JPH0465868B2 - - Google Patents
Info
- Publication number
- JPH0465868B2 JPH0465868B2 JP58235478A JP23547883A JPH0465868B2 JP H0465868 B2 JPH0465868 B2 JP H0465868B2 JP 58235478 A JP58235478 A JP 58235478A JP 23547883 A JP23547883 A JP 23547883A JP H0465868 B2 JPH0465868 B2 JP H0465868B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- reaction
- cation exchange
- exchange resin
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000003729 cation exchange resin Substances 0.000 claims description 15
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 13
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 claims description 12
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 claims description 9
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 claims description 9
- 150000002989 phenols Chemical class 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 description 24
- 229920005989 resin Polymers 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 125000000542 sulfonic acid group Chemical group 0.000 description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 229960005382 phenolphthalein Drugs 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical class C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 2
- HUVSHHCYCJKXBZ-UHFFFAOYSA-N 2,3-bis(ethenyl)benzenesulfonic acid;styrene Chemical compound C=CC1=CC=CC=C1.OS(=O)(=O)C1=CC=CC(C=C)=C1C=C HUVSHHCYCJKXBZ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- CPBJMKMKNCRKQB-UHFFFAOYSA-N 3,3-bis(4-hydroxy-3-methylphenyl)-2-benzofuran-1-one Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3C(=O)O2)C=2C=C(C)C(O)=CC=2)=C1 CPBJMKMKNCRKQB-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Landscapes
- Furan Compounds (AREA)
Description
本発明は、無水フタル酸とフエノール類との反
応によるフエノールフタレイン類の製造方法に関
する。
従来、フエノールフタレイン類は、無水フタル
酸とフエノール類を多量の硫酸、塩化亜鉛、塩化
チオニル等の縮合剤の存在下、加熱して製造され
る。しかしんがら、この従来法では、多量の縮合
剤が使い捨てになり、コスト面、環境面等に問題
があつた。これらの欠点を解決する方法として、
近年では、無水フタル酸とフエノール類とをカチ
オン交換樹脂の存在下で加熱する方法が案出され
た。この方法では、カチオン交換樹脂は反応生成
物から容易に分離・回収され、次の反応に再使用
することは可能となるが、反応速度は極めて遅い
という問題があつた。例えば、米国特許第
4252725号記載の方法では、反応を120℃で行なつ
た場合でもフエノールフタレインの収率は13.1%
に止まり、反応は平衡に達してしまう。また脱水
縮合剤として多量の亜リン酸トリフエニルを添加
した場合においても収率は19.0%までしか向上し
ていない。
本発明者等は、上記実情に鑑み、これらの問題
点を解決すべく鋭意検討した結果、触媒として耐
熱性を有する特定のカチオン交換樹脂を使用した
場合、フエノールフタレイン類の収率が先行技術
に比べ、著しく増加することを見い出し、本発明
に到達した。即ち、従来技術において用いられた
スチレン−ジビニルベンゼンスルホン酸型カチオ
ン交換樹脂では、樹脂自体の耐熱性が低く、一定
温度以上に反応温度を上げることは困難である
が、本発明方法における耐熱性を有する特定のカ
チオン交換樹脂を用いた場合には、高温で反応を
行なうことができ、フエノールフタレイン類を高
収率で製造できる。
以下に、本発明方法を詳細に説明する。
本発明において用いられる耐熱性を有するカチ
オン交換樹脂としては次のような物質が挙げられ
る。
ポリビニルベンジルスルホン酸
The present invention relates to a method for producing phenolphthaleins by reacting phthalic anhydride with phenols. Conventionally, phenolphthaleins are produced by heating phthalic anhydride and phenols in the presence of a large amount of a condensing agent such as sulfuric acid, zinc chloride, or thionyl chloride. However, in this conventional method, a large amount of the condensing agent is disposable, which poses problems in terms of cost, environment, etc. As a way to solve these shortcomings,
In recent years, a method has been devised in which phthalic anhydride and phenols are heated in the presence of a cation exchange resin. In this method, the cation exchange resin can be easily separated and recovered from the reaction product and can be reused in the next reaction, but the problem is that the reaction rate is extremely slow. For example, U.S. Pat.
