JPH0465883A - Peltier cooler and cooling method therefor - Google Patents

Peltier cooler and cooling method therefor

Info

Publication number
JPH0465883A
JPH0465883A JP2177599A JP17759990A JPH0465883A JP H0465883 A JPH0465883 A JP H0465883A JP 2177599 A JP2177599 A JP 2177599A JP 17759990 A JP17759990 A JP 17759990A JP H0465883 A JPH0465883 A JP H0465883A
Authority
JP
Japan
Prior art keywords
metal
semiconductor
cooling
superconductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2177599A
Other languages
Japanese (ja)
Inventor
Takakuni Hashimoto
橋本 巍洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2177599A priority Critical patent/JPH0465883A/en
Publication of JPH0465883A publication Critical patent/JPH0465883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve an efficiency near liquid nitrogen temperature by connecting a semiconductor to a high temperature superconductor via a metal, and cooling it by a Peltier effect at a contact formed of the semiconductor and the metal. CONSTITUTION:When suitable metal electrodes 8, 8' are connected to lower parts of an n-type semiconductor 6 and a superconductor 7 and a current flows from a power source 9 through a metal electrode 8, heat absorption and dissipation occur as indicted by arrows. The electrodes 8, 8' are conducted at a temperature for performing superconduction such as 80-120K in a state for cooling by using a normal Peltier cooler, etc. Then, cooling to 50-100K occurs at the contact of a heat absorbing metal plate 3 and the semiconductor 6. The superconductor 7 performs a role of holding a temperature difference generated between the plate 3 and the electrode 8. An Hg-Cd-Te infrared sensor chip is, for example, placed on the plate 3 to form an infrared sensor system.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はペルチェ効果を利用した冷却器および冷却方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cooler and a cooling method that utilize the Peltier effect.

(従来の技術) 第3図は金属便覧改訂5版、第728頁に示された熱電
冷却の原理を示す図である。図において、1はn型半導
体、2はn型半導体、3は吸熱板、4は放熱板、5は電
源である。また、ηはゼーベック係数、ρは抵抗率、χ
は熱伝導率を表す。熱電冷却の原理は、自由電子の濃度
や平均エネルギの異なる2種の金属や半導体を接触させ
ると、電子の移動が起こり、接触部に電位が発生する:
この電位に逆らって電流を流すと電子は低電位から高電
位に移動するために、不足エネルギを熱の形で周囲から
奪い接触部の温度が下がることにある。熱電性能を表す
Zは、p+n型半導体がnの符合が異なるだけで他の性
質は同じ場合、Z = to−’η2/χρ[K相1で
表される。
(Prior Art) FIG. 3 is a diagram showing the principle of thermoelectric cooling as shown on page 728 of the 5th edition of the Metal Handbook. In the figure, 1 is an n-type semiconductor, 2 is an n-type semiconductor, 3 is a heat absorbing plate, 4 is a heat sink, and 5 is a power source. In addition, η is the Seebeck coefficient, ρ is the resistivity, and χ
represents thermal conductivity. The principle of thermoelectric cooling is that when two metals or semiconductors with different free electron concentrations and average energies are brought into contact, electron movement occurs and a potential is generated at the contact point:
When a current is passed against this potential, electrons move from a low potential to a high potential, which takes away the missing energy from the surroundings in the form of heat and lowers the temperature of the contact area. Z, which represents thermoelectric performance, is expressed as Z=to-'η2/χρ[K phase 1 when p+n type semiconductors differ only in the sign of n and other properties are the same.

Zが最大になる材料としてV−Vl族化合物半導体、す
なわちB1−Te、5b−Te、Bi −Se等でキャ
リア濃度を調節したものが使用されている。
V-Vl group compound semiconductors, ie, B1-Te, 5b-Te, Bi-Se, etc., in which the carrier concentration is adjusted, are used as materials that maximize Z.

