を設置する・と共に、この接電体によって被
加熱物を押圧することによって均一に加熱しようとする
方法を提案しているが、本願発明の対象である高水分の
熱凝固性水性エマルジョンでは、被加熱物の組成の均否
と関係なしに電流密度の偏りが発生するため、本願発明
対象技術における加熱むらの防止には役立たない。 以上通観したように1通電加熱力式を高水分被加熱物の
加熱処理に適用するためには、電流密度の偏りという困
難な問題の解決が必須である。 〔発明が解決しようとする課題〕 以上の技術状態を踏まえ、本発明は、特に高水分エマル
ジョンを対象として、これを通電加熱方式により均一に
加熱する手段を提供することを目的とする。
[Industrial Application Field] This invention relates to a heating device for a thermocoagulable aqueous emulsion, and more specifically, for heating and coagulating a thermocoagulable aqueous emulsion to produce relatively high moisture foods such as sausages, seafood paste products, and tofu. The present invention relates to a heating device for obtaining highly homogeneous thermally solidified foods by heating quickly and uniformly. [Prior Art] (+) Background of the Invention In recent years, the nutritional value of vegetable protein or fish surimi has been reconsidered, and many foods using soybean protein or fish surimi have come to be seen. These foods using soybean protein, fish meat surimi, etc. can be given special characteristics depending on the blending ratio of soy protein and fish meat surimi in the solid content. That is, by blending soy protein and surimi in addition to known foods such as tofu or tofu-based foods that mainly contain soy protein, kamaboko and chikuwa that mainly contain fish meat surimi,
A variety of foods have been proposed that have a texture intermediate between tofu and kamaboko. (2) Problems with the conventional technology However, food products that utilize the thermal coagulability of proteins, such as the above-mentioned soybean protein and fish meat surimi, have various problems in terms of production, such as productivity, homogeneity, and product shelf life. Including problems with. That is, conventional methods for heating and coagulating aqueous emulsions of soybean protein, fish paste, etc., or heat-coagulable proteins mainly composed of these, include filling the emulsion into a casing and then immersing it in boiling water when the water content is high. A heating method was used. Also. Emulsions with a relatively low water content and low fluidity were filled and molded into a retainer or the like, and then mold-steamed with steam. These methods are fully satisfactory depending on the purpose, but due to the increasing variety of products and demands for productivity, there are issues in terms of heating speed, uniformity of quality, and shelf life of the product. There were times when I was not fully satisfied. For example, when the emulsion is shaped into a thin layer, heat is transferred to the entire body instantaneously and the temperature can be raised uniformly throughout the entire body, so the emulsion is uniformly heated and solidified. If the layer is thick,
It takes time for heat to be uniformly transferred to the inside, and during that time a temperature gradient is created between the emulsion surface and the center.
Uneven heating often occurred. In order to eliminate this uneven heating, a method of heating the whole body for a long time is adopted, but this not only reduces productivity, but in extreme cases, the surface area becomes overheated, causing damage to the structure and texture. This was often the cause of deterioration. On the other hand, the current heating method, in which a conductive object is directly passed through an electric current and heated by Joule heat, has been used in bread makers and the like since just after World War II. According to this electric heating method, since the part through which the current flows is heated, not only is there less temperature gradient between the surface and center of the object to be heated, but also it is possible to reduce the temperature difference between the surface and the center of the object to be heated. In this case, as the moisture in the heated object evaporates due to heating, the conductivity of the evaporated portion gradually decreases, and the current density in the unheated or incompletely heated high moisture portion increases, resulting in approximately Uniform heating is achieved. However, for example, in the case of raw materials with relatively high water content, such as aqueous protein emulsions, uneven heating may occur, although the exact reason is unknown. The current density drops abnormally near the adjacent area between the side plate (electrode) and a pair of side plates made of insulating material (non-electrode side walls) that face the side plate, so uneven heating is often left in the area. It is often necessary to finish heating. One of the causes of uneven heating in the electrical heating method is the non-uniformity of the object to be heated. That is, if the object to be heated is non-uniform, unevenness will occur on the surface of the object to be heated, but since the recessed surface does not come into contact with the electrode surface, the heating will be uneven as a whole. In order to solve this problem, we have already published
Publication No. 9-151873 proposes a method in which a salt-containing water electrical contact is installed between an object to be heated and an electrode, and the object to be heated is pressed by this electrical contact to uniformly heat the object. However, in the high-moisture thermosetting aqueous emulsion that is the subject of the present invention, the current density is uneven regardless of the uniformity of the composition of the object to be heated. It's not useful. As discussed above, in order to apply the single current heating power method to the heat treatment of high-moisture objects to be heated, it is essential to solve the difficult problem of current density bias. [Problems to be Solved by the Invention] Based on the above-mentioned state of the art, the present invention aims to provide a means for uniformly heating high-moisture emulsions using an electrical heating method.

【発明の構成】[Structure of the invention]

〔課題を解決するための手段〕 (1)概念 本発明者は、熱凝固性水性エマルジョンの通電加熱にお
ける上記課題の解決を目的として、熱凝固性大豆蛋白の
高水分エマルジョンを試料として、加熱条件と凝固の均
一性、残存面の分布状態算について詳しく検討したとこ
ろ、電極面に隣接する非電極側側壁付近の加熱状態が極
めて悪く、従って、該部分の凝固性が劣ると共に、残存
菌数も非常に多いが、これらの欠点は、補助電極の併用
により実質的に改善されることを認めた。 (2)概要 以上の知見に基づき、本発明は、箱状体の対向する一対
の側板及び底板を絶縁材で、残る一対の側板を導電材で
夫々構成してなる通電加熱装置に於いて、上記絶縁材製
の側板及び/又は底板の一部に、前記導電材で構成され
た電極板から離隔的に導電体を付設したことを特徴とす
る熱染固性水性エマルジ、ンの加熱装置を要旨とする。 (3)熱凝l性水性エマルジョン 本発明装置は、通電加熱により凝固する製質を有する可
食性水性エマルジョンに対し自由に適用できるが、一般
的には、製品としての水分含量の高いもの(比較的高水
分で熱凝固するもの)の加熱応用するのが有利である。 好適な対象エマルジョンの例としては、例えば、大豆蛋
白、魚肉摺身等の熱凝固性蛋白質を用いた豆腐類、蒲鉾
類の原料等、含有水分が約60%以上の製品の原料エマ
ルジョンを挙げることができる。 (4)装置 加熱装置としては、添付第1図及び第2図に示すように
、箱状体の対向する一対の側板(非電極側側壁)2a、
2b及び底板3を絶縁材で、残る一対の側板を導電材1
a、lbで夫々構成してなる通電加熱装置に於いて、非
電極側側壁2a 、 2b及び/又は底板3の一部に、
前記1a、lbと接触しないようにして導電体4.4を
付設した構造のものが使用される。 導電体4が付設されていない従来の加熱装置では、前記
した如く非電極側側壁2a、2b近辺の電流密度が低下
し、加熱むらが発生していた。 本発明装置は、非電極側側壁の一部に導電体4を付設す
るが、これにより該導電体部分を通る電流密度が増加す
る。そのため、従来の加熱装置では電流密度が低く加熱
が不完全であった部分の加熱が充分に行われるようにな
り、全体を均一に加熱することが可能となる。 上記導電体4の形状及び付設位置は、加熱装置の形状、
被加熱体の性状等に左右されるので一部に述べることは
できないが、一般的には、加熱不良部分を電極1a又は
1bと導電体4で挟む位置、殊に、第4図及び第5図記
載のように、非電極側側壁の正中線(後記の如く導電性
の間仕切板が設けられる場合は該間柱切板によって仕切
られた非電極側側壁の正中線)に沿って配置されるのが
好ましい。 導電体4を非電極側側壁に付設する方法としては2該側
壁の内表面部分に埋め込むか又は貼着する等の方法が採
られるが、加熱凝固物を加熱装置から取り出すためには
、導電体4の表面が非電極側側壁表面と同一面に位置す
るよう埋設されるのが好ましい。 (5)電極の構成 一方、電極1a、lbは、アルミニウム、ステンレス又
はチタン等の金属が使用されるが、通電中における金属
の溶出を極減するためには、チタンを用いるのが最も好
ましい。 勿論、電極1a、lbが直接箱状体の側壁を構成しても
よいし或は絶縁材から造られた側壁の内面に埋設又は貼
着されてもよい。 更に電極1a、lbは、内部を中空とし、必要に応じて
熱媒(通常冷水又は温水若しくは熱水)を供給できる構
造とするのが好ましい、ここに冷水を通すのは、通電加
熱によって凝固した製品を加熱装置から取り出すに際し
、製品を冷却、収縮させることによって装置内壁からの
脱着を容易にするためである。また、通電加熱する前に
温水又は熱水で被加熱体の温度を上昇させておくことに
よって、通電加熱むらが著しく減少し、全体が均一加熱
されるので好ましい結果が得られる。 (6)間仕切り板 また第3図に示す如く、電極1a、 lb間に、該電極
と平行に導電性の間仕切り板7を挿入するのも加熱の均
一性を向上させるのに有効な手段である。これは、導電
性の間仕切り板7によって電流密度のバラツキが矯正さ
れるためと考えられる。 電極1aと電極lb間に装着する上記間仕切り板7は、
1枚であっても2枚又はそれ以上であっても構わないが
、各間仕切り板7は−1各間仕切り板間及び間仕切り板
と電極は平行に設置するのが好ましい。 〔作用〕 本発明装置における導電体は、通電加熱装置における電
流密度低下部分、殊に電極面に隣接する非電極側側壁近
辺への電流の流れを良くして該部分の電流密度を増加さ
せることにより、他部分との温度勾配を減少させるので
、全体の温度上昇を均一化する。特に、電極が内部に空
間を具備すると、該空間内へ熱媒体(例えば冷水又は温
熱水)を導通させることにより、被加熱体の取り出しを
容易化し又は品温の上昇を一層均一化する等の付加的効
果を期待できる。 〔実施例〕 以下、実施例及び比較例により発明具体化の例及び効果
につき述べるが、例示は単に説明用のもので、発明思想
の限定を意図したものではない。 実施例1及び比較例1 粉末状大豆蛋白13部、大豆油10部、調味料3部及び
水74部を混合し、混練機で良く混練して豆腐様食品用
原料エマルジョンを得た。 以上のエマルジョンを、対峙する一対の電極la、lb
(各輻40cmX高さ40cm、電極間距離5 cm)
と、非電極側側壁2a 、 2bの中央部に、該電極1
a。 1bとは接触しないように幅3.5C層×高さ45cm
の導電体4,4を付設した箱状加熱装置内に充填した(
第1図及び第2図参照)、なお比較例として導電体4を
省いた装置を用意し、同様に原料エマルジョンを充填し
た。 各々の電力量が2 KWhになるように電圧を調整(約
150〜170 V) Lながら12分間通電した。こ
のとき被加熱体の平均温度は85℃に上昇した6次いで
、電圧を20〜40Vに落とし14分間再通電して被加
熱体の平均温度を約85℃に保持した。 通電終了後、被加熱体の中心部(a点)及び側壁と電極
との接点部(b点)に於ける品温及び残存菌数を測定し
、その結果を第1表に示した。 第1表で明らかな様に、比較例では5点部分の温度の上
昇が充分に行われず、そのため残存菌数が多く、製品と
して不合格であった。これに対して実施例のものは、比
較的に均一に加熱され、残存菌数も非常に少ない優れた
製品であった。 第1表
[Means for Solving the Problems] (1) Concept In order to solve the above-mentioned problems in electrically heating a thermosetting aqueous emulsion, the present inventor used a high moisture emulsion of thermosetting soybean protein as a sample, and changed the heating conditions. A detailed study of the uniformity of coagulation and the calculation of the distribution state of the remaining surface revealed that the heating condition near the non-electrode side wall adjacent to the electrode surface was extremely poor, and therefore the coagulation performance in this area was poor and the number of remaining bacteria was also low. Although very common, it has been found that these drawbacks can be substantially ameliorated by the combined use of auxiliary electrodes. (2) Overview Based on the above findings, the present invention provides an electrical heating device in which a pair of opposing side plates and a bottom plate of a box-shaped body