In the method described in No. 4252725, the yield of phenolphthalein is 13.1% even when the reaction is carried out at 120°C.
and the reaction reaches equilibrium. Furthermore, even when a large amount of triphenyl phosphite was added as a dehydration condensation agent, the yield improved only to 19.0%. In view of the above-mentioned circumstances, the present inventors have made intensive studies to solve these problems, and have found that when a specific heat-resistant cation exchange resin is used as a catalyst, the yield of phenolphthaleins is lower than that of the prior art. The present invention was achieved based on the discovery that there is a marked increase compared to the above. That is, with the styrene-divinylbenzenesulfonic acid type cation exchange resin used in the conventional technology, the resin itself has low heat resistance and it is difficult to raise the reaction temperature above a certain temperature. When using a specific cation exchange resin having the following properties, the reaction can be carried out at high temperatures, and phenolphthaleins can be produced in high yield. The method of the present invention will be explained in detail below. Examples of the heat-resistant cation exchange resin used in the present invention include the following substances. polyvinylbenzyl sulfonic acid
【式】
S含有率5〜16wt%(特公昭46−28415号に記
載)
ポリ(ar−ハロビニルベンゼンスルホン酸)[Formula] S content 5-16wt% (described in Japanese Patent Publication No. 46-28415) Poly(ar-halobinylbenzenesulfonic acid)
【式】
X=C1,Br
S含有率7〜13wt%(特開昭58−80307号に記
載)
ポリ(パ−フルオロアルカン−パ−フルオロオキ
シアルキレンスルホン酸)
例えばデユポン社製のナフイオン−H(商標)
x/y=2〜50
z=1〜2
s含有率0.5〜4.0wt%(USP4053522号に記載)
もちろん、これらのカチオン交換樹脂は架橋等
の適当な手段により実用的な物性を備えさせたも
のであつて良い。
これらのカチオン交換樹脂は、その耐熱性が
()式で定義される性能低下率が一定限度以下、
特に180℃の温水中、8時間における性能低下率
が2.5%以下であることを必須とする。
性能低下率(%)=(1−試験後全交換容量/試験前
全交換容量)×100……()
本発明により製造しうるフエノールフタレイン
類としては、フエノールフタレイン、クレゾール
フタレイン、チモールフタレイン等が挙げられ、
各々、対応するフエノール類と無水フタル酸とを
縮合して製造される。なかでも、フエノールフタ
レインはその用途が多岐に渡つており、本発明方
法で実施するのに好適である。
本発明において用いられるフエノール類として
は、水酸基のオルト位もしくはバラ位の少なくと
も一方が置換されていないものを用いるのが適当
である。
フエノール類と無水フタル酸との反応は、通常
フエノール類過剰で反応を行なうのが好ましく、
モル比として2〜30、より好ましくは5〜20であ
る。
カチオン交換樹脂の使用量は無水フタル酸に対
し、交換容量を基準にしたモル当量で0.25〜2倍
程度が好ましい。
溶媒は、特に使用する必要はないが、炭化水素
等の不活性溶媒を用いても良い。反応の結果、生
成する水を連続的に除去しながら反応させると好
結果が得られることもある。
本発明においては、無水フタル酸とフエノール
類とを反応させてフエノールフタレイン類を製造
するに際し、反応温度を100℃以上、より好まし
くは120℃以上とするのが好ましい。反応温度の
上限は、使用するカチオン交換樹脂の耐熱性によ
つて定められ、例えば、ポリー(ar−ハロビニル
ベンゼンスルホン酸)を用いる場合には、150℃
以下にするのが好ましい。
反応圧力は常圧で行なえば良く、不活性気流下
で行なうのが好ましい。
以下に、本発明を実施例を挙げて更に具体的に
説明するが、本発明は、その要旨を超えない限
り、以下の実施例に限定されるものではない。
実施例 1〜6
樹脂の製造方法
() 実施例1の樹脂
重量にして10%のジビニルベンゼンを含有し、
比表面積41m2/gの細孔を有するスチレン−ジビ
ニルベンゼン架橋共重合体のクロルメチル化物
(Cl含量22重量%)100gに二酸化メチレン400ml
を加え、室温にて1時間膨潤させた後、ジメチル
アニリン210ml、脱塩水400mlを加えた後、50℃で
5時間反応させた。ついで該反応液にメタノール
200ml、亜硫酸ソーダ400g、脱塩水300mlを加え、