(発明が解決しようとする課題) 従来ペルチェ冷却器に使用されていたB1−Te、5b
−Te、B1−Se等100に以下の低温ではp型とn
型半導体の良い組合わせは得られなかったので、100
に以下の低温での冷却は出来なかった。
(Problem to be solved by the invention) B1-Te, 5b conventionally used in Peltier coolers
-Te, B1-Se, etc. have p-type and n-type at low temperatures below 100
Since a good combination of type semiconductors could not be obtained, 100
It was not possible to cool the product at temperatures lower than that.

本発明は上記欠点を解消するものであって、100に以
下の低温でも冷却することができるペルチェ冷却器を提
供すること、およびl OOK以下の低温への効率的冷
却方法を提供することを目的とする。
The present invention solves the above-mentioned drawbacks, and aims to provide a Peltier cooler capable of cooling even at a low temperature of 100 yen or less, and to provide an efficient cooling method to a low temperature of 100 yen or less. shall be.

(課題を解決するための手段) 本発明に係るペルチェ冷却器は、半導体と高温超伝導体
とを金属により接続し、前記半導体と前記金属により形
成された接点におけるペルチェ効果による冷却を行うこ
とを特徴とする。
(Means for Solving the Problems) A Peltier cooler according to the present invention connects a semiconductor and a high-temperature superconductor with a metal, and performs cooling by the Peltier effect at a contact point formed by the semiconductor and the metal. Features.

上述のように100に以下の低温で良好なp型半導体は
現在のところ存在しないので、n型半導体と高温超伝導
体の接点を作ることが好ましいが、将来低温での良好な
p型半導体が見出されたならばp型半導体と高温超伝導
体との接点を作ることも可能である。n型半導体として
はB1−5b、p型半導体としてはB1−5b−Te−
5e系材を使用することができる。
As mentioned above, there is currently no p-type semiconductor that is good at low temperatures below 100°C, so it is preferable to make a contact between an n-type semiconductor and a high-temperature superconductor, but in the future it is possible that a p-type semiconductor that is good at low temperatures will be created. If discovered, it would also be possible to create a contact between a p-type semiconductor and a high-temperature superconductor. B1-5b as an n-type semiconductor, B1-5b-Te- as a p-type semiconductor
5e type material can be used.

本発明に係る冷却器を使用する冷却方法では、放熱側を
高温超伝導体の超伝導温度に冷却し、金属−半導体の接
合に直流を流すことにより吸熱側で50〜100にの低
温を得ることができる。
In the cooling method using the cooler according to the present invention, the heat dissipation side is cooled to the superconducting temperature of the high-temperature superconductor, and a low temperature of 50 to 100 is obtained on the heat absorption side by flowing a direct current through the metal-semiconductor junction. be able to.

(作用) 本発明で使用する高温超伝導体は超伝導状態では超伝導
体は電気抵抗がないので、ジュール発熱による冷却損失
を低減させる。また、高温超伝導体は超伝導状態におい
ては熱伝導率が低いために、高温超伝導体を熱が流れか
たい:すなわち、高温超伝導体はペルチェ効果による放
熱が起こっている接点側では高温になるが、そこから高
温超伝導体を伝って吸熱側に向かう熱の流れは少なく、
このような熱の流れによる冷却効果の低下が少ない。本
発明では、このような性質を利用して高温超伝導体を電
流を通す役割のみに使用し、実質的に吸熱・放熱端を高
温超伝導体により熱的に隔離する構成とする。なお、半
導体と高温超伝導体を接続している金属板は見掛は上は
全体が低温になるが、従来例(第3図)のように金属板
3側が吸熱端になっているのではな(、吸熱端は金属と
半導体の接点の位置である。
(Function) Since the high temperature superconductor used in the present invention has no electrical resistance in a superconducting state, cooling loss due to Joule heat generation is reduced. In addition, because high-temperature superconductors have low thermal conductivity in the superconducting state, it is difficult for heat to flow through the high-temperature superconductors; However, the flow of heat from there through the high-temperature superconductor toward the endothermic side is small;
The cooling effect is less degraded due to such heat flow. In the present invention, by utilizing such properties, the high temperature superconductor is used only for the role of passing current, and the heat absorption and heat radiation ends are substantially thermally isolated by the high temperature superconductor. Note that the metal plate that connects the semiconductor and high-temperature superconductor appears to be at a low temperature as a whole, but the metal plate 3 side is the endothermic end, as in the conventional example (Figure 3). (The endothermic end is the location of the contact between the metal and the semiconductor.