are made of an insulating material, and the remaining pair of side plates are made of a conductive material. A heating device for a heat-dyeable aqueous emulsion, characterized in that a conductor is attached to a part of the side plate and/or bottom plate made of the insulating material at a distance from the electrode plate made of the conductive material. This is the summary. (3) Heat-coagulable aqueous emulsion The device of the present invention can be freely applied to edible aqueous emulsions that can be solidified by heating with electricity, but in general, products with a high moisture content (comparative It is advantageous to apply heat to materials that are thermally solidified at high moisture content. Examples of suitable target emulsions include raw material emulsions for products with a water content of about 60% or more, such as raw materials for tofu and kamaboko fish using heat-coagulable proteins such as soy protein and fish paste. I can do it. (4) As shown in the attached FIGS. 1 and 2, the device heating device includes a pair of opposing side plates (non-electrode side walls) 2a of the box-shaped body;
2b and the bottom plate 3 are made of insulating material, and the remaining pair of side plates are made of conductive material 1.
In the energization heating device constituted by a and lb, respectively, a part of the non-electrode side walls 2a and 2b and/or the bottom plate 3,
A structure in which a conductor 4.4 is attached so as not to come into contact with the above-mentioned 1a and lb is used. In the conventional heating device in which the conductor 4 is not attached, the current density near the non-electrode side walls 2a, 2b decreases as described above, and uneven heating occurs. In the device of the present invention, a conductor 4 is attached to a part of the non-electrode side wall, which increases the current density passing through the conductor part. Therefore, the portions that were incompletely heated due to low current density in the conventional heating device can be sufficiently heated, and the entire portion can be heated uniformly. The shape and attachment position of the conductor 4 are determined by the shape of the heating device,
Although it cannot be stated in detail because it depends on the properties of the object to be heated, in general, the position where the poorly heated part is sandwiched between the electrode 1a or 1b and the conductor 4, especially the position shown in FIGS. 4 and 5. As shown in the figure, the electrodes are arranged along the midline of the non-electrode side wall (if a conductive partition plate is provided as described later, the midline of the non-electrode side wall partitioned by the stud plate). is preferred. Methods for attaching the conductor 4 to the non-electrode side wall include embedding or pasting it on the inner surface of the side wall, but in order to take out the heated solidified material from the heating device, the conductor It is preferable to bury the electrode so that the surface of No. 4 is located on the same plane as the surface of the side wall on the non-electrode side. (5) Structure of electrodes On the other hand, metals such as aluminum, stainless steel, or titanium are used for the electrodes 1a and 1b, but it is most preferable to use titanium in order to minimize the elution of metals during energization. Of course, the electrodes 1a and lb may directly constitute the side walls of the box-like body, or may be embedded or adhered to the inner surface of the side walls made of an insulating material. Furthermore, it is preferable that the electrodes 1a and 1b have a hollow interior and have a structure that can supply a heating medium (usually cold water, hot