100℃にて更に18時間反応させた。反応後、樹脂
を別し、水で十分に洗浄後、80℃にて8時間乾
燥した。
得られた樹脂は1g当り2.34mmolのスルホン
酸基を有していた。
() 実施例3〜5の樹脂
重量にして10%のジビニルベンゼンを含有し、
比表面積39m2/g細孔容積0.76ml/gのスチレン
−ジビニルベンゼン架橋共重合体50gをとり、ジ
クロルエタン300gを加え、室温にて2時間放置
し充分に膨潤させた。ついで塩化第2鉄2.5gを
加え、臭素100gをゆつくりと温度が20℃を超え
ない様にして添加した。添加終了後、0℃にて12
時間攪拌を続けた後、樹脂を別し、メタノール
1、脱塩水2、2N−HCl1、脱塩水3、
メタノール1で順次洗浄し、80℃にて8時間乾
燥した。収率85.6g。
該臭素化架橋ポリスチレン53.7gにジクロルエ
タン270gを加え、充分に膨潤させた後、30%オ
リウム320gを加え、30℃にて12時間反応させた。
反応終了後、1000gの水をゆつくりと加え、つい
で90℃に加熱してジクロルエタンを留去した。
ついで樹脂をカラムに移し、4の脱塩水、5
%食塩水1、3の脱塩水、4の2N−HCl、
3の脱塩水で順次洗浄した。収量222ml、スル
ホン酸基導入量2.92meq/g−樹脂、水分60.5%、
膨潤度3.13ml/gであり、スルホン酸基の導入率
は芳香環当り99%(芳香環1モル当りスルホン酸
基0.99モル)、臭素の導入率は元素分析により123
%(芳香環1モルに対し、臭素原子1.23モル)で
あつた。
() 実施例2の樹脂
ジビニルベンゼン含有量を15%とした以外は
()実施例3〜5の樹脂の製造方法と同様にし
て作成した。得られた樹脂はスルホン酸基導入量
が2.7meq/g−樹脂、水分55%であつた。
反 応
攪拌器、還流冷却器の付いた100mlのガラスフ
ラスコに、第1表の割合でフエノール、無水フタ
ル酸、上記方法で製造した耐熱性カチオン交換樹
脂を仕込み、窒素気流中、所定の条件で反応を行
なわせ、生成物を高速液体クロマトグラフで分析
した。なお、使用した樹脂はすべて希塩酸により
酸型に変換後、脱水、フエノール膨潤処理したも
のを用いた。
樹脂の耐熱性テスト方法
酸形(H形)にした樹脂20ml、脱塩水40mlをガ
ラス製オートクレーブに入れ、内温180℃にて8
時間、加熱した。
オートクレーブを冷却後、樹脂を抜き出し、直
径3cmのカラムに移し500mlの1N塩酸、500mlの
脱塩水、500mlの5%NaCl水、500mlの脱塩水、
500mlの1N−塩酸、1の脱塩水で順次洗浄し
た。該樹脂に5%のNaCl水500mlを2時間かけて
通液し、カラム出口液を集めて5%NaOHで滴
定することにより、樹脂中のスルホン酸基の総量
を求めた。
別途テスト前の樹脂20mlのスルホン酸基量も同
様にして求め、その値から性能低下率を、()
式に基づき算出した。
性能低下率(%)=(1−試験後全交換容量/試験前
全交換容量)×100……()
以上の実施例1〜6の結果を第1表に示す。
比較例 1
樹脂として市販のスチレン−ジビニルベンゼン
スルホン酸型カチオン交換樹脂SK−106(三菱化
成(株)製)を用いて、実施例1〜6と同様に反応を
行つた場合の結果を第1表に示す。この場合、反
応液が暗かつ色に着色し、樹脂の分解による硫酸
が検出された(バリウム沈澱法)。このように、
樹脂の性能低下が激しく再使用は不適当と判断さ
れた。[Formula] trademark) x/y=2~50 z=1~2 S content 0.5~4.0wt% (described in USP 4053522) Of course, these cation exchange resins have been provided with practical physical properties by appropriate means such as crosslinking. That's good. The heat resistance of these cation exchange resins is such that the performance deterioration rate defined by the formula () is below a certain limit,
In particular, it is essential that the performance deterioration rate after 8 hours in hot water at 180°C is 2.5% or less. Performance reduction rate (%) = (1-total exchange capacity after test/total exchange capacity before test) x 100...() Phenol phthalein that can be produced by the present invention includes phenolphthalein, cresol phthalein, and thymol. Examples include phthalein,
Each is produced by condensing the corresponding phenols and phthalic anhydride. Among them, phenolphthalein has a wide range of uses and is suitable for carrying out the method of the present invention. As the phenols used in the present invention, it is appropriate to use those in which at least one of the ortho-position and the rose-position of the hydroxyl group is not substituted. In the reaction between phenols and phthalic anhydride, it is usually preferable to carry out the reaction with an excess of phenols.
The molar ratio is 2 to 30, more preferably 5 to 20. The amount of cation exchange resin used is preferably about 0.25 to 2 times the molar equivalent of phthalic anhydride based on the exchange capacity. Although it is not necessary to use a particular solvent, an inert solvent such as a hydrocarbon may be used. Good results may be obtained if the reaction is carried out while continuously removing the water produced as a result of the reaction. In the present invention, when producing phenolphthalein by reacting phthalic anhydride with phenols, the reaction temperature is preferably 100°C or higher, more preferably 120°C or higher. The upper limit of the reaction temperature is determined by the heat resistance of the cation exchange resin used; for example, when poly(ar-halobinylbenzenesulfonic acid) is used, the upper limit of the reaction temperature is 150°C.
It is preferable to do the following. The reaction pressure may be normal pressure, preferably under an inert gas flow. EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Examples 1 to 6 Resin manufacturing method () Resin of Example 1 Contains 10% divinylbenzene by weight,
Add 400 ml of methylene dioxide to 100 g of chloromethylated styrene-divinylbenzene crosslinked copolymer (Cl content 22% by weight) having pores with a specific surface area of 41 m 2 /g.
After swelling at room temperature for 1 hour, 210 ml of dimethylaniline and 400 ml of demineralized water were added, and the mixture was reacted at 50°C for 5 hours. Then methanol was added to the reaction solution.
Add 200ml, 400g of sodium sulfite, and 300ml of demineralized water,
The reaction was further carried out at 100°C for 18 hours. After the reaction, the resin was separated, thoroughly washed with water, and then dried at 80°C for 8 hours. The resulting resin had 2.34 mmol of sulfonic acid groups per gram. () Resins of Examples 3 to 5 Containing 10% divinylbenzene by weight,
50 g of a styrene-divinylbenzene crosslinked copolymer having a specific surface area of 39 m 2 /g and a pore volume of 0.76 ml/g was taken, 300 g of dichloroethane was added thereto, and the mixture was allowed to stand at room temperature for 2 hours to sufficiently swell. Next, 2.5 g of ferric chloride was added, and 100 g of bromine was added slowly so that the temperature did not exceed 20°C. After addition, at 0℃ for 12 hours.
After continuing stirring for an hour, separate the resin, add 1 part of methanol, 2 parts of demineralized water, 1 part of 2N-HCl, 3 parts of demineralized water,
It was washed successively with 1 portion of methanol and dried at 80° C. for 8 hours. Yield: 85.6g. After adding 270 g of dichloroethane to 53.7 g of the brominated cross-linked polystyrene and allowing sufficient swelling, 320 g of 30% olium was added and the mixture was reacted at 30° C. for 12 hours.
After the reaction was completed, 1000 g of water was slowly added and then heated to 90°C to distill off dichloroethane. The resin was then transferred to a column and treated with 4 demineralized water and 5
% saline, 3 parts demineralized water, 4 parts 2N-HCl,
It was washed sequentially with 3 demineralized water. Yield 222ml, amount of sulfonic acid group introduced 2.92meq/g - resin, moisture 60.5%,
The degree of swelling is 3.13ml/g, the introduction rate of sulfonic acid groups is 99% per aromatic ring (0.99 mol of sulfonic acid groups per mol of aromatic ring), and the introduction rate of bromine is 123% by elemental analysis.
% (1.23 mol of bromine atoms per 1 mol of aromatic ring). () Resin of Example 2 A resin was produced in the same manner as in the method for producing the resin of Examples 3 to 5 () except that the divinylbenzene content was 15%. The resulting resin had a sulfonic acid group introduction amount of 2.7 meq/g-resin and a water content of 55%. Reaction A 100 ml glass flask equipped with a stirrer and a reflux condenser was charged with phenol, phthalic anhydride, and the heat-resistant cation exchange resin produced by the above method in the proportions shown in Table 1, and heated under the specified conditions in a nitrogen stream. The reaction was carried out and the product was analyzed by high performance liquid chromatography. The resins used were all converted into acid form with dilute hydrochloric acid, dehydrated, and phenol-swelled. Resin heat resistance test method: Put 20 ml of resin in acid form (H form) and 40 ml of demineralized water into a glass autoclave and heat at 180°C.
heated for an hour. After cooling the autoclave, extract the resin and transfer it to a column with a diameter of 3 cm. 500 ml of 1N hydrochloric acid, 500 ml of demineralized water, 500 ml of 5% NaCl water, 500 ml of demineralized water,
Washed sequentially with 500 ml of 1N hydrochloric acid and 1 portion of demineralized water. 500 ml of 5% NaCl water was passed through the resin over 2 hours, and the column outlet liquid was collected and titrated with 5% NaOH to determine the total amount of sulfonic acid groups in the resin. Separately, the amount of sulfonic acid groups in 20 ml of resin before the test was determined in the same way, and the performance reduction rate was determined from that value ()
Calculated based on the formula. Performance reduction rate (%) = (1-total exchange capacity after test/total exchange capacity before test) x 100...() The results of Examples 1 to 6 above are shown in Table 1. Comparative Example 1 Using commercially available styrene-divinylbenzenesulfonic acid type cation exchange resin SK-106 (manufactured by Mitsubishi Kasei Corporation) as the resin, a reaction was carried out in the same manner as in Examples 1 to 6. Shown in the table. In this case, the reaction solution turned dark and colored, and sulfuric acid due to resin decomposition was detected (barium precipitation method). in this way,
The performance of the resin deteriorated significantly and it was judged that reuse was inappropriate.
Claims (1)
チオン交換樹脂の存在下で反応させ、フエノール
フタレイン類を製造するに際し、該カチオン交換
樹脂として()式で定義する180℃の温水中、
8時間における性能低下率が2.5%以下のものを
使用することを特徴とするフエノールフタレイン
類の製造方法。 性能低下率(%)=(1−試験後全交換容量/試験前
全交換容量)×100……() 2 反応温度を120℃以上、カチオン交換樹脂の
耐熱温度以下とすることを特徴とする特許請求の
範囲第1項記載の方法。[Claims] 1. When producing phenolphthaleins by reacting phthalic anhydride and phenols in the presence of an acidic cation exchange resin, the cation exchange resin is 180 defined by the formula (). In warm water at ℃,
1. A method for producing phenolphthaleins, characterized in that a phenolphthalein having a performance decrease rate of 2.5% or less in 8 hours is used. Performance reduction rate (%) = (1 - total exchange capacity after test / total exchange capacity before test) × 100... () 2 Characterized by setting the reaction temperature to 120°C or higher and lower than the heat resistance temperature of the cation exchange resin. A method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58235478A JPS60127369A (en) | 1983-12-14 | 1983-12-14 | Production of phenolphthalein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58235478A JPS60127369A (en) | 1983-12-14 | 1983-12-14 | Production of phenolphthalein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60127369A JPS60127369A (en) | 1985-07-08 |
JPH0465868B2 true JPH0465868B2 (en) | 1992-10-21 |
Family
ID=16986657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58235478A Granted JPS60127369A (en) | 1983-12-14 | 1983-12-14 | Production of phenolphthalein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60127369A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2527097Y2 (en) * | 1989-06-30 | 1997-02-26 | ホーヤ株式会社 | Eyeglass lens rack |
-
1983
- 1983-12-14 JP JP58235478A patent/JPS60127369A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60127369A (en) | 1985-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0788839A1 (en) | An ion exchange resin catalyst for the synthesis of bisphends and its preparation | |
US4269943A (en) | Thermally stable resins prepared by bromination or chlorination of aromatic polymer beads followed by sulphonation | |
US4246354A (en) | Process for bromination of resins based on crosslinked vinylaromatic copolymers | |
US3242219A (en) | Preparation of bisphenols | |
CA1147897A (en) | Process for the chloromethylation of polymers for the production of anionic exchange resins | |
WO1996019286A1 (en) | Methylene-bridged aromatic polymer adsorbents with increased hydrophobicity | |
CA1037642A (en) | Process for the chloromethylation of styrene-divinylbenzene copolymers | |
JPH0465868B2 (en) | ||
CA1067649A (en) | Process for the preparation of anion exchangers | |
JPH074532B2 (en) | Sulfonic acid type cation exchange resin for catalysts | |
US20050027135A1 (en) | Methods, systems and catalysts for esterification, esters made thereby and downstream products made from the esters | |
US20050119111A1 (en) | Catalytic reactions using thermally stable resins | |
JPS586245A (en) | Chelate type ion exchange resin and production thereof and adsorbing method | |
JP3333604B2 (en) | Method for producing brominated polystyrene | |
JPH0131526B2 (en) | ||
SU1574611A1 (en) | Method of obtaining selective chelate forming ionite | |
SU499272A1 (en) | The method of obtaining low-base anion exchange resin | |
JPS5943005A (en) | Soluble halomethylated hydroxystyrene polymer and its production | |
RO115640B1 (en) | Process of preparing brominated polyphenyleneoxide | |
JPS60137908A (en) | Production of chloromethylated polymer | |
SU504790A1 (en) | The method of obtaining anion exchange resin | |
JPH11104498A (en) | Sulfonated aromatic polyether ketone cationic exchangers and use of sufonated poly(phenylene sulfide) cationic exchangers as catalyst | |
JPH06116194A (en) | Production of polyvinylbenzyl ether of polyphenol | |
SU434757A1 (en) | Process for producing equally cross-linked macronet polysterene frames for ion-exchange resins | |
JPH0360324B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |