JPH0466051B2 - - Google Patents

Info

Publication number
JPH0466051B2
JPH0466051B2 JP58089347A JP8934783A JPH0466051B2 JP H0466051 B2 JPH0466051 B2 JP H0466051B2 JP 58089347 A JP58089347 A JP 58089347A JP 8934783 A JP8934783 A JP 8934783A JP H0466051 B2 JPH0466051 B2 JP H0466051B2
Authority
JP
Japan
Prior art keywords
metal thin
thin film
magnetic recording
ferromagnetic metal
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58089347A
Other languages
Japanese (ja)
Other versions
JPS59215023A (en
Inventor
Koichi Shinohara
Takashi Fujita
Kunio Hibino
Akio Hogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58089347A priority Critical patent/JPS59215023A/en
Publication of JPS59215023A publication Critical patent/JPS59215023A/en
Publication of JPH0466051B2 publication Critical patent/JPH0466051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は支持体上に強磁性金属薄膜を有する磁
気記録媒体の製造法、特に強磁性金属薄膜上に潤
滑剤溶液を塗布し、耐久性ある磁気記録媒体を製
造する方法に関する。 従来例の構成とその問題点 従来の磁気記録媒体としては、支持体上に磁気
記録層として、磁性酸化鉄微粒子、磁性合金微粒
子等の磁性体微粒子をバインダー、および必要に
より加えた添加剤等と共に均質分散させた塗料を
塗布し、乾燥して作られる塗布型磁気記録媒体が
広く使用されてきている。 しかし近年磁気記録にはより高密度化が望まれ
るようになり、Co−Ni−O系の斜方蒸着膜、あ
るいはCo−Cr等の垂直磁化膜等を磁気記録層と
するいわゆる金属薄膜型磁気記録媒体が注目さ
れ、研究され、開発が盛んに行なわれるようにな
つている。これらの金属薄膜型磁気記録媒体は電
磁変換特性上の優位性が明らかになつたのである
がその反面実用上の耐久性において劣り、その改
良が必要であることが判つた。 この耐久性が劣るという問題は、従来のバイン
ダーを用いた塗布型磁気記録媒体とは異なり、金
属薄膜型磁気記録媒体においてはその表面の物質
が金属またはその酸化物等に変つたことと、短波
長記録再生でのスペーシングロスを低減させるた
め磁気記録媒体の表面を平滑化したこととの相乗
作用で、金属薄膜型磁気記録媒体を実際に使用す
る装置を構成する移送系、シリンダー、磁気ヘツ
ド等との摩擦抵抗が大きくなり、走行性能が悪く
なるため、画質の劣化が生ずることは勿論、強磁
性金属薄膜が剥離したりして全く磁気記録媒体と
しての機能を失うことすらある。このため強磁性
金属薄膜の摩擦抵抗が大きくならぬよう改良する
ことが実用化に当つての重大な問題といえる。 従つてかかる問題を解決するため多くの研究が
なされているが、現状で最も有効な解決方法は強
磁性金属薄膜上に潤滑剤を塗布することであると
いわれている。 潤滑剤塗布方法としては、湿式法と乾式法とに
分けられるが何れの方法で塗布しても、その表面
の摩擦抵抗は初期的には低下させることができる
が、この磁気記録媒体を繰返し記録再生装置で使
用すると、潤滑剤の効果が徐々に薄れて摩擦係数
が徐々に増大して来、また高温、高湿下でVTR
の静止画像を再生するという短時間で強磁性金属
薄膜に擦り傷が発生するなど磁気記録媒体として
実用性ある耐久性の点では不充分なのが現状であ
る。 一方湿滑剤材料そのものの改良による問題解決
の試みもなされており、材料の融点に着目した改
良提案、複数種の材料の混合または多層付与によ
る複合効果に期待した提案がなされているが、未
だ耐久性において広範な使用環境を満足させるこ
とはできず、やはり充分な実用的耐久性は得られ
ていないのが実状である。 発明の目的 本発明は優れた走行性、耐摩性を有する強磁性
金属薄膜型磁気記録媒体の製造方法を提供するこ
とにある。 発明の構成 本発明は支持体に付与した強磁性金属薄膜上に
潤滑剤溶液を塗布するに際し、上記強磁性金属薄
膜の厚み方向に電界を印加して塗布し、次いで乾
燥することからなる磁気記録媒体の製造法に関
し、この方法によつて作られた磁気記録媒体は繰
返し使用したときでも摩擦係数の増大は殆ど抑制
でき、走行性、耐摩耗性を改良することができ
る。 本発明で使用しうる支持体としてはポリエチレ
ンテレフタレート、ポリエチレンナフタレート、
芳香族ポリアミド、ポリイミド等の支持体が好ま
しい。 本発明において磁気記録層となる強磁性金属薄
膜としては、Co,Fe,Co−Ni,Co−Fe,Co−