water, or hot water) as necessary. This is because when the product is taken out from the heating device, the product is cooled and contracted to facilitate attachment and detachment from the inner wall of the device. In addition, by raising the temperature of the object to be heated with warm water or hot water before heating with electricity, the uneven heating of the object with electricity is significantly reduced and the entire object is heated uniformly, so that favorable results can be obtained. (6) Partition plate Also, as shown in Figure 3, inserting a conductive partition plate 7 between the electrodes 1a and lb in parallel with the electrodes is also an effective means for improving heating uniformity. . This is thought to be because the conductive partition plate 7 corrects variations in current density. The partition plate 7 installed between the electrode 1a and the electrode lb is
Although the number of partition plates 7 may be one, two, or more, it is preferable that the partition plates 7 be installed parallel to each other, and that the partition plates and the electrodes be parallel to each other. [Function] The conductor in the device of the present invention improves the flow of current to the portion of the current heating device where the current density decreases, particularly to the vicinity of the non-electrode side wall adjacent to the electrode surface, thereby increasing the current density in the portion. This reduces the temperature gradient with other parts, making the overall temperature rise uniform. In particular, when the electrode has a space inside, by conducting a heat medium (for example, cold water or hot water) into the space, it is possible to facilitate the removal of the object to be heated or to make the rise in temperature of the product more uniform. Additional effects can be expected. [Examples] Examples and effects of embodying the invention will be described below using Examples and Comparative Examples, but the examples are merely for explanation and are not intended to limit the idea of the invention. Example 1 and Comparative Example 1 13 parts of powdered soybean protein, 10 parts of soybean oil, 3 parts of seasoning, and 74 parts of water were mixed and thoroughly kneaded in a kneader to obtain a raw material emulsion for tofu-like food. A pair of electrodes la and lb facing each other
(Each radius 40cm x height 40cm, distance between electrodes 5cm)
The electrode 1 is placed in the center of the non-electrode side walls 2a and 2b.
a. Width 3.5C layer x height 45cm so as not to contact 1b
(
As a comparative example, an apparatus was prepared in which the conductor 4 was omitted, and the raw material emulsion was filled in the same manner. The voltage was adjusted (approximately 150 to 170 V) so that the amount of power for each was 2 KWh, and the power was applied for 12 minutes while the voltage was low. At this time, the average temperature of the heated body rose to 85°C.6 Next, the voltage was lowered to 20 to 40 V and the current was applied again for 14 minutes to maintain the average temperature of the heated body at about 85°C. After energization, the temperature and number of remaining bacteria at the center of the heated body (point a) and the contact between the side wall and the electrode (point b) were measured, and the results are shown in Table 1. As is clear from Table 1, in the comparative example, the temperature at the 5 points was not sufficiently raised, and as a result, the number of remaining bacteria was large, and the product was rejected. On the other hand, the products of Examples were excellent products that were heated relatively uniformly and had a very small number of remaining bacteria. Table 1

【発明の効果】【Effect of the invention】

本発明は1以上述べた通り、特に高水分の熱葦固性水性
エマルジョンを通電加熱方式により均一に加熱する手段
を提供しえたことにより、当該エマルジョンを利用する
食品生産の合理化に貢献しうる。
As mentioned above, the present invention can contribute to the rationalization of food production using the emulsion by providing a means for uniformly heating a particularly high-moisture hot reed-solid aqueous emulsion by an electric heating method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明に係る加熱装置の一例の斜視図、第2
図は、第1図の装置の平面図、第3図は1本発明熱装置
の別の一例の平面図、第4図及び第5図は、本発明にお
ける導電体の付設構造を示す図である0図中の符号の意
味は以下の通りである。 la、lb:電極を構成する側!!(電極側側!り2a
 、 2b :非電極側側!!(絶縁材製側壁)3  
:絶縁材製底板 4.4m、4b、4c二電極 5a、5b:熱媒供給又は排出口 8a、8b:空気又は水抜きロ ア  :導電性の間仕切り板
1 is a perspective view of an example of a heating device according to the present invention;
The figures are a plan view of the device shown in Fig. 1, Fig. 3 is a plan view of another example of the thermal device of the present invention, and Figs. 4 and 5 are diagrams showing the attached structure of the conductor in the present invention. The meanings of the symbols in a certain 0 diagram are as follows. la, lb: side that constitutes the electrode! ! (Electrode side! 2a
, 2b: Non-electrode side! ! (Insulating material side wall) 3
: Insulating material bottom plate 4.4m, 4b, 4c Two electrodes 5a, 5b : Heat medium supply or discharge port 8a, 8b : Air or water drainage lower : Conductive partition plate

Claims (1)

【特許請求の範囲】 1 箱状体の対向する一対の側板及び底板を絶縁材で、
残る一対の側板を導電材で夫々構成してなる通電加熱装
置に於いて、上記絶縁材製の側板及び/又は底板の一部
に、前記導電材で構成された電極板から離隔的に導電体
を付設したことを特徴とする熱凝固性水性エマルジョン
の加熱装置。 2 電極板が、内部に熱媒流路を備えている請求項1記
載の装置。
[Claims] 1. A pair of opposing side plates and a bottom plate of the box-shaped body are made of an insulating material,
In the current heating device in which the remaining pair of side plates are each made of a conductive material, a conductor is provided on a part of the side plate and/or the bottom plate made of the insulating material at a distance from the electrode plate made of the conductive material. A heating device for a thermocoagulable aqueous emulsion, characterized in that it is equipped with a. 2. The device according to claim 1, wherein the electrode plate has a heat medium flow path inside.
JP2178579A 1990-07-04 1990-07-04 Heating device for heat-coagulable aqueous emulsion Expired - Lifetime JPH0738776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2178579A JPH0738776B2 (en) 1990-07-04 1990-07-04 Heating device for heat-coagulable aqueous emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2178579A JPH0738776B2 (en) 1990-07-04 1990-07-04 Heating device for heat-coagulable aqueous emulsion

Publications (2)

Publication Number Publication Date
JPH0466059A true JPH0466059A (en) 1992-03-02
JPH0738776B2 JPH0738776B2 (en) 1995-05-01

Family

ID=16050944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2178579A Expired - Lifetime JPH0738776B2 (en) 1990-07-04 1990-07-04 Heating device for heat-coagulable aqueous emulsion

Country Status (1)

Country Link
JP (1) JPH0738776B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176395A (en) * 1993-09-13 1994-06-24 Hitachi Ltd Optical system
JP2011205976A (en) * 2010-03-30 2011-10-20 Shizuoka Prefecture Method and apparatus for recovering water-soluble protein
JP2013539961A (en) * 2010-07-09 2013-10-31 ケデム リミテッド ライアビリティー カンパニー Cooking equipment for cooking elongated food

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176395A (en) * 1993-09-13 1994-06-24 Hitachi Ltd Optical system
JP2661518B2 (en) * 1993-09-13 1997-10-08 株式会社日立製作所 Optical information processing device
JP2011205976A (en) * 2010-03-30 2011-10-20 Shizuoka Prefecture Method and apparatus for recovering water-soluble protein
JP2013539961A (en) * 2010-07-09 2013-10-31 ケデム リミテッド ライアビリティー カンパニー Cooking equipment for cooking elongated food

Also Published As

Publication number Publication date
JPH0738776B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
Zhao et al. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing
Dhingra et al. Stabilization of raw rice bran using ohmic heating
Yongsawatdigul et al. Electrical conductivity of Pacific whiting surimi paste during ohmic heating
JPH0466059A (en) Heating device for thermally solidifiable aqueous emulsion
JPH10230527A (en) Manufacture of biodegradable molded matter and production equipment
JPH10201411A (en) Method for baking molded baked cakes
EP0409430A2 (en) Process for thawing foodstuffs
Liu et al. Developing Combined Radio Frequency with Water Bath Treatments to Improve Gel Properties of Minced Chicken Breast
Poowakanjana et al. Comminution process for surimi and surimi seafood paste
JP3194733B2 (en) Electric resistance food heating method and apparatus
Imai et al. Heating rate of egg albumin solution and its change during ohmic heating
JPH03985B2 (en)
US4018906A (en) Method of aligning a protein slurry with a magnetic field to produce a protein food product
JP2006081551A (en) Method for manufacturing molded baked snacks
Kim et al. Effects of ohmic thawing on the physicochemical properties of frozen pork
US20040197451A1 (en) Method and apparatus of cooking food
Van Nguyen et al. The effect of heating factors on the properties of heat-induced surimi gel under ohmic heating
JP4323712B2 (en) Method for thawing frozen surimi fish
Yang et al. Radio frequency heating induced 3D printed white croaker (Argyrosomus argentatus) surimi gelation: Effectiveness and gel quality evaluation
JP2004166572A (en) Preheating cooking method for food and food for cooking
CN1290117A (en) Device and method for heating food
JP3438981B2 (en) Coagulated egg and its manufacturing method
Premi et al. Microwave Dielectric Technology: Thermal Processing of Fruits and Vegetables
JPH03224450A (en) Production of food by current injection heating
JPH07241184A (en) Method for thawing frozen and ground fish meat