JPH0465947A - Quadrature amplitude modulation system - Google Patents

Quadrature amplitude modulation system

Info

Publication number
JPH0465947A
JPH0465947A JP2174806A JP17480690A JPH0465947A JP H0465947 A JPH0465947 A JP H0465947A JP 2174806 A JP2174806 A JP 2174806A JP 17480690 A JP17480690 A JP 17480690A JP H0465947 A JPH0465947 A JP H0465947A
Authority
JP
Japan
Prior art keywords
signal points
origin
signal
interval
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2174806A
Other languages
Japanese (ja)
Inventor
Norimasa Ejima
江島 徳賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2174806A priority Critical patent/JPH0465947A/en
Publication of JPH0465947A publication Critical patent/JPH0465947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To reduce an error rate at signal transmission by arranging signal points such that the interval of the signal points closer to the origin is taken wider and the interval of the signal points is taken apart as the points are parted from the origin. CONSTITUTION:Signal points are so arranged that the interval of signal points projected to P and Q axes is selected that the relation of DELTA11>DELTA12>DELTA13>DELTA14, and DELTA21>DELTA22>DELTA23 is established from the intervals DELTA11, DELTA21 of the signal points closer to the origin toward the intervals DELTA14, DELTA23 apart from the origin. Thus, the expected value being the total sum of products between criterion frequencies at a criterion level among the signal points and criterion errors of the signal points is minimized by arranging the signal points such that the interval among the signal points around the origin with respect to the P and Q axes is selected wider and the interval among the signal points apart from the origin is selected narrower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディジタル無線通信における直交振幅変調方式
に関し、特にハニカム信号点配置を採用した場合に、信
号点配置を等間隔から変えることにより信号伝送時にお
ける誤り率を改良した直交振幅変調方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a quadrature amplitude modulation method in digital wireless communication, and in particular, when a honeycomb signal point arrangement is adopted, signal transmission is achieved by changing the signal point arrangement from equal intervals. This paper relates to a quadrature amplitude modulation method that improves the error rate in time.

〔従来の技術〕[Conventional technology]

従来のハニカム型信号点配置を採用した直交振幅変調(
以下QAMという)方式の信号点配置は、第2図に示す
ように、例えば68QAM方式の信号点配置の場合には
、直交する2つのP軸。
Quadrature amplitude modulation using a conventional honeycomb signal point arrangement (
As shown in FIG. 2, the signal point arrangement of the 68QAM method (hereinafter referred to as QAM), for example, has two orthogonal P axes.

Q軸方向の信号点2の間隔がそれぞれの軸においてΔ1
.Δ2というように等しくなっている。なお、Δ2とΔ
1の関係は、Δ2=EゴΔ1である。今、例えばQ軸に
射影される行に配置された信号点の数は原点に近い行か
ら9個、8個、7個。
The interval between signal points 2 in the Q-axis direction is Δ1 on each axis.
.. They are equal, such as Δ2. In addition, Δ2 and Δ
The relationship of 1 is Δ2=EgoΔ1. Now, for example, the number of signal points placed in the rows projected onto the Q axis is 9, 8, and 7 from the row closest to the origin.

6個と、原点から離れるにしたがって信号点の配置数が
少ない。一般に信号伝送において全ての信号点配置の生
起確率が等しいとすれば、P軸、Q軸上への射影では原
点付近の信号点の生起度数が多く、原点から離れるにし
たがって少なくなる。
There are 6 signal points, and the number of signal points decreases as the distance from the origin increases. Generally, in signal transmission, if the probability of occurrence of all signal point arrangements is equal, then in projection onto the P-axis and Q-axis, the frequency of occurrence of signal points near the origin is large and decreases as the distance from the origin increases.