B,Co−Pt,Co−Cu、Co−Cr,Co−V等の面
内磁化膜、Co−Cr,Co−Ti,Co−W,Co−V,
Co−Mo,Co−Sm,Co−Ru,Co−Mn,Co−
Ni−Cr,Co−Cr−Rh等の垂直磁化膜が挙げら
れ、これら金属の薄膜の厚み、合金の場合その組
成については当業者によく知られ、任意に選択で
きることは明らかであろう。 本発明の磁気記録媒体における上記強磁性金属
薄膜の形成法としては、公知の真空蒸着法、スパ
ツタリング法、CVD法、イオンビームデポジシ
ヨン法、電気めつき法、無電解めつき法と任意の
方法が使用できる。なお強磁性金属薄膜は支持体
上に直接付与することもできる。あるいは公知の
下地層を予め付与し、その上に付与することもで
きる。 本発明により強磁性金属薄膜上に塗布する潤滑
剤は特に限定されず、従来より知られている任意
の潤滑剤例えば脂肪酸、脂肪酸のエステル、鉱
油、動植物油、シリコーン油、高級アルコール、
フルオロカーボン等があり、これらはそれぞれ単
独で、または混合物の形で使用できる。 上記潤滑剤を前記強磁性金属薄膜上に塗布する
に当つては、それらを適当な溶剤、例えばアセト
ン、メチルエチルケトン、シクロヘキサノン、メ
タノール、プロパノール、酢酸エチル、ヘキサ
ン、四塩化炭素等に溶解した溶液として使用す
る。 上述した潤滑剤溶液を強磁性金属薄膜に塗布す
るに当つて使用しうる塗布方法は特に限定される
ものでなく、例えばエアドクターコーター、ブレ
ードコーター、ロツドコーター、スクイズコータ
ー、リバースロールコーター、キスコーター、グ
ラビアロールコーター等任意の方法を使用でき
る。 本発明によれば上記潤滑剤溶液を強磁性金属薄
膜上に塗布する際、上記強磁性金属薄膜の厚み方
向に電界を印加して塗布する。電界は直流、交
流、高周波の何れであつても良く、特に高周波電
界が好ましい。 印加する電界の強さとしては、強磁性金属薄膜
の厚さと印加電圧の最大値とに関係する。例えば
強磁性金属薄膜の厚さをTocmとし、印加電圧の
最大値をVoボルトとしたとき、Vo/To(ボルト/ cm)で示される電界強度が5×106から1×109
でであるのが好ましい範囲である。5×106末満
では不安定になり、1×109を越えると強磁性金
属薄膜に電流集中によるピンホールを生ずること
があるので好ましくない。 実施例の説明 第1図は本発明方法を実施する一具体例を示す
説明図である。第1図において1は強磁性金属薄
膜層を有する支持体からなる磁気記録媒体であ
り、矢印方向に送行するものとする。上記記録媒
体1上の強磁性金属薄膜層(特に図示してない)
はアプリケーターロール2と接触するように送行
させる。磁気記録媒体1の裏面にはアプリケータ
ーロール2と対をなし、上記磁気記録媒体1をア
プリケーターロール2に押圧するための金属製タ
ツチロール3を当接させてある。アプリケーター
ロール2とタツチロール3とには電源4に接続
し、上記磁気記録媒体の強磁性金属薄膜の厚み方
向に電界が発生するようにしてある。 容器8内にある潤滑剤溶液5中に上記アプリケ
ーターロール2が一部浸漬され、矢印方向に回転
するに従つて上記溶液5がアプリケーターロール
2の表面に付着して運ばれる。この溶液5はメタ
リングロール6により、適切量のみを担持されて
回転し、磁気記録媒体1と接してこれに塗布され
る。7はクリーニングドクターである。次いで潤
滑剤溶液が塗布された磁気記録媒体は乾燥装置
(図示せず)に入り乾燥される。 以下に実施例を挙げて本発明を説明するが本発
明はこれらの実施例に限定されるものではない。
なお比較例は電界を印加せずに他は各実施例と同
一条件で塗布したものである。 実施例 1 厚さ9μmのポリエチレンテレフタレートフイ
ルム支持体を、70℃の媒体を循環させた直径1m
の円筒状ドラムに沿つて20m/分の速度で巻き取
りつつ、二元蒸発源を用い、加熱電子ビームをそ
れぞれCoについては70KW、Crについては38KW
に制御し、Cr含有率20重量%であるCo−Cr垂直
磁化膜を厚さ0.2μmで形成させた。この時の真空
度は1×10-6トルとした。上記強磁性金属薄膜を
形成したフイルム支持体を大気中に取り出し、2
日後に下記潤滑剤溶液を用いて、乾燥後潤滑剤塗
布膜の厚さがそれぞれ50Åになるように塗布し
た。潤滑剤として、ミリスチン酸、ステアリン酸
またはベヘン酸オクチルを用い、溶剤としてn−
ヘキサンを用いた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film on a support, and more particularly to a method for manufacturing a durable magnetic recording medium by coating a lubricant solution on the ferromagnetic metal thin film. . Structure of conventional examples and their problems In conventional magnetic recording media, magnetic fine particles such as magnetic iron oxide fine particles and magnetic alloy fine particles are formed on a support as a magnetic recording layer along with a binder and additives added as necessary. Coated magnetic recording media, which are made by applying a homogeneously dispersed paint and drying it, have been widely used. However, in recent years, there has been a demand for higher density magnetic recording, and so-called metal thin film magnetic recording layers using obliquely deposited Co-Ni-O films or perpendicularly magnetized films such as Co-Cr are used as magnetic recording layers. Recording media are attracting attention, research, and active development. It has become clear that these metal thin film type magnetic recording media have superior electromagnetic conversion characteristics, but on the other hand, they are inferior in practical durability, and it has been found that improvements are necessary. This problem of poor durability is due to the fact that, unlike coating-type magnetic recording media that use conventional binders, metal thin-film magnetic recording media change the surface material to metal or its oxides, etc. The synergistic effect of smoothing the surface of the magnetic recording medium in order to reduce spacing loss during wavelength recording and reproduction has enabled the transport system, cylinder, and magnetic head that make up the equipment that actually uses metal thin film magnetic recording media. The frictional resistance between the recording medium and the like increases and the running performance worsens, which not only causes deterioration in image quality but also causes the ferromagnetic metal thin film to peel off and even completely lose its function as a magnetic recording medium. Therefore, it can be said that improving the frictional resistance of the ferromagnetic metal thin film so that it does not become large is an important problem for practical use. Therefore, many studies have been conducted to solve this problem, but it is said that the most effective solution at present is to apply a lubricant on the ferromagnetic metal thin film. Lubricant application methods can be divided into wet methods and dry methods. Either method can initially reduce the frictional resistance on the surface of the lubricant, but if the magnetic recording medium is used for repeated recording. When used in a regenerator, the effect of the lubricant gradually fades and the coefficient of friction gradually increases.
At present, the ferromagnetic metal thin film is scratched in the short time it takes to reproduce a still image, making it insufficient in terms of durability to be practical as a magnetic recording medium. On the other hand, attempts have been made to solve the problem by improving the moisturizing and lubricant material itself, and proposals have been made that focus on the melting point of the material, and proposals that hope for a composite effect by mixing multiple types of materials or applying multiple layers. The reality is that they cannot satisfy a wide range of use environments in terms of performance, and that they do not have sufficient practical durability. OBJECTS OF THE INVENTION An object of the present invention is to provide a method for manufacturing a ferromagnetic metal thin film magnetic recording medium having excellent running properties and wear resistance. Structure of the Invention The present invention provides a magnetic recording method in which, when applying a lubricant solution onto a ferromagnetic metal thin film provided on a support, an electric field is applied in the thickness direction of the ferromagnetic metal thin film, and then the lubricant solution is dried. Regarding the method of manufacturing the medium, the magnetic recording medium manufactured by this method can almost suppress an increase in the coefficient of friction even when used repeatedly, and can improve running performance and wear resistance. Supports that can be used in the present invention include polyethylene terephthalate, polyethylene naphthalate,
Supports such as aromatic polyamide and polyimide are preferred. In the present invention, the ferromagnetic metal thin film serving as the magnetic recording layer includes Co, Fe, Co-Ni, Co-Fe, Co-
B, In-plane magnetized films such as Co-Pt, Co-Cu, Co-Cr, Co-V, Co-Cr, Co-Ti, Co-W, Co-V,
Co−Mo, Co−Sm, Co−Ru, Co−Mn, Co−
Examples include perpendicularly magnetized films such as Ni-Cr and Co-Cr-Rh, and it is clear that the thickness of thin films of these metals and the composition in the case of alloys are well known to those skilled in the art and can be arbitrarily selected. The method for forming the ferromagnetic metal thin film in the magnetic recording medium of the present invention includes known vacuum deposition methods, sputtering methods, CVD methods, ion beam deposition methods, electroplating methods, electroless plating methods, and arbitrary methods. can be used. Note that the ferromagnetic metal thin film can also be applied directly onto the support. Alternatively, it is also possible to apply a known base layer in advance and apply it thereon. The lubricant to be applied on the ferromagnetic metal thin film according to the present invention is not particularly limited, and any conventionally known lubricants such as fatty acids, esters of fatty acids, mineral oils, animal and vegetable oils, silicone oils, higher alcohols,
There are fluorocarbons, etc., and these can be used alone or in the form of a mixture. When applying the above lubricant onto the ferromagnetic metal thin film, it is used as a solution dissolved in a suitable solvent such as acetone, methyl ethyl ketone, cyclohexanone, methanol, propanol, ethyl acetate, hexane, carbon tetrachloride, etc. do. The coating method that can be used to apply the above-mentioned lubricant solution to the ferromagnetic metal thin film is not particularly limited, and includes, for example, an air doctor coater, a blade coater, a rod coater, a squeeze coater, a reverse roll coater, a kiss coater, and a gravure coater. Any method such as a roll coater can be used. According to the present invention, when applying the lubricant solution onto the ferromagnetic metal thin film, an electric field is applied in the thickness direction of the ferromagnetic metal thin film. The electric field may be direct current, alternating current, or high frequency, and a high frequency electric field is particularly preferred. The strength of the applied electric field is related to the thickness of the ferromagnetic metal thin film and the maximum value of the applied voltage. For example, when the thickness of the ferromagnetic metal thin film is Tocm and the maximum value of the applied voltage is Vo volts, the electric field strength expressed as Vo/To (volts/cm) is from 5×10 6 to 1×10 9 is the preferred range. If it is less than 5×10 6 , it becomes unstable, and if it exceeds 1×10 9 , pinholes may occur in the ferromagnetic metal thin film due to current concentration, which is not preferable. DESCRIPTION OF EMBODIMENTS FIG. 1 is an explanatory diagram showing a specific example of implementing the method of the present invention. In FIG. 1, reference numeral 1 denotes a magnetic recording medium consisting of a support having a ferromagnetic metal thin film layer, and is conveyed in the direction of the arrow. Ferromagnetic metal thin film layer on the recording medium 1 (not particularly shown)
is fed so as to come into contact with the applicator roll 2. A metal touch roll 3 is brought into contact with the back surface of the magnetic recording medium 1 to form a pair with the applicator roll 2 and to press the magnetic recording medium 1 against the applicator roll 2. The applicator roll 2 and the touch roll 3 are connected to a power source 4 so that an electric field is generated in the thickness direction of the ferromagnetic metal thin film of the magnetic recording medium. The applicator roll 2 is partially immersed in the lubricant solution 5 in the container 8, and as it rotates in the direction of the arrow, the solution 5 adheres to the surface of the applicator roll 2 and is carried. This solution 5 is carried by a metal ring roll 6 in an appropriate amount and rotates, and comes into contact with the magnetic recording medium 1 and is applied thereto. 7 is a cleaning doctor. The magnetic recording medium coated with the lubricant solution then enters a drying device (not shown) and is dried. The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.
In addition, in the comparative example, coating was performed under the same conditions as each example without applying an electric field. Example 1 A polyethylene terephthalate film support with a thickness of 9 μm was made with a diameter of 1 m in which a medium at 70°C was circulated.
While winding the drum along a cylindrical drum at a speed of 20 m/min, heating electron beams were heated at 70 KW for Co and 38 KW for Cr using a dual evaporation source.
A Co--Cr perpendicular magnetization film having a Cr content of 20% by weight was formed with a thickness of 0.2 μm. The degree of vacuum at this time was 1×10 -6 torr. The film support on which the ferromagnetic metal thin film was formed was taken out into the atmosphere, and
After a day, the following lubricant solutions were applied so that each lubricant coating film had a thickness of 50 Å after drying. Myristic acid, stearic acid or octyl behenate was used as a lubricant, and n-
Hexane was used.

【表】 実施例 2 厚さ7μmの芳香族ポリアミドフイルム支持体
を、200℃の媒体を循環させた直径1mの円筒状
ドラムを絶縁保持し、この円筒状ドラムに沿つて
30m/分で巻き取りながら、二元蒸発源を用い、
加熱電子ビームをそれぞれCoについては74KW、
Crについては40KWに制御し、Cr含有率が19重
量%であるCo−Cr垂直磁化膜を厚さ0.2μmで形
成させた。蒸着に先立つて真空槽内部を2×10-7
トルまで排気し、酸素を導入して2×10-6トルで
蒸着を行なつた。なおドラムには13.56MHzの高
周波を印加した。上記強磁性金属薄膜を形成した
フイルム支持体を大気中に取り出し、1日後、下
記潤滑剤溶液を用い、乾燥後潤滑剤塗布膜の厚さ
がそれぞれ50Åになるように塗布した。潤滑剤と
してミリスチン酸またはステアリン酸ブチルを用
い、溶剤としてn−ヘキサンを用い、塗布速度は
70m/分とした。電界条件として100KHz、電圧
1200V、電界の強さ6×107V/cmとした。 かくして得られた各磁気記録媒体を25℃、80%
RHで繰返し走行後のステンレス(0.1S)に対す
る摩擦係数の変化を第2図に示す。 実施例 3 厚さ9.5μmのポリエチレンテレフタレートフイ
ルム支持体を、70℃の媒体を循環させた直径1m
の円筒状ドラムに沿つて70m/分で巻き取りなが
ら、1×10-5トルの酸素雰囲気中で、入射角30°
以上でCo80重量%、Ni20重量%の合金を電子ビ
ーム蒸着法で厚さ0.12μmで蒸着させた。上記強
磁性金属薄膜を形成したフイルム支持体を大気中
に取り出し、1日後潤滑剤溶液としてn−ヘキサ
ン中に溶解したステアリン酸溶液を用い、乾燥後
潤滑剤塗布膜の厚さが50Åになるように塗布し
た。塗布速度100m/分と一定にし、電界条件を
変えて行なつた。
[Table] Example 2 A cylindrical drum with a diameter of 1 m in which a medium at 200°C was circulated was held insulated, and an aromatic polyamide film support with a thickness of 7 μm was held along the cylindrical drum.
While winding at 30m/min, using a dual evaporation source,
Heating electron beam 74KW for Co, respectively
Cr was controlled to 40KW, and a Co-Cr perpendicular magnetization film with a Cr content of 19% by weight was formed to a thickness of 0.2 μm. Prior to vapor deposition, the inside of the vacuum chamber was heated to 2×10 -7
The reactor was evacuated to a pressure of 2×10 −6 Torr, oxygen was introduced, and deposition was performed at 2×10 −6 Torr. Note that a high frequency of 13.56MHz was applied to the drum. The film support on which the ferromagnetic metal thin film was formed was taken out into the atmosphere, and one day later, the following lubricant solution was applied so that the thickness of each lubricant coating film after drying was 50 Å. Myristic acid or butyl stearate was used as the lubricant, n-hexane was used as the solvent, and the application speed was
The speed was 70m/min. 100KHz, voltage as electric field condition
The voltage was 1200V, and the electric field strength was 6×10 7 V/cm. Each magnetic recording medium thus obtained was heated to 25°C and 80%
Figure 2 shows the change in friction coefficient against stainless steel (0.1S) after repeated running at RH. Example 3 A polyethylene terephthalate film support with a thickness of 9.5 μm was heated to a diameter of 1 m in which a medium at 70°C was circulated.
While winding along a cylindrical drum at 70 m/min, the angle of incidence was 30° in an oxygen atmosphere of 1 × 10 -5 Torr.
As described above, an alloy containing 80% by weight of Co and 20% by weight of Ni was deposited to a thickness of 0.12 μm by electron beam evaporation. The film support on which the ferromagnetic metal thin film was formed was taken out into the atmosphere, and after one day, a stearic acid solution dissolved in n-hexane was used as the lubricant solution, so that the thickness of the lubricant coated film after drying was 50 Å. It was applied to. The coating speed was kept constant at 100 m/min, and the electric field conditions were varied.

【表】 発明の効果 上述した実施例1および2の各試料を固定の
SVSポスト(表面粗さ0.1S)、固定のBNコーテ
イングSVSポスト(表面粗さ0.1S)、固定の硬質
クロムメツキSVSポスト(表面粗さ0.1S)、市販
のVHSデツキの回転シリンダーの何れかに対す
る摩擦係数を測定した。このとき各試料を各ポス
トまたはシリンダーに180°巻き付けた状態で、張
力は8mm幅で20gと一定にし(シリンダーの場合
は巻き取り側を20gとした)、100パス、300パス
および600パスでの摩擦係数の変化を、それぞれ
の初期値を1.0としたときの相対値で示すと下表
3のとおりであつた。環境は30℃、90%RHと一
定にした。
[Table] Effects of the invention Each sample of Examples 1 and 2 described above was fixed.
Friction against any of the following: SVS post (surface roughness 0.1S), fixed BN coated SVS post (surface roughness 0.1S), fixed hard chrome plating SVS post (surface roughness 0.1S), or rotating cylinder of a commercially available VHS deck. The coefficient was measured. At this time, each sample was wound 180° around each post or cylinder, and the tension was kept constant at 20g across an 8mm width (in the case of cylinders, the winding side was 20g), and the tension was fixed at 20g for 100 passes, 300 passes, and 600 passes. Table 3 below shows the changes in the coefficient of friction as relative values when each initial value is set to 1.0. The environment was kept constant at 30°C and 90% RH.

【表】 本発明による試料1−A〜1−E、および3−
A〜3−Eと、比較例の各試料は初期動摩擦係数
は殆ど同一であつたが、各パス後の摩擦係数の変
化は比較例が非常に大であり、300パス後には走
行しなくなつたのに対し、本発明の各試料は変化
が非常に小さく、耐久性がすぐれていることが上
記表3のデータおよび第2図のデータから明らか
である。 以上の結果から本発明方法で製造された金属薄
膜型磁気記録媒体は耐摩性、走行性が著しく改良
され、かつその効果は高温、高湿度下でも長期に
わたつて持続されるもので、極めて耐久性の大な
る磁気記録媒体が得られることが判る。
[Table] Samples 1-A to 1-E and 3- according to the present invention
The initial dynamic friction coefficients of samples A to 3-E and the comparative example were almost the same, but the change in the friction coefficient after each pass was very large in the comparative example, and the sample stopped running after 300 passes. On the other hand, it is clear from the data in Table 3 and the data in FIG. 2 that the samples of the present invention showed very small changes and had excellent durability. From the above results, the metal thin film magnetic recording medium manufactured by the method of the present invention has significantly improved wear resistance and runnability, and these effects are sustained over a long period of time even under high temperature and high humidity, making it extremely durable. It can be seen that a magnetic recording medium with high properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する一具体例の説明
図であり、第2図は実施例2の摩擦係数の変化を
示す図である。 1は磁気記録媒体、2はアプリケーターロー
ル、3はタツチロール、4は電源、5は潤滑剤溶
液、6はメタリングロール、7はクリーニングロ
ール、8は容器。
FIG. 1 is an explanatory diagram of a specific example of implementing the method of the present invention, and FIG. 2 is a diagram showing changes in the coefficient of friction in Example 2. 1 is a magnetic recording medium, 2 is an applicator roll, 3 is a tatsuchi roll, 4 is a power source, 5 is a lubricant solution, 6 is a metering roll, 7 is a cleaning roll, and 8 is a container.

Claims (1)

【特許請求の範囲】 1 支持体に付与した強磁性金属薄膜上に潤滑剤
溶液を塗布する際に、上記強磁性金属薄膜の厚み
方向に電界を印加して塗布し、次いで乾燥するこ
とを特徴とする磁気記録媒体の製造方法。 2 電界を直流、交流または高周波で印加する特
許請求の範囲第1項記載の方法。 3 電界の強さが5×106〜1×109ボルト/cmで
ある特許請求の範囲第1項または第2項記載の方
法。
[Claims] 1. When applying a lubricant solution onto a ferromagnetic metal thin film provided on a support, an electric field is applied in the thickness direction of the ferromagnetic metal thin film to apply the lubricant solution, and then drying is performed. A method for manufacturing a magnetic recording medium. 2. The method according to claim 1, wherein the electric field is applied as a direct current, alternating current, or high frequency. 3. The method according to claim 1 or 2, wherein the electric field has a strength of 5×10 6 to 1×10 9 volts/cm.
JP58089347A 1983-05-20 1983-05-20 Manufacture of magnetic recording medium Granted JPS59215023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089347A JPS59215023A (en) 1983-05-20 1983-05-20 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089347A JPS59215023A (en) 1983-05-20 1983-05-20 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59215023A JPS59215023A (en) 1984-12-04
JPH0466051B2 true JPH0466051B2 (en) 1992-10-22

Family

ID=13968171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089347A Granted JPS59215023A (en) 1983-05-20 1983-05-20 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59215023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121334A1 (en) 2015-07-22 2017-01-25 Marcin Hamerski Prefabricated element containing a permanently embedded sign and the production method of prefabricated element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121334A1 (en) 2015-07-22 2017-01-25 Marcin Hamerski Prefabricated element containing a permanently embedded sign and the production method of prefabricated element

Also Published As

Publication number Publication date
JPS59215023A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
US4474832A (en) Magnetic recording media
JPH0466051B2 (en)
JPH0316688B2 (en)
JP2827218B2 (en) Manufacturing method of magnetic recording medium
JPH08167146A (en) Production of magnetic recording medium
JP2794580B2 (en) Manufacturing method of magnetic recording media
JPH0991653A (en) Recording medium
JP2832647B2 (en) Magnetic recording medium and method of manufacturing the same
JPH06208718A (en) Magnetic recording medium
JP2832648B2 (en) Magnetic recording medium and method of manufacturing the same
JPS59223934A (en) Production of magnetic recording medium
JPH06223368A (en) Manufacture of magnetic recording medium
JPS63183607A (en) Magnetic recording medium
JPH054725B2 (en)
JPS61131227A (en) Magnetic recording medium
JPH0518176B2 (en)
JPS5819738A (en) Production of magnetic recording medium
JPS62103848A (en) Manufacture of magnetic recording medium
JPH05225564A (en) Production of magnetic recording medium
JPH11203670A (en) Method of manufacturing magnetic recording medium
JPS59185033A (en) Production of magnetic recording medium
JPH08167140A (en) Magnetic recording medium
JPS6295738A (en) Production of magnetic recording medium
JPH0481247B2 (en)
JP2002367135A (en) Magnetic recording medium and manufacturing method therefor