以下、実施例によりさらに詳しく本発明を説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 第1図において、3はCuなとの吸熱金属板、6はB1
−5b系合金からなるn型半導体であり、7はY−Ba
−Cu−0系、B1−5r−Ca−Cu−0系、TJ2
−Ba−Ca−Cu−0系等の酸化物超伝導体である。
(Example) In Fig. 1, 3 is an endothermic metal plate made of Cu, 6 is B1
It is an n-type semiconductor made of -5b alloy, and 7 is Y-Ba.
-Cu-0 system, B1-5r-Ca-Cu-0 system, TJ2
-Ba-Ca-Cu-0 type oxide superconductor.

n型半導体6及び超伝導体7の下部(第1図において)
に適当な金属電極8.8′を接続し、金属電極8を介し
て電源9から電流を流すと、矢印で示したように吸熱と
放熱が起こる。金属電極8,8′を7が超伝導を発揮す
る温度1例えば80〜120Kに通常のペルチェ冷却器
などを使用して冷却した状態で、通電を行う、すると、
吸熱金属板3とn型半導体6の接点で50〜100にへ
の冷却が起こる。超伝導体7は吸熱金属板3と金属電極
8との間に生じたlR度差を保持する役割をしている。
Lower part of n-type semiconductor 6 and superconductor 7 (in FIG. 1)
When a suitable metal electrode 8,8' is connected to the metal electrode 8 and a current is passed from a power source 9 through the metal electrode 8, heat absorption and heat radiation occur as shown by the arrows. When the metal electrodes 8 and 8' are cooled to a temperature 1, for example 80 to 120 K, at which the metal electrodes 7 exhibit superconductivity, using an ordinary Peltier cooler, electricity is applied.
At the contact point between the endothermic metal plate 3 and the n-type semiconductor 6, cooling to 50 to 100 degrees occurs. The superconductor 7 plays a role of maintaining the lR difference generated between the heat-absorbing metal plate 3 and the metal electrode 8.

吸熱金属板3上に例えばHg−Cd−Te赤外線センサ
チップを搭載することにより赤外線センサシステムを構
成することができる。
An infrared sensor system can be constructed by mounting, for example, a Hg-Cd-Te infrared sensor chip on the heat-absorbing metal plate 3.

第2図は第1図の冷却器を多数個を2枚の吸熱板10、
放熱板11の間に挾みつけて配!した冷却器の実施例を
を示す。
FIG. 2 shows a large number of the coolers shown in FIG. 1 using two heat absorbing plates 10,
Place it between the heat sinks 11! An example of a cooler is shown below.

(発明の効果) 以上説明したように、本発明によれば半導体と金属の接
点に電流を流してペルチェ効果により冷却を行うと共に
、該接点側の電流の通路として高温超伝導体を使用する
ために、液体窒素温度近傍での効率の良いペルチェ冷却
器及び冷却法が提供される。
(Effects of the Invention) As explained above, according to the present invention, a current is passed through the contact between a semiconductor and a metal to perform cooling by the Peltier effect, and a high-temperature superconductor is used as a current path on the contact side. An efficient Peltier cooler and cooling method near liquid nitrogen temperatures are provided.

【図面の簡単な説明】 第1図は本発明の詳細な説明図、 第2図は第1図の冷却器を多数配列した冷却器の説明図
、 第3図は従来のペルチェ冷却器の説明図である。 1−p型半導体、2−n型半導体、3−吸熱金属板、4
−放熱金属板、5−電源、6−半導体6.7−超伝導体
7.8.8′−金属電極、9−電源、10−吸熱板、1
1−放熱板 特許出願人   日本鉱業株式会社 橋本轟洲
[Brief Description of the Drawings] Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is an explanatory diagram of a cooler in which a large number of the coolers shown in Fig. 1 are arranged, and Fig. 3 is an explanation of a conventional Peltier cooler. It is a diagram. 1-p-type semiconductor, 2-n-type semiconductor, 3-endothermic metal plate, 4
- heat dissipation metal plate, 5 - power supply, 6 - semiconductor 6.7 - superconductor 7.8.8' - metal electrode, 9 - power supply, 10 - heat absorption plate, 1
1- Heat sink patent applicant: Todoshu Hashimoto, Nippon Mining Co., Ltd.

