JPH0465621B2 - - Google Patents

Info

Publication number
JPH0465621B2
JPH0465621B2 JP60258607A JP25860785A JPH0465621B2 JP H0465621 B2 JPH0465621 B2 JP H0465621B2 JP 60258607 A JP60258607 A JP 60258607A JP 25860785 A JP25860785 A JP 25860785A JP H0465621 B2 JPH0465621 B2 JP H0465621B2
Authority
JP
Japan
Prior art keywords
transistor
resistor
circuit
constant current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60258607A
Other languages
Japanese (ja)
Other versions
JPS62123930A (en
Inventor
Toshitake Yanagawa
Takeji Nishino
Teruo Sato
Akira Ito
Haruhisa Furuishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic Holdings Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Matsushita Electric Industrial Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25860785A priority Critical patent/JPS62123930A/en
Publication of JPS62123930A publication Critical patent/JPS62123930A/en
Publication of JPH0465621B2 publication Critical patent/JPH0465621B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、通信端末その他の停電補償用電源な
どに用いられる密閉型Ni−Cd電池のトリクル充
電回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a trickle charging circuit for sealed Ni--Cd batteries used in communication terminals and other power outage compensation power supplies.

(従来の技術) 近年、電子回路の小型化、省電力化が進み、そ
れらの停電補償用電源として用いられるNi−Cd
電池も様々な環境下で用いられるようになつてき
た。特に屋外に設置される機器の停電補償用電源
は、−30℃〜+60℃の広い範囲の環境下での使用
が予想され、それらの機器に使用されるトリクル
充電回路には、特別な配慮が必要となつてきた。
(Conventional technology) In recent years, electronic circuits have become smaller and more energy efficient, and Ni-Cd is used as a power supply for power outage compensation.
Batteries have also come to be used in a variety of environments. In particular, power supplies for power outage compensation for equipment installed outdoors are expected to be used in a wide range of environments from -30°C to +60°C, and trickle charging circuits used in such equipment require special consideration. It has become necessary.

(発明が解決しようとする問題点) Ni−Cd電池のトリクル充電は、従来0℃〜45
℃の範囲で1/50C〜1/20C(但し、Cは2次電池
の定格容量を1時間で除した電流値)の準定電流
充電が行なわれてきたが、より広い温度範囲の使
用に対しこの方法を適用すると、高温側(+5℃
〜+60℃の温度範囲、以下高温領域という)で充
電不足となり、低温側(−30℃〜+5℃の温度範
囲、以下低温領域という)では充電末期における
ガス発生速度が、ガス消費速度を超えるため、電
池の内圧が上昇し、安全弁の作動による性能劣化
の危険があつた。
(Problem to be solved by the invention) Conventionally, trickle charging of Ni-Cd batteries ranges from 0°C to 45°C.
Quasi-constant current charging has been carried out in the temperature range of 1/50C to 1/20C (where C is the current value obtained by dividing the rated capacity of the secondary battery by 1 hour), but it is necessary to use it over a wider temperature range. On the other hand, when this method is applied, the high temperature side (+5℃
In the temperature range of ~+60°C (hereinafter referred to as the high temperature range), charging becomes insufficient, and in the low temperature range (-30°C to +5°C, hereinafter referred to as the low temperature range), the gas generation rate at the end of charging exceeds the gas consumption rate. , the internal pressure of the battery rose and there was a risk of performance deterioration due to activation of the safety valve.

本発明は上記問題点に鑑み、Ni−Cd電池をよ
り広い温度範囲で充電するためのトリクル充電回
路を提供するものである。
In view of the above problems, the present invention provides a trickle charging circuit for charging Ni-Cd batteries over a wider temperature range.

(問題点を解決するための手段) この目的を達成するために、本発明によるトリ
クル充電回路は、直流電源と、この直流電源の一
方の端子に一端が接続された基準電圧源と、定電
流回路と、温度補正回路とから構成するようにし
たものである。
(Means for solving the problem) In order to achieve this object, a trickle charging circuit according to the present invention includes a DC power supply, a reference voltage source whose one end is connected to one terminal of the DC power supply, and a constant current It is configured to include a circuit and a temperature correction circuit.