すなわちP軸、Q軸の原点付近にある判定レベルでの判
定度数が多く原点から離れるにしたがい判定度数が少な
くなる。また、隣接する各信号点間にある判定レベルで
の信号点判定誤り率が全て等しいとすれば、P軸、Q軸
の原点付近の判定レベルにおける誤り回数が多く、原点
から離れた判定レベルにおける誤り回数が少なくなり、
各判定レベルでの判定度数と各信号点判定誤り率の積の
総和である期待値は最小の状態の期待値が得られなかっ
た。
That is, the determination frequency is large at the determination level near the origin of the P axis and the Q axis, and the determination frequency decreases as the distance from the origin increases. Furthermore, if the signal point judgment error rates at judgment levels between adjacent signal points are all equal, the number of errors at judgment levels near the origin of the P and Q axes is large, and the number of errors at judgment levels far from the origin is large. The number of errors is reduced,
As for the expected value, which is the sum of the products of the judgment frequency at each judgment level and each signal point judgment error rate, the expected value of the minimum state could not be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の直交振幅変調方式におけるハニカム信号
点配置では、各信号点間の間隔が等間隔なので、P軸、
Q軸の交わる原点付近で信号点の配置数が多く、原点か
ら離れるにしたがって配置数が少なくなり、前述の各判
定レベルでの判定度数と各信号点判定誤り率の積の総和
である期待値、すなわち誤り回数の総和は最少の状態と
はならない、したがって、単位時間当りの誤り回数の総
和である信号伝送時の誤り率も最少の状態とはならない
という欠点がある。
In the honeycomb signal point arrangement in the conventional orthogonal amplitude modulation method described above, the intervals between each signal point are equal, so the P axis,
The number of signal points arranged is large near the origin where the Q-axis intersects, and the number decreases as you move away from the origin, and the expected value is the sum of the products of the judgment frequency at each judgment level and the judgment error rate of each signal point. That is, the total number of errors does not reach the minimum state, and therefore, the error rate during signal transmission, which is the total number of errors per unit time, does not reach the minimum state either.

〔課題を解決するための手段〕 本発明の直交振幅変調方式はハニカム型信号点配置を採
用した直交振幅変調方式において、直交するP軸および
Q軸に射影する各信号点間の距離が前記P軸およびQ軸
の原点に最も近い信号点間の距離から前記原点と離れた
信号点間の距離になるにしたがって順次前記距離が狭く
なるように配置し、各信号点間にある判定レベルでの判
定度数と各信号判定誤り率の積の総和が最少になるよう
にしている。
[Means for Solving the Problems] The orthogonal amplitude modulation method of the present invention employs a honeycomb signal point arrangement, in which the distance between each signal point projected onto the orthogonal P axis and Q axis is The distance between the signal points closest to the origin of the axes and Q-axes is arranged so that the distance becomes narrower as the distance between the signal points further from the origin becomes smaller, and the distance between the signal points is gradually narrowed. The sum of the products of the judgment frequency and each signal judgment error rate is minimized.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の68QAM方式の信号点配
置を示す説明図である。第1図の実施例では、P軸、Q
軸へ射影した各信号点の間隔を原点に近い信号点の間隔
Δ11.Δ21から離れた信号点の間隔Δ14.Δ23
に向かってそれぞれΔ11〉Δ12〉Δ13〉Δ14.
Δ21〉Δ22〉Δ23の関係となるように信号点を配
置している。したがって、P軸、Q軸の原点付近の信号
点間隔を広く、原点がら離れるにしたがい狭くしである
。このように配置することにより、各信号点間にある判
定レベルでの判定度数と各信号点判定誤り率の積の総和
である期待値を最少にすることができる。
FIG. 1 is an explanatory diagram showing a signal point arrangement of a 68QAM system according to an embodiment of the present invention. In the embodiment shown in FIG.
The interval between each signal point projected onto the axis is defined as the interval between signal points close to the origin Δ11. Interval of signal points distant from Δ21 Δ14. Δ23
Δ11〉Δ12〉Δ13〉Δ14.
The signal points are arranged so as to have a relationship of Δ21>Δ22>Δ23. Therefore, the interval between signal points near the origin of the P-axis and Q-axis should be widened, and should be narrowed as the distance from the origin increases. By arranging them in this way, it is possible to minimize the expected value, which is the sum of the products of the judgment frequency at the judgment level between each signal point and the judgment error rate of each signal point.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ハニカム型信号点配置を
採用したQAM方式において、原点に近い信号点の間隔
を広く、原点から離れるにしたがって狭く配置すること
により、各信号点間にある判定レベルでの判定度数と各
信号点誤り率の積の総和である期待値が最少にできる。
As explained above, in a QAM system that employs a honeycomb signal point arrangement, the present invention makes it possible to increase the judgment level between each signal point by widening the interval between signal points near the origin and narrowing the distance from the origin. The expected value, which is the sum of the products of the judgment frequency and each signal point error rate, can be minimized.

