JPH0465265B2 - - Google Patents

Info

Publication number
JPH0465265B2
JPH0465265B2 JP63224409A JP22440988A JPH0465265B2 JP H0465265 B2 JPH0465265 B2 JP H0465265B2 JP 63224409 A JP63224409 A JP 63224409A JP 22440988 A JP22440988 A JP 22440988A JP H0465265 B2 JPH0465265 B2 JP H0465265B2
Authority
JP
Japan
Prior art keywords
expanded graphite
annular
graphite powder
corrugated
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63224409A
Other languages
Japanese (ja)
Other versions
JPH0276971A (en
Inventor
Junichi Aizawa
Hiroshi Shirata
Takeshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22440988A priority Critical patent/JPH0276971A/en
Publication of JPH0276971A publication Critical patent/JPH0276971A/en
Publication of JPH0465265B2 publication Critical patent/JPH0465265B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Devices (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は原子炉等に用いられ、仕切弁等の弁棒
をシールするグランドパツキン及びその製造法に
関する。 (従来の技術) 従来のこの種のグランドパツキン(以下GPと
略記する)は、第5図に示すように石綿、黒鉛等
とシール性を付与する油脂との混合物2を石綿紐
を袋編みした編組体1で包んだもの、第6図の断
面図に示すテープ状の膨張黒鉛シート(膨張黒鉛
テープ)3の巻回物を成形したもの、環状の膨張
黒鉛シート3′を複数枚積重ねて成形したもの
(第7図)などが知られている。 第4図はGPの使用法を示す断面図で、弁棒1
3の上部からGP10を嵌入し(図の場合は6個)
パツキンボツクス11内に収納する。次いでグラ
ンド12でGP10を上部から押え、更にねじ1
6を廻してGP10を圧縮し、下方の隙間17か
ら水のような流体が弁棒13に沿つて洩れ出るの
を防ぐ。機械が嫁動すると弁棒13は矢印のよう
に上下してGP10の内周面と摺動する。通常は
石綿等の繊維入りGPと膨張黒鉛単独のGPとを組
合せて使用し、シール性を保持する。 (発明が解決しようとする課題) しかしながら、油脂を含むGPは100℃以上の高
温では油脂が滲出してシール性が低下する欠点が
あり、膨張黒鉛を用いたGP(通常グラフアイト
GPという)は高温でのシール性は優れているが、
第6図に示す巻回方式のものは弁棒等へ黒鉛が付
着し易いことから若干摺動抵抗が大きく、第7図
に示す積層方式のものは可撓性が乏しい欠点があ
る。GPは第2図に示すような切り込み6を入れ
たものがよく用いられ、使用に際して切り込み6
の左側端部7及び右側端部8を手で上下に広げて
弁棒等に通すものである。このとき切り込み6の
180度反対側の点9の近傍が支点のようになつて
捩られるが、可撓性が乏しいと層間剥離を起した
り、折れたりする。このため積層方式のものは、
リングを二分割にして組合せて使用しており、
GPの挿入、取り外しなどの施工性が劣る。 本発明は上記したような問題を解決し、摺動抵
抗が小さく、可撓性に優れたグラフアイトGP及
びその製造法を提供することを目的とする。 (課題を解決するための手段) 本発明者らか種々の角度から鋭意検討の結果、
平板の膨張黒鉛シートを積層成形するGPに代え
て、波形に形成した膨張黒鉛シートを積層成形し
たGPを用いれば、波形の部分で変形の応力が吸
収され、可撓性及びシール性が著しく改良される
ことを見出し、本発明を完成するに到つた。 本発明は、膨張黒鉛粉又は環状に打抜いた平板
の膨張黒鉛シートを成形して径方向に同心円状に
波形を有する環状の膨張黒鉛シートとし、次いで
金型の環状空間に、底部に膨張黒鉛粉又はその成
形体を敷き、その上に前記同心円状に波形を有す
る環状の膨張黒鉛シートを複数枚積重ね、更にそ
の上部に膨張黒鉛粉又はその成形体を載せて、環
状の上パンチで加圧成形して一体化するグランド
パツキンの製造法及び該製造法で製造したグラン
ドパツキンに関する。 本発明において、径方向に同心円状に波形を有
する環状の膨張黒鉛シート(以下、波形環と呼
ぶ)は、例えばダイス、中子及び上面に同心円状
に波形を有する下パンチからなる金型の環状空間
に膨張黒鉛粉を充填し、下面に前記下パンチの波
形の山又は谷に合致する谷又は山からなる波形を
同心円状に設けた環状の上パンチと前記下パンチ
とで膨張黒鉛粉を圧縮成形して得られる。膨張黒
鉛粉の代りに平板の膨張黒鉛シートを環状に打抜
いたものを上記金型で成形したものでもよい。上
記の下パンチ及び中子は一体のものでも組合せて
使用するものでもよい。波形環の山の数又は谷の
数は1個でも複数個でもよく、そのピツチも特に
制限はない。谷の頂部の曲率半径は0.5mm以上が
好ましい。小さいと波形環に亀劣が入り易くな
る。尚、膨張黒鉛粉は天然黒鉛、熱分解黒鉛、キ
ツシユ黒鉛等の黒鉛の粉末を濃硫酸と濃硝酸、塩
素酸カリウム、過マンガン酸カリウム等の酸化剤
との混液に浸漬した後水洗し、次いで約1000℃に
急熱して黒鉛層間(C軸方向)を拡張したもので
あり、これをロール掛け等によりシート状に形成
したものが平板の膨張黒鉛シートであり、粉及び
シート共に公知のものを使用する。膨張黒鉛粉の
かさ密度及び膨張黒鉛シートの厚さは特に制限は
ないが、波形環を得るためのシートの厚さは0.1
〜1.0mmが好ましい。第3図は波形環の例を示し、
aは平面図、bはaのA−A′断面正面図であり、
1個の山14の両側に2個の谷15を径方向に同
心円上に配したものである。 GPは、通常、プレスに取付けたダイス、中子
及び上面が平面の下パンチからなる金型の環状空
間に、まず底部に膨張黒鉛粉を収納し、その上に
波形環を複数枚積重ね、更にその上に膨張黒鉛粉
を載せて、下面が平面の上パンチと前記下パンチ
とで上記収納物を加圧成形一体化して得られ、環
の断面が第1図に示すように波形環4の上下を片
側が波形の膨張黒鉛成形体(片側波形環)5で挾
んだものとされる。上記の製造法において膨張黒
鉛粉の代りにあらかじめ片側だけ波形に膨張黒鉛
粉を成形しておいた片側波形環を波形環の上下に
配して成形してもよい。波形環同士及び/又は波
形環と片側波形環とを柔軟性を有する接着剤を用
いて接着すれば剥離防止に一層効果がある。波形
環だけを積層成形して波形のGPとしてもよい。 (作用) GPを弁棒等に通す際に捩られても、波形の部
分で変形の応力が吸収され、層間剥離や折損が防
止される。 (実施例) 次に本発明の実施例を説明する。 実施例 1 厚さ0.38mmの膨張黒鉛シート(日立化成工業
製、商品名カーボフイツト)を環状に打抜いた
後、プレスに取付けた内径48mmのダイスと直径32
mmの中子との間の環状空間に収納し、同心円状に
波形を有する環状の上パンチ及び下パンチ(上パ
ンチの谷と下パンチの山とが一致する)により圧
縮成形して全厚3mm、外径48mm、内径32mmの第3
図に示す山14と谷15を有する波形環を得た。
尚、波形環の谷の頂部は1Rとした。次に上パン
チ及び下パンチを下面及び上面が平面のものに交
換し、金型内の環状空間にまずかさ密度0.002g/
cm3の膨張黒鉛粉(日立化成工業製、HGP−7)
2gを入れ、体積が半分になる程度に軽く成形
し、次いで前記波形環を28枚入れ、更にその上に
前記膨張黒鉛粉2gを入れて、全圧3トンで加圧
成形して厚さ8mmのGPを得た。 比較例 1 実施例1で用いたと同じ膨張黒鉛シートを外径
48mm及び内径32mmに打抜いたものを33枚重ねて、
実施例1におけるGPの成形に用いたプレスで加
圧成形し、厚さ8mmの断面が第7図に示すGPを
得た。 比較例 2 厚さ0.38mmのカーボフイツトのテープを直径32
mmの中子に外径がほぼ48mmになるまで巻回し、こ
れを実施例1における成形に用いたプレスで加圧
成形し、実施例1と同一寸法のGPを得た。 実施例1、比較例1及び2で得られたGPにダ
イヤモンドカツターを用いて第2図に示すような
45度の切り込み6を入れ、以下の試験を行つた。 (1) 可撓性試験 第2図における切り込み6の左側端部7及び右
側端部8を手で上下に弁棒の径32mmまで拡げる
(GPを捩る)試験を8個のGPについて行つたと
ころ、実施例1及び比較例2のGPは異常がなか
つたが、比較例1のGPは全部が層間剥離を起し
た。 (2) 摺動試験 第4図においてGPを同種の8個としてパツキ
ンボツクスに組込み、グランドによる締付圧力が
300Kg/cm2及び400Kg/cm2として弁棒を上下させた場
合の摩擦による抵抗(摺動抵抗)を第1表に示し
た。尚、弁棒への黒鉛粉の付着は、実施例1及び
比較例1のGPを使用した場合は殆んどなかつた
が、比較例2のGPを使用した場合は付着が認め
られた。 (3) 圧縮率 (2)においてGPを400Kg/cm2に締付けた場合の圧
縮率も測定したのでこれを第1表に示す。圧縮率
は、圧縮前の厚みT1及び圧縮後の厚みT2の値か
ら、次式により算出した。 圧縮率(%)=T1−T2/T1×100 (4) 水洩れ試験 第4図においてGPを同種の8個とし締付圧力
を400Kg/cm2として、弁棒が静止した状態で下方か
ら水圧をかけ、弁棒との隙間から水が洩れ始まる
ときの水圧を測定した。試験結果を第1表に示
す。
(Industrial Application Field) The present invention relates to a gland packing used in nuclear reactors and the like to seal valve stems of gate valves, etc., and a method for manufacturing the same. (Prior art) This type of conventional ground packing (hereinafter abbreviated as GP) is made by bag-weaving asbestos string with a mixture 2 of asbestos, graphite, etc. and oil and fat that provides sealing properties, as shown in Figure 5. One wrapped with a braided body 1, one formed by winding a tape-shaped expanded graphite sheet (expanded graphite tape) 3 shown in the cross-sectional view of FIG. 6, and one formed by stacking a plurality of annular expanded graphite sheets 3'. (Figure 7) is known. Figure 4 is a cross-sectional view showing how to use GP.
Insert GP10 from the top of 3 (6 pieces in the figure)
It is stored in a packing box 11. Next, hold the GP10 from above with the gland 12, and then tighten the screw 1.
6 to compress the GP 10 and prevent fluid such as water from leaking along the valve stem 13 from the lower gap 17. When the machine moves, the valve stem 13 moves up and down as shown by the arrow and slides on the inner peripheral surface of the GP 10. Usually, a combination of GP containing fibers such as asbestos and GP made of expanded graphite alone is used to maintain sealing properties. (Problem to be solved by the invention) However, GP containing oil has the disadvantage that the oil oozes out at high temperatures of 100°C or higher, reducing sealing performance.
GP) has excellent sealing properties at high temperatures, but
The winding type shown in FIG. 6 has a slightly large sliding resistance because graphite tends to adhere to the valve stem, etc., and the stacking type shown in FIG. 7 has the disadvantage of poor flexibility. GP is often used with a notch 6 as shown in Figure 2.
The left end 7 and right end 8 of the valve are spread vertically by hand and passed through a valve stem or the like. At this time, the notch 6
The vicinity of point 9 on the opposite side of 180 degrees acts as a fulcrum and is twisted, but if the flexibility is poor, delamination or breakage may occur. For this reason, the laminated type
The ring is divided into two parts and used in combination.
The workability of inserting and removing GP is poor. An object of the present invention is to solve the above-mentioned problems and provide graphite GP which has low sliding resistance and excellent flexibility, and a method for producing the same. (Means for Solving the Problems) As a result of intensive study from various angles by the present inventors,
If we use a GP made by laminating expanded graphite sheets formed into a corrugated shape instead of a GP made by laminating and molding flat expanded graphite sheets, the stress of deformation will be absorbed by the corrugated part, and the flexibility and sealing performance will be significantly improved. The present invention was completed based on the discovery that the present invention is possible. The present invention involves molding expanded graphite powder or a flat expanded graphite sheet punched into an annular shape to form an annular expanded graphite sheet having corrugations concentrically in the radial direction, and then filling the annular space of a mold with expanded graphite at the bottom. Powder or a molded product thereof is spread, a plurality of annular expanded graphite sheets having concentric corrugations are stacked on top of the powder, expanded graphite powder or a molded product thereof is placed on top of the annular expanded graphite sheet, and the expanded graphite powder or a molded product thereof is placed on top of the sheet and then pressed with an annular upper punch. The present invention relates to a method for manufacturing a gland packing that is molded and integrated, and a gland packing manufactured by the method. In the present invention, an annular expanded graphite sheet having concentric corrugations in the radial direction (hereinafter referred to as a corrugated ring) is used to form an annular shape of a mold consisting of, for example, a die, a core, and a lower punch having concentric corrugations on the upper surface. The space is filled with expanded graphite powder, and the expanded graphite powder is compressed by the lower punch and an annular upper punch whose lower surface has a concentric waveform consisting of valleys or peaks that match the waveform peaks or valleys of the lower punch. Obtained by molding. Instead of the expanded graphite powder, a flat expanded graphite sheet punched out into an annular shape and molded using the mold described above may be used. The lower punch and core described above may be integrated or used in combination. The number of peaks or valleys in the waveform ring may be one or more, and the pitch thereof is not particularly limited. The radius of curvature at the top of the valley is preferably 0.5 mm or more. If it is too small, it will be easy for the corrugated ring to become rough. In addition, expanded graphite powder is obtained by immersing graphite powder such as natural graphite, pyrolytic graphite, and Kitsushi graphite in a mixture of concentrated sulfuric acid and an oxidizing agent such as concentrated nitric acid, potassium chlorate, and potassium permanganate, and then washing it with water. It is made by rapidly heating to about 1000℃ to expand the interlayer graphite (in the C-axis direction), and this is formed into a sheet by rolling etc. to form a flat expanded graphite sheet. Both the powder and the sheet are known. use. The bulk density of the expanded graphite powder and the thickness of the expanded graphite sheet are not particularly limited, but the thickness of the sheet to obtain a corrugated ring is 0.1
~1.0 mm is preferred. Figure 3 shows an example of a wave ring,
a is a plan view, b is a cross-sectional front view taken along line A-A′ of a;
Two valleys 15 are arranged concentrically in the radial direction on both sides of one peak 14. GP usually consists of a die attached to a press, a core, and a lower punch with a flat top surface. In the annular space of the mold, expanded graphite powder is first stored at the bottom, and multiple corrugated rings are stacked on top of it. Expanded graphite powder is placed on top of it, and the above-mentioned article is pressure-molded and integrated with the upper punch and the lower punch, each of which has a flat lower surface. The upper and lower sides are sandwiched between expanded graphite molded bodies (one-sided corrugated ring) 5 each having a corrugated one side. In the above manufacturing method, instead of using expanded graphite powder, a one-sided corrugated ring in which expanded graphite powder has been formed into a corrugated shape on one side may be placed above and below the corrugated ring. If the corrugated rings are adhered to each other and/or the corrugated ring and the one-side corrugated ring using a flexible adhesive, it is more effective to prevent peeling. It is also possible to form a corrugated GP by laminating and molding only the corrugated ring. (Function) Even if GP is twisted when passing through a valve stem, etc., the stress of deformation is absorbed by the corrugated portion, preventing delamination and breakage. (Example) Next, an example of the present invention will be described. Example 1 An expanded graphite sheet (manufactured by Hitachi Chemical Co., Ltd., trade name: Carbofit) with a thickness of 0.38 mm was punched into an annular shape, and then a die with an inner diameter of 48 mm and a diameter of 32 mm was attached to a press.
It is stored in the annular space between the mm core and compression-molded with an annular upper punch and lower punch (the valleys of the upper punch and the peaks of the lower punch coincide) with concentric waveforms to a total thickness of 3 mm. , the third with an outer diameter of 48 mm and an inner diameter of 32 mm.
A wavy ring having peaks 14 and valleys 15 as shown in the figure was obtained.
Note that the top of the valley of the wavy ring was 1R. Next, replace the upper punch and lower punch with ones whose lower and upper surfaces are flat, and fill the annular space in the mold with a bulk density of 0.002g/
cm 3 expanded graphite powder (manufactured by Hitachi Chemical, HGP-7)
2g of the expanded graphite powder was added and molded lightly so that the volume was reduced to half, then 28 of the above corrugated rings were added, and on top of that, 2g of the expanded graphite powder was added and pressure molded under a total pressure of 3 tons to give a thickness of 8mm. got a GP. Comparative Example 1 The same expanded graphite sheet used in Example 1 was
33 pieces punched to 48mm and 32mm inner diameter are stacked together.
Pressure molding was performed using the press used for molding the GP in Example 1 to obtain a GP with a thickness of 8 mm and a cross section shown in FIG. 7. Comparative example 2 Carbofit tape with a thickness of 0.38 mm and a diameter of 32 mm.
This was wound around a core having an outer diameter of approximately 48 mm, and this was pressure molded using the press used for molding in Example 1 to obtain a GP having the same dimensions as in Example 1. The GP obtained in Example 1 and Comparative Examples 1 and 2 was cut using a diamond cutter as shown in Figure 2.
A 45 degree cut 6 was made and the following test was conducted. (1) Flexibility test A test was conducted on 8 GPs in which the left end 7 and right end 8 of the notch 6 in Figure 2 were manually expanded up and down to a valve stem diameter of 32 mm (the GP was twisted). The GPs of Example 1 and Comparative Example 2 had no abnormalities, but all of the GPs of Comparative Example 1 caused delamination. (2) Sliding test In Figure 4, 8 pieces of the same type of GP are assembled in a packing box, and the tightening pressure by the gland is
Table 1 shows the frictional resistance (sliding resistance) when the valve stem is moved up and down at 300Kg/cm 2 and 400Kg/cm 2 . Incidentally, there was almost no adhesion of graphite powder to the valve stem when the GPs of Example 1 and Comparative Example 1 were used, but adhesion was observed when the GP of Comparative Example 2 was used. (3) Compression Ratio In (2), the compression ratio when the GP was tightened to 400Kg/cm 2 was also measured and is shown in Table 1. The compression ratio was calculated using the following formula from the values of the thickness T 1 before compression and the thickness T 2 after compression. Compression ratio (%) = T 1 - T 2 / T 1 × 100 (4) Water leak test In Fig. 4, 8 GPs of the same type are used, the tightening pressure is 400 kg/cm 2 , and the valve stem is stationary. Water pressure was applied from below, and the water pressure was measured when water began to leak from the gap between the valve stem and the valve stem. The test results are shown in Table 1.

【表】 第1表からわかるように実施例1のGPは、弁
棒を上下する際の抵抗が比較例1の平板を積層し
たものと同じで、比較例2の巻付け方式のものよ
り優れ、圧縮率は比較例よりも優れた適切な値を
示し、水洩れ試験では予想外の好結果が得られ
た。これは圧縮によつてGPが径方向によく伸び
ると共に復元力を有するためと考えられる。 実施例 2 実施例1における波形環の両側に接着剤(住友
スリーエム製、デザインボンド)を吹きつけ、以
下実施例1と同じ方法でGPを得た。このGPは可
撓性試験において切り込み端部を40mmの間隔まで
押し拡げても層間剥離を起さなかつた。摺動抵
抗、圧縮率及び水洩れ圧力は実施例1のGPとほ
ぼ同じ値を示した。 (発明の効果) 本発明によれば、可撓性に優れ、弁棒等が摺動
する際の抵抗が小さく、更に流体のシール性が予
想外に良好なGPが得られ、圧力の小さい密封装
置に対しては本発明のGPだけで石綿繊維入りの
GPと組合せなくとも使用可能である。
[Table] As can be seen from Table 1, the resistance of the GP of Example 1 when moving the valve stem up and down is the same as that of the laminated flat plate of Comparative Example 1, and is superior to that of Comparative Example 2 of the wrapping method. The compressibility showed an appropriate value that was better than that of the comparative example, and unexpectedly good results were obtained in the water leakage test. This is thought to be because GP stretches well in the radial direction due to compression and has restoring force. Example 2 An adhesive (Design Bond, manufactured by Sumitomo 3M) was sprayed on both sides of the corrugated ring in Example 1, and a GP was obtained in the same manner as in Example 1. In a flexibility test, this GP did not cause delamination even when the cut ends were pushed apart to a distance of 40 mm. The sliding resistance, compressibility and water leakage pressure showed almost the same values as the GP of Example 1. (Effects of the Invention) According to the present invention, a GP with excellent flexibility, low resistance when the valve stem etc. slides, and unexpectedly good fluid sealing performance can be obtained, and a seal with low pressure can be obtained. For equipment, only the GP of the present invention can be used with asbestos fibers.
Can be used without combining with GP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のGPの一部切欠断面図、第2
図は切り込みを入れたGPの斜視図、第3図は本
発明の実施例で使用する波形環でaは平面図、b
は正面図、第4図はGPの使用方法を説明する断
面図、第5図は従来のGPの一部切欠断面図、第
6図は膨張黒鉛テープの巻回物の一部切欠断面
図、第7図は従来の他のGPの一部切欠断面図で
ある。 符号の説明 1…編組体、2…混合物、3…膨
張黒鉛テープ、4…波形環、5…片側波形環、6
…切り込み、7…左側端部、8…右側端部、9…
点、10…GP、11…パツキングボツクス、1
2…グランド、13…弁棒、14…山、15…
谷、16…ねじ、17…隙間。
Fig. 1 is a partially cutaway sectional view of the GP of the present invention, Fig. 2 is a partially cutaway sectional view of the GP of the present invention;
The figure is a perspective view of the GP with a notch, and Figure 3 is a corrugated ring used in an embodiment of the present invention, a is a plan view, and b
is a front view, FIG. 4 is a sectional view explaining how to use GP, FIG. 5 is a partially cutaway sectional view of a conventional GP, and FIG. 6 is a partially cutaway sectional view of a rolled expanded graphite tape. FIG. 7 is a partially cutaway sectional view of another conventional GP. Explanation of symbols 1...braided body, 2...mixture, 3...expanded graphite tape, 4...corrugated ring, 5...unilaterally corrugated ring, 6
...notch, 7...left end, 8...right end, 9...
Point, 10...GP, 11...Packing box, 1
2...Ground, 13...Valve stem, 14...Mountain, 15...
Valley, 16... screw, 17... gap.

Claims (1)

【特許請求の範囲】 1 膨張黒鉛粉又は環状に打抜いた平板の膨張黒
鉛シートを成形して径方向に同心円状に波形を有
する環状の膨張黒鉛シートとし、次いで金型の環
状空間に、底部に膨張黒鉛粉又はその成形体を敷
き、その上に前記同心円状に波形を有する環状の
膨張黒鉛シートを複数枚積重ね、更にその上部に
膨張黒鉛粉又はその成形体を載せて、環状の上パ
ンチで加圧成形して一体化することを特徴とする
グランドパツキンの製造法。 2 請求項1記載のグランドパツキンの製造法で
製造したグランドパツキン。
[Scope of Claims] 1. Expanded graphite powder or a flat expanded graphite sheet punched into an annular shape is molded into an annular expanded graphite sheet having concentric corrugations in the radial direction, and then the bottom part is placed in the annular space of the mold. Expanded graphite powder or a molded product thereof is spread on the surface, a plurality of annular expanded graphite sheets having concentric corrugations are stacked on top of the expanded graphite powder, and expanded graphite powder or a molded product thereof is placed on top of the annular expanded graphite sheet, and an annular upper punch is formed. A manufacturing method for gland packing characterized by pressure molding and integrating. 2. A ground packing manufactured by the method for producing a ground packing according to claim 1.
JP22440988A 1988-09-09 1988-09-09 Gland packing and manufacture thereof Granted JPH0276971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22440988A JPH0276971A (en) 1988-09-09 1988-09-09 Gland packing and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22440988A JPH0276971A (en) 1988-09-09 1988-09-09 Gland packing and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH0276971A JPH0276971A (en) 1990-03-16
JPH0465265B2 true JPH0465265B2 (en) 1992-10-19

Family

ID=16813313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22440988A Granted JPH0276971A (en) 1988-09-09 1988-09-09 Gland packing and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0276971A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352976A (en) * 1992-01-31 1994-10-04 Tektronix, Inc. Multi-channel trigger dejitter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260332A (en) * 1984-06-08 1985-12-23 ニチアス株式会社 Braided packing containing core and manufacture thereof
JPS61197858A (en) * 1985-02-28 1986-09-02 Nippon Valqua Ind Ltd Manufacture of expansion graphite ground packing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260332A (en) * 1984-06-08 1985-12-23 ニチアス株式会社 Braided packing containing core and manufacture thereof
JPS61197858A (en) * 1985-02-28 1986-09-02 Nippon Valqua Ind Ltd Manufacture of expansion graphite ground packing

Also Published As

Publication number Publication date
JPH0276971A (en) 1990-03-16

Similar Documents

Publication Publication Date Title
US5605341A (en) Knitting yarn for gland packing and gland packing made from the knitting yarn
JP2769523B2 (en) Packing ring structure and manufacturing method thereof, and sealing device using the same
EP0391069B1 (en) Spiral wound gasket and fabrication method thereof
US4403631A (en) Flexible pipe
US5421594A (en) Gasket
US4068853A (en) Stuffing box seal
US3240234A (en) Hose for low-temperature liquids
US4479269A (en) Athletic padding
JPH03249482A (en) Packing and manufacture thereof
JPH0465265B2 (en)
JPH0425671A (en) Grand packing
US3188706A (en) Fastenerless splice and method of forming same
US4493140A (en) Method of manufacturing a flexible pipe
US4718958A (en) Vacuum-type insulation article having an elastic outer member and a method of manufacturing the same
US6106961A (en) Sliding sheet material for high-temperature use and packing
US8925591B2 (en) Axially compressible flexible tubing and method for making same
GB2327199A (en) Manufacturing tubular packing
JPH0446118Y2 (en)
JP3008343B2 (en) Expanded graphite sheet and gland packing using the same
US3492011A (en) Laminated gasket construction
JPH06201050A (en) Ring packing
JP2926156B2 (en) Expanded graphite ring-shaped sealing material and method of manufacturing the same
CN206572103U (en) Spirotallic gasket
JP2926157B2 (en) Expanded graphite ring-shaped sealing material and method of manufacturing the same
JPS5936147B2 (en) Manufacturing method for molded packing that is easy to take out

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term