(作用) この構成によれば、高温領域においては温度補
正回路がその機能を停止し、トリクル充電電流は
定電流回路によつて定まる。この定電流回路の温
度特性は正の温度係数を持つので、温度の上昇に
伴ないトリクル充電電流が増加し、高温における
充電不足を防止することができる。
(Function) According to this configuration, the temperature correction circuit stops its function in a high temperature region, and the trickle charging current is determined by the constant current circuit. Since the temperature characteristics of this constant current circuit have a positive temperature coefficient, the trickle charging current increases as the temperature rises, making it possible to prevent insufficient charging at high temperatures.

一方、低温領域では温度補正回路が作動し、定
電流回路の電流値を減少させる。これによつて充
電末期に発生するガス量を抑えることができる。
On the other hand, in a low temperature region, the temperature correction circuit operates and reduces the current value of the constant current circuit. This makes it possible to suppress the amount of gas generated at the end of charging.

(実施例) 以下本発明の一実施例について、図面を参照し
ながら説明する。
(Example) An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すトリクル充電
回路の回路図である。第1図において、1は直流
電源、2は基準電圧源であり、その一端は直流電
源1の一方の端子に接続されており、使用される
温度領域において一定の電圧を出力する。3は
Ni−Cd電池、4は定電流回路であり、第1のト
ランジスタTr-1と、この第1のトランジスタ
Tr-1のエミツタと直流電源1の一方の端子との
間に接続された第1の抵抗R1、第1のトランジ
スタTr-1のベースと直流電源1の一方の端子と
の間に接続された第2の抵抗R2および第1のト
ランジスタTr-1のベースと基準電圧源2の他端
との間に接続された第3の抵抗R3とから構成さ
れている。5は温度補正回路であり、エミツタお
よびコレクタがそれぞれ第4の抵抗R4および第
5の抵抗R5を介して第2の抵抗R2の両端に接続
された第2のトランジスタTr-2、第2のトラン
ジスタTr-2のベースと直流電源1の一方の端子
との間に接続された第6の抵抗R6およびサーミ
スタRt、ならびに第2のトランジスタTr-2のベ
ースと基準電圧源2の他端との間に接続された第
7の抵抗R7とから構成されている。Dは逆流防
止用のダイオードである。
FIG. 1 is a circuit diagram of a trickle charging circuit showing one embodiment of the present invention. In FIG. 1, 1 is a DC power source, and 2 is a reference voltage source, one end of which is connected to one terminal of the DC power source 1, and outputs a constant voltage in the temperature range in which it is used. 3 is
Ni-Cd battery, 4 is a constant current circuit, the first transistor T r-1 and this first transistor
A first resistor R 1 is connected between the emitter of T r-1 and one terminal of the DC power supply 1, and a first resistor R 1 is connected between the base of the first transistor T r-1 and one terminal of the DC power supply 1. It consists of a second resistor R 2 connected to it and a third resistor R 3 connected between the base of the first transistor T r-1 and the other end of the reference voltage source 2 . 5 is a temperature correction circuit, which includes a second transistor T r- 2 whose emitter and collector are connected to both ends of the second resistor R 2 via a fourth resistor R 4 and a fifth resistor R 5 , respectively; The sixth resistor R 6 and thermistor R t connected between the base of the second transistor T r-2 and one terminal of the DC power supply 1, and the base of the second transistor T r-2 and the reference voltage and a seventh resistor R7 connected between the other end of the source 2 and the other end of the source 2. D is a diode for preventing backflow.

以上のように構成されたトリクル充電回路につ
いて、以下その動作について説明する。基準電圧
源2の電圧をVS、第1のトランジスタTr-1およ
び第2のトランジスタTr-2のベース−エミツタ
間電圧をそれぞれVBE1およびVBE2、第1、第2、
〜第7の抵抗R1〜R7の抵抗値をそれぞれR1
R2、〜R7、t℃におけるサーミスタRtの抵抗値
をRtとすると、直流電源1の一方の端子から見
た第1のトランジスタTr-1のベース電圧VB1およ
び第2のトランジスタTr-2のベース電圧VB2はそ
れぞれ(1)式および(2)式となる。
The operation of the trickle charging circuit configured as above will be explained below. The voltage of the reference voltage source 2 is V S , the base-emitter voltages of the first transistor T r-1 and the second transistor T r-2 are V BE1 and V BE2 , the first, second,
~The resistance values of the seventh resistors R 1 to R 7 are respectively R 1 ,
R 2 , ~R 7 , assuming that the resistance value of the thermistor R t at t°C is R t , the base voltage V B1 of the first transistor T r-1 and the second transistor as seen from one terminal of the DC power supply 1 The base voltage V B2 of T r-2 is expressed by equations (1) and (2), respectively.