したがって、信号伝送時の誤り率を低くすることができ
る効果がある。
Therefore, there is an effect that the error rate during signal transmission can be lowered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の信号点配置を示す説明図、
第2図は従来の直交振幅変調方式の68QAM方式の信
号点配置を示す説明図である。 1.2・・・信号点。
FIG. 1 is an explanatory diagram showing the signal point arrangement of an embodiment of the present invention,
FIG. 2 is an explanatory diagram showing the signal point arrangement of the 68QAM method, which is a conventional quadrature amplitude modulation method. 1.2...Signal point.

Claims (1)

【特許請求の範囲】[Claims] ハニカム型信号点配置を採用した直交振幅変調方式にお
いて、直交するP軸およびQ軸に射影する各信号点間の
距離が前記P軸およびQ軸の原点に最も近い信号点間の
距離から前記原点と離れた信号点間の距離になるにした
がって順次前記距離が狭くなるように配置し、各信号点
間にある判定レベルでの判定度数と各信号判定誤り率の
積の総和が最少になるようにしたことを特徴とする直交
振幅変調方式。
In a quadrature amplitude modulation method that employs a honeycomb signal point arrangement, the distance between each signal point projected onto the orthogonal P and Q axes is determined from the distance between the signal points closest to the origin of the P and Q axes to the origin. The signal points are arranged so that the distance becomes narrower as the distance between signal points becomes smaller, and the sum of the product of the judgment frequency at the judgment level between each signal point and each signal judgment error rate is minimized. A quadrature amplitude modulation method characterized by:
JP2174806A 1990-07-02 1990-07-02 Quadrature amplitude modulation system Pending JPH0465947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174806A JPH0465947A (en) 1990-07-02 1990-07-02 Quadrature amplitude modulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174806A JPH0465947A (en) 1990-07-02 1990-07-02 Quadrature amplitude modulation system

Publications (1)

Publication Number Publication Date
JPH0465947A true JPH0465947A (en) 1992-03-02

Family

ID=15984991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174806A Pending JPH0465947A (en) 1990-07-02 1990-07-02 Quadrature amplitude modulation system

Country Status (1)

Country Link
JP (1) JPH0465947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173947A (en) * 1992-11-09 1995-07-11 Tec Corp:Kk Double-deck parking device
US7116537B2 (en) 2004-12-20 2006-10-03 Freescale Semiconductor, Inc Surge current prevention circuit and DC power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173947A (en) * 1992-11-09 1995-07-11 Tec Corp:Kk Double-deck parking device
US7116537B2 (en) 2004-12-20 2006-10-03 Freescale Semiconductor, Inc Surge current prevention circuit and DC power supply

Similar Documents

Publication Publication Date Title
US9066303B2 (en) Power control in LTE-advanced heterogeneous networks
CN105120498B (en) Base station, user equipment, communication control method and radio communications system
TWI412251B (en) Method used in wireless communication apparatus based on reference signal, and the wireless communication apparatus
TW202025848A (en) Method and apparatus for link enablement and disablement during multi-link operation in a wireless network
KR101343565B1 (en) Wireless access point, method and apparatus for controling thereof
CN108365930A (en) Poewr control method, the network equipment and the terminal device of uplink measurement reference signal
US20230261708A1 (en) Node identification method and apparatus, device, and readable storage medium
CN103516468B (en) Downlink/uplink reconfiguration method and device thereof
CN111988785B (en) 5G network coverage processing method and device
JPH0465947A (en) Quadrature amplitude modulation system
WO2023160568A1 (en) Communication method and apparatus, and system and storage medium
KR20200032210A (en) PUCCH transmission method, user equipment and device
AU2018401508A1 (en) Data transmission method and device, and system
CN111417190B (en) Beam scanning configuration method, server and base station
JP2990530B2 (en) Method for manufacturing semiconductor device
KR20000032113A (en) Method for predicting loss of transmission by using interpolation in wireless network design system
WO2018192282A1 (en) Method and apparatus for detecting beam
CN115633545A (en) Proximity sensing techniques utilizing configured gaps
CA2025496C (en) Packet communication system using a telephone switching network and a data flow control method
US20240154748A1 (en) Method for sending data in wireless network, and related apparatus
JP2016009937A (en) Base station device, communication system and terminal device
CN110312294A (en) Secondary cell activation timing adjusting method, device and terminal
SE515636C2 (en) Method and apparatus for controlling transmitted power in a telecommunication system
US8526308B1 (en) Interruption of wireless reverse link data transfer based on power change instructions
CN106656670A (en) Self-adaptive flow monitoring device based on SDN