Claims (1)

【特許請求の範囲】 1、半導体と高温超伝導体とを金属を介して接続し、前
記半導体と前記金属により形成された接点においてペル
チェ効果による冷却を行うことを特徴とするペルチェ冷
却器。 2、半導体と高温超伝導体とを金属を介して接続し、前
記半導体、前記金属、および超伝導温度に冷却された前
記高温超伝導体に通電することにより、前記半導体と前
記金属により形成された接点においてペルチェ効果によ
る冷却を行うことを特徴とする冷却方法。
[Claims] 1. A Peltier cooler, characterized in that a semiconductor and a high-temperature superconductor are connected through a metal, and cooling is performed by the Peltier effect at a contact point formed by the semiconductor and the metal. 2. A semiconductor and a high-temperature superconductor are connected through a metal, and the semiconductor, the metal, and the high-temperature superconductor cooled to a superconducting temperature are energized to form a semiconductor and a high-temperature superconductor. A cooling method characterized by performing cooling by the Peltier effect at a contact point.
JP2177599A 1990-07-06 1990-07-06 Peltier cooler and cooling method therefor Pending JPH0465883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177599A JPH0465883A (en) 1990-07-06 1990-07-06 Peltier cooler and cooling method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177599A JPH0465883A (en) 1990-07-06 1990-07-06 Peltier cooler and cooling method therefor

Publications (1)

Publication Number Publication Date
JPH0465883A true JPH0465883A (en) 1992-03-02

Family

ID=16033816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177599A Pending JPH0465883A (en) 1990-07-06 1990-07-06 Peltier cooler and cooling method therefor

Country Status (1)

Country Link
JP (1) JPH0465883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318163A (en) * 1996-08-16 2007-12-06 Yyl:Kk Superconducting cable system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318163A (en) * 1996-08-16 2007-12-06 Yyl:Kk Superconducting cable system

Similar Documents

Publication Publication Date Title
Liu et al. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module
Adams et al. Active peltier coolers based on correlated and magnon-drag metals
US7342169B2 (en) Phonon-blocking, electron-transmitting low-dimensional structures
US6000225A (en) Two dimensional thermoelectric cooler configuration
Shakouri et al. On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators
Dughaish Lead telluride as a thermoelectric material for thermoelectric power generation
Omer et al. Design optimization of thermoelectric devices for solar power generation
US20050150537A1 (en) Thermoelectric devices
US20130042900A1 (en) Thermoelectric element
US20050016575A1 (en) Field emission based thermoelectric device
US20050150535A1 (en) Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
Shakouri et al. Enhanced thermionic emission cooling in high barrier superlattice heterostructures
JPH03501910A (en) Peltier cooling stage using superconductor semiconductor junction
US20050150539A1 (en) Monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20060225773A1 (en) Trans-thermoelectric device
US20060243317A1 (en) Thermoelectric generators for solar conversion and related systems and methods
JP2007535803A (en) Thin film thermoelectric devices for power conversion and cooling
JP2004523094A (en) Thermal diode for energy conversion
US20050236028A1 (en) Heat to cooling converter
US20050150536A1 (en) Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
Nimmagadda et al. Materials and devices for on-chip and off-chip peltier cooling: A review
Nolas et al. A comparison of projected thermoelectric and thermionic refrigerators
Gurevich et al. Peltier effect in semiconductors
WO2019035702A1 (en) Thermoelectric module and thermoelectric power generation device
JP4167761B2 (en) Thermoelectric conversion element and thermoelectric conversion module