VB1=R2/R2+R3×VS ……(1) (但し第2のトランジスタが不導通) VB2=R6Rt/R7+R6Rt×VS ……(2) (但しR6Rt=R6・Rt/R7+Rt) まず、高温領域では、サーミスタの抵抗値Rt
が小さくなり、(2)式からVB2も小さくなり、VBE2
>VB2が満足されるため、第2のトランジスタ
Tr-2が不導通となる。
V B1 = R 2 /R 2 +R 3 ×V S ...(1) (However, the second transistor is non-conducting) V B2 =R 6 R t /R 7 +R 6 R t ×V S ...(2) (However, R 6 R t = R 6 · R t / R 7 + R t ) First, in the high temperature region, the resistance value R t of the thermistor
becomes smaller, and from equation (2), V B2 also becomes smaller, and V BE2
>V B2 is satisfied, so the second transistor
T r-2 becomes non-conductive.

一方、定電流回路4によつて流れる定電流の値
をIOとすると、 VB1=R2/R2+R3×VS=R1×IO+VBE1 から IO=1/R1(R2/R2+R3VS−VBE1)=1/R1(VB1−VBE
1
)……(3) となり、定電流IOの温度係数αIOは αIO=d IO/dt=−1/R1 dVBE1/dt ……(4) となる。
On the other hand, if the value of the constant current flowing through the constant current circuit 4 is I O , then V B1 = R 2 / R 2 + R 3 × V S = R 1 × I O + V BE1 to I O = 1/R 1 ( R 2 /R 2 +R 3 V S −V BE1 )=1/R 1 (V B1 −V BE
1
)...(3), and the temperature coefficient αIO of constant current IO is αIO = dIO /dt=-1/ R1 dV BE1 /dt...(4).

一般にトランジスタのdVBE/dtは負の温度計
数であるので、定電流IOは正の温度係数を持つ。
このため、高温領域ではIOが増加し、トリクル充
電電流が大きくなつて充電不足を防止する。
Generally, the dV BE /dt of a transistor is a negative temperature coefficient, so the constant current I O has a positive temperature coefficient.
Therefore, in the high temperature region, IO increases, trickle charging current increases, and insufficient charging is prevented.

第3図は本発明によるトリクル充電回路におけ
る周囲温度Taとトリクル電流Itとの関係を示す
図である。前記の高温領域は図中のイの部分に相
当する。
FIG. 3 is a diagram showing the relationship between ambient temperature Ta and trickle current It in the trickle charging circuit according to the present invention. The above-mentioned high temperature region corresponds to the part A in the figure.

次に温度が徐々に下つてくると、(2)式から判る
ようにVB2が段々と大きくなり、周囲温度Toにお
いて遂に第2のトランジスタTr-2のVBE2に等しく
なる。この時から第2のトランジスタTr-2が導
通しはじめ第2の抵抗R2を流れていた電流の一
部が、第2のトランジスタTr-2を通して流れる
ようになるため、その分だけ第1のトランジスタ
Tr-1のベース電圧VB1が小さくなる。この結果、
(3)式から明らかなように定電流IOは小さくなる。
周囲温度の低下によるサーミスタRtの抵抗値Rt
の変化は指数関数的に増大するため、定電流IO
減少の割合が大きく、これは第3図のロの部分に
相当する。これにより、充電末期に発生するガス
量を抑えることができる。
Next, as the temperature gradually decreases, V B2 gradually increases, as seen from equation (2), and finally becomes equal to V BE2 of the second transistor T r-2 at the ambient temperature To. From this point on, the second transistor T r-2 begins to conduct and part of the current that was flowing through the second resistor R 2 begins to flow through the second transistor T r-2 . 1 transistor
The base voltage V B1 of T r-1 becomes smaller. As a result,
As is clear from equation (3), the constant current I O becomes smaller.
Resistance value R t of thermistor R t due to decrease in ambient temperature
Since the change in I O increases exponentially, the rate of decrease in the constant current I O is large, and this corresponds to the part B in FIG. This makes it possible to suppress the amount of gas generated at the end of charging.

次に本発明の他の実施例について、図面を参照
しながら説明する。
Next, other embodiments of the present invention will be described with reference to the drawings.

第2図は本発明の他の実施例を示すトリクル充
電回路の定電流回路部の構成を示すものであり、
その他の部分は第1図と同一であるので省略し
た。第2図においてDはn(n≧1)個のダイオ
ードであり、第1の抵抗R1、第2の抵抗R2、第
3の抵抗R3および第1のトランジスタTr-1につ
いては第1図と同一であり、説明を省略する。
FIG. 2 shows the configuration of a constant current circuit section of a trickle charging circuit showing another embodiment of the present invention.
The other parts are the same as those in FIG. 1, so they are omitted. In FIG. 2, D is n (n≧1) diodes, and the first resistor R 1 , the second resistor R 2 , the third resistor R 3 and the first transistor T r-1 are This is the same as FIG. 1, and the explanation will be omitted.

以上のように構成された定電流回路4′の特性
について説明する。
The characteristics of the constant current circuit 4' configured as above will be explained.

高温領域においては、定電流回路4′によつて
流れる定電流の値をIO′とすると、第1図と同様
な解析により IO′=1/R1(R2/R2+R3VS−VBE1−nVF) ここでVFはダイオードDの1箇当りの順方向
電圧降下である。この式から定電流IO′の温度係
数αIO′は αIO′=dIO′/dt=−1/R1(dVBE1/dt+n×dV
F/dt となり、一般にdVF/dtが負の温度係数であり、
第1図の場合に比べて定電流IO′の温度係数が大
きくなり、第3図の破線で示したものに相当す
る。
In the high temperature region, if the value of the constant current flowing through the constant current circuit 4' is I O ', then I O ' = 1/R 1 (R 2 /R 2 + R 3 V S −V BE1 −nV F ) Here, V F is the forward voltage drop per diode D. From this formula, the temperature coefficient α IO ′ of constant current I O ′ is α IO ′=dI O ′/dt=−1/R 1 (dV BE1 /dt+n×dV
F /dt, and generally dV F /dt is a negative temperature coefficient,
The temperature coefficient of the constant current I O ' is larger than in the case of FIG. 1, and corresponds to that shown by the broken line in FIG.

低温領域の動作については第1図の場合と同一
であり、その説明を省略する。
The operation in the low temperature region is the same as in the case of FIG. 1, and its explanation will be omitted.

以上のように本実施例によればダイオードの温
度係数を加算することによりトリクル充電の高温
領域での補正を大きくすることができる。
As described above, according to this embodiment, by adding the temperature coefficient of the diode, it is possible to increase the correction in the high temperature region of trickle charging.

なお、第1のトランジスタTr-1はダーリント
ントランジスタであつても同様な効果を得ること
ができる。
Note that the same effect can be obtained even if the first transistor T r-1 is a Darlington transistor.

(発明の効果) 以上詳細に説明したように本発明は、直流電源
と基準電圧源と定電流回路と温度補正回路とによ
り構成したので、高温領域においてはトリクル充
電電流を増加し、低温領域では減少させることが
できる効果がある。
(Effects of the Invention) As explained in detail above, the present invention is configured with a DC power supply, a reference voltage source, a constant current circuit, and a temperature correction circuit, so that the trickle charging current is increased in a high temperature region, and the trickle charge current is increased in a low temperature region. There are effects that can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図は本発明の他の実施例における定電流回路の回
路図、第3図は本発明のトリクル充電回路の充電
電流の温度特性を示す図である。 1……直流電源、2……基準電圧源、3……
Ni−Cd電池、4および4′……定電流回路、5…
…温度補正回路、D……ダイオード、Tr-1
Tr-1……トランジスタ、Rt……サーミスタ。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
The figure is a circuit diagram of a constant current circuit in another embodiment of the present invention, and FIG. 3 is a diagram showing the temperature characteristics of the charging current of the trickle charge circuit of the present invention. 1...DC power supply, 2...Reference voltage source, 3...
Ni-Cd batteries, 4 and 4'...constant current circuit, 5...
...Temperature correction circuit, D...Diode, T r-1 ,
T r-1 ...Transistor, Rt ...Thermistor.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源と、前記直流電源の一方の端子に一
端が接続された基準電圧源と、第1のトランジス
タ、前記第1のトランジスタのエミツタと前記直
流電源の一方の端子との間に接続された第1の抵
抗、前記第1のトランジスタのベースと前記直流
電源の一方の端子との間に接続された第2の抵抗
および前記第1のトランジスタのベースと前記基
準電圧源の他端との間に接続された第3の抵抗と
から形成される定電流回路と、エミツタおよびコ
レクタがそれぞれ第4の抵抗および第5の抵抗を
介して前記第2の抵抗の両端に接続された第2の
トランジスタ、前記第2のトランジスタのベース
と前記直流電源の一方の端子との間に接続された
第6の抵抗とサーミスタ、および前記第2のトラ
ンジスタのベースと前記基準電圧源の他端との間
に接続された第7の抵抗とから形成される温度補
正回路とにより充電回路を構成し、前記温度補正
回路は、−30℃〜+5℃の温度範囲において動作
し、温度低下に対応して充電電流を減少させるよ
うにしたことを特徴とするトリクル充電回路。
1. A DC power supply, a reference voltage source having one end connected to one terminal of the DC power supply, and a first transistor, connected between the emitter of the first transistor and one terminal of the DC power supply. a first resistor, a second resistor connected between the base of the first transistor and one terminal of the DC power source, and a second resistor connected between the base of the first transistor and the other end of the reference voltage source. a third resistor connected to a constant current circuit, and a second transistor whose emitter and collector are connected to both ends of the second resistor via a fourth resistor and a fifth resistor, respectively. , a sixth resistor and thermistor connected between the base of the second transistor and one terminal of the DC power source, and between the base of the second transistor and the other end of the reference voltage source. A charging circuit is configured by a connected seventh resistor and a temperature correction circuit formed from the temperature correction circuit, and the temperature correction circuit operates in a temperature range of -30°C to +5°C, and the charging current is adjusted in response to a decrease in temperature. A trickle charge circuit characterized in that it reduces the
JP25860785A 1985-11-20 1985-11-20 Trickle charging circuit Granted JPS62123930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25860785A JPS62123930A (en) 1985-11-20 1985-11-20 Trickle charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25860785A JPS62123930A (en) 1985-11-20 1985-11-20 Trickle charging circuit

Publications (2)

Publication Number Publication Date
JPS62123930A JPS62123930A (en) 1987-06-05
JPH0465621B2 true JPH0465621B2 (en) 1992-10-20

Family

ID=17322622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25860785A Granted JPS62123930A (en) 1985-11-20 1985-11-20 Trickle charging circuit

Country Status (1)

Country Link
JP (1) JPS62123930A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106336A (en) * 1983-11-11 1985-06-11 日本電信電話株式会社 Monitoring system of preliminary power source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106336A (en) * 1983-11-11 1985-06-11 日本電信電話株式会社 Monitoring system of preliminary power source

Also Published As

Publication number Publication date
JPS62123930A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US4847547A (en) Battery charger with Vbe temperature compensation circuit
JP3322685B2 (en) Constant voltage circuit and constant current circuit
US5569550A (en) Battery pack having under-voltage and over-voltage protection
US5539299A (en) Protection switch for a battery powered device
WO1994005069A1 (en) Battery temperature compensating device for battery recharging systems
EP1034595A1 (en) Control loop for pulse charging lithium ion cells
CN112821497B (en) Lithium battery protection system and lithium battery
JPH0223040A (en) Controller for ac vehicle generator
US5703476A (en) Reference voltage generator, having a double slope temperature characteristic, for a voltage regulator of an automotive alternator
WO2018143290A1 (en) Charging device
JPH0465621B2 (en)
US7560899B1 (en) Circuit and method for adjusting safety time-out with charge current
US3421068A (en) Trickle charge voltage stabilization nickel-cadmium battery
US4013934A (en) Battery charging circuit
CN220544732U (en) Constant temperature charging circuit and charger
CN109274153B (en) Temperature compensation circuit for charging energy storage module and charger
EP0751451A1 (en) Reference voltage generator, having a double slope temperature characteristic, for a voltage regulator of an automotive alternator
JPH0624359U (en) Battery Charger
JP2003087994A (en) Power supply backup circuit and reverse current consuming circuit
JPS5822932B2 (en) charger
JPS6110453Y2 (en)
JPH01160325A (en) Battery recharger
JPH0159602B2 (en)
JPH0226234A (en) Charger for storage battery
JP3301087B2 (en) Charging circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees