JPH046468A - Method for accurately dispensing very small amount of specimen - Google Patents

Method for accurately dispensing very small amount of specimen

Info

Publication number
JPH046468A
JPH046468A JP10761390A JP10761390A JPH046468A JP H046468 A JPH046468 A JP H046468A JP 10761390 A JP10761390 A JP 10761390A JP 10761390 A JP10761390 A JP 10761390A JP H046468 A JPH046468 A JP H046468A
Authority
JP
Japan
Prior art keywords
dispensing
pump
solenoid valve
sample
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10761390A
Other languages
Japanese (ja)
Inventor
Hiroshi Umetsu
梅津 広
Tadashi Oishi
大石 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10761390A priority Critical patent/JPH046468A/en
Publication of JPH046468A publication Critical patent/JPH046468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To eliminate the effect of water pressure on the solenoid valve on the side of a syringe by connecting two solenoid valves for connecting and disconnecting a flow path to the syringe and a pump in series to attain to relax flow pressure and closing the solenoid valves to temporarily stop the pump at the time of the suction of a very small amount of a specimen and releasing the water pressure remaining between the solenoid valves during the stop of the pump by opening the solenoid valve on the side of the pump. CONSTITUTION:A pump 30 is stopped simultaneously with the falling of a dispenser mechanism 5 and, at the same time, a solenoid valve 28 is opened. By this mechanism, the water pressure remaining between solenoid valves 27, 28 is released and the closing operation of the solenoid valve 27 is stably held during the operation of a dispenser syringe 23 to make it possible to enhance the weighing accuracy of a specimen. The residual pressure slightly becomes negative pressure by the head of the pump 30 with a distilled water tank 29 but acts on the solenoid valve 27 in a good direction for the action in the direction supporting closing operation to enhance accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動分析装置の試料・試薬分注精度を良くする
分注方法に係り、特に微量試料吸引時にポンプ動作を停
止し電磁弁開閉への阻害を防止。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a dispensing method that improves the accuracy of dispensing samples and reagents in automatic analyzers. In particular, the present invention relates to a dispensing method that improves the accuracy of dispensing samples and reagents in automatic analyzers, and in particular, stops pump operation when aspirating a small amount of sample and switches the solenoid valve to open/close. prevention of inhibition.

又洗浄槽で分注プローブに付着する水滴に極少にするこ
とで分注精度をよくする分注方法に関する。
The present invention also relates to a dispensing method that improves dispensing accuracy by minimizing the amount of water droplets that adhere to the dispensing probe in a cleaning tank.

〔従来の技術〕[Conventional technology]

従来の自動分析装置における分注方法は洗浄水による分
注プローブの洗浄方法又は蒸留水タンクより蒸留水を吸
上げるポンプの動作については特に明記されていなかっ
た。又、卓上形自動分析装置の多くは蒸留水タンクを装
置と同じ卓上に設置し、床置形自動分析装置では該タン
クを床に置くものが殆どであった。
Regarding the dispensing method in the conventional automatic analyzer, there is no particular specification regarding the method of washing the dispensing probe with washing water or the operation of the pump that sucks up distilled water from the distilled water tank. Furthermore, most table-top automatic analyzers have a distilled water tank installed on the same table as the apparatus, and most floor-standing automatic analyzers have the tank placed on the floor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は蒸留水タンクから自給ポンプで水を吸上
げる方法は少なく従ってポンプそのものも呼び水タイプ
の例えばマグネットポンプが多かった。このマグネット
ポンプは自給力がないため、床置きの蒸留水タンクから
卓上設置の自動分析装置への水の吸上げは出来ず使用条
件が限定されていた。本装置は小形ダイヤフラムポンプ
を卓上形装置に内蔵させ床置きタンクより自給すること
を可能にした。しかしながらダイヤフラムポンプはダイ
ヤフラムの動作による断続流水となりこの圧力変動がポ
ンプ電源の周波数と同期して発生し、同流路系に接続さ
れている電磁弁動作に悪影響を及ぼし試料・試薬の分注
精度を悪くした。本発明は微少試料吸引時にダイヤプラ
ムポンプを一時停止する方法で改良することにある。本
発明の他の目的は、試薬吸引で汚れたプローブを蒸留水
で洗浄する時に付着する水滴を極少にするプローブの洗
浄方法の改良に係る。
In the above-mentioned conventional technology, there are few methods for sucking up water from a distilled water tank using a self-contained pump, and therefore, the pump itself is often of the priming type, such as a magnet pump. Since this magnetic pump does not have self-sufficient power, it cannot draw water from a floor-standing distilled water tank to a desktop-mounted automatic analyzer, and its usage conditions are limited. This device incorporates a small diaphragm pump into a tabletop device, making it possible to self-supply from a floor-standing tank. However, with diaphragm pumps, water flows intermittently due to the operation of the diaphragm, and this pressure fluctuation occurs in synchronization with the frequency of the pump power supply, which adversely affects the operation of the solenoid valves connected to the same flow path system and reduces the dispensing accuracy of samples and reagents. I made it worse. The present invention aims to improve the method of temporarily stopping the diaphragm pump when aspirating a minute sample. Another object of the present invention is to improve a probe cleaning method that minimizes the amount of water droplets that adhere when cleaning a probe contaminated by reagent suction with distilled water.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、試料・試薬を秤量するシ
リンジにダイヤフラムポンプの流水振動圧を伝えないよ
うにシリンジとポンプ間に流路断続用電磁弁を2個シリ
ーズに接続して流圧緩和を図り更に電磁弁を閉じて微少
試料吸引時には、ポンプを一時停止させその間2個の電
磁弁間に残留した水圧をポンプ側電磁弁開動作により開
放することでシリンジ側電磁弁に及ぼす水圧の影響をな
くし精度良い分注をしたものである。
To achieve the above objective, two solenoid valves for interrupting the flow path are connected in series between the syringe and the pump to reduce the flow pressure so as not to transmit the vibration pressure of the flowing water from the diaphragm pump to the syringe used to weigh the sample/reagent. Furthermore, when the solenoid valve is closed and a minute sample is aspirated, the pump is temporarily stopped and the water pressure remaining between the two solenoid valves is released by opening the pump side solenoid valve, thereby reducing the effect of water pressure on the syringe side solenoid valve. This eliminates the need for accurate dispensing.

さらに試料の微少分注を精度よく行うために、現在では
免疫装置に必要とされる膜付き試薬容器による分注プロ
ーブの汚れを洗浄することで発生するプローブへの多量
の水付着を、洗浄槽内から一度の動作で引上げる従来洗
浄動作では落とし得なかったことをプローブ引上げを二
段モーションによって確実に落とすことで次の動作によ
る試料の薄まりを防止するようにしだ分注方法の改良で
ある。
Furthermore, in order to perform micro-dispensing of samples with high precision, a cleaning tank is used to remove the large amount of water adhering to the probe, which is generated by cleaning the dispensing probe from the membrane-coated reagent container required for immunoassays. This is an improvement to the dispensing method that prevents the sample from diluting during the next operation by reliably removing the probe pull-up using a two-step motion, something that could not be removed with the conventional cleaning operation of pulling the probe up from within in one operation. .

〔作用〕[Effect]

ダイヤフラムポンプの動作によって生ずる流水圧変動が
シリンジまで影響させないように設けた電磁弁2個の間
の残留圧力がシリンジ側の電磁弁の動作に僅かに作用し
て微少試料の秤量に悪影響するため、試料・試薬吸引時
はダイヤフラムポンプを停止させる方法としたため、正
確な秤量が可能となった。
Residual pressure between two solenoid valves, which are installed to prevent water flow pressure fluctuations caused by the operation of the diaphragm pump from affecting the syringe, slightly affects the operation of the solenoid valve on the syringe side and adversely affects the weighing of minute samples. Since the diaphragm pump is stopped when aspirating samples and reagents, accurate weighing is possible.

又洗浄槽で分注プローブに付着する水滴は時間の経過と
共にプローブ先端に流れ落ちてくるためそのタイミング
に洗浄水より引上げることでプローブへの水滴付着は極
少とすることが出来た。
In addition, water droplets that adhere to the dispensing probe in the cleaning tank flow down to the tip of the probe over time, so by lifting the probe from the cleaning water at that timing, the amount of water droplets that adhere to the probe can be minimized.

〔実施例〕〔Example〕

本発明の自動分析装置の一具体例を第1図から順を追っ
て説明する。
A specific example of the automatic analyzer of the present invention will be explained step by step starting from FIG.

第1図は本発明を適用した自動分析装置の外観構成を示
す。ベース1には本装置の主要ユニット及び配線等がす
べて組込まれ、その上に中間カバー2.フレーム3が組
立てられ、更にサイドカバーし4.サイドカバーR(図
示されていない)5と裏カバー(図示されていない)6
が組立てられて外観を構成している。ベース1の前面左
端には廃液を収容する廃液ボトル(図示されていない)
7を出入れする廃液ボックス8と、前面右端にはフロッ
ピーディスク9が組込まれている。フレーム3には本装
置とのインターフェイスとして使用されるユニットが右
傾斜面に取付けられている。
FIG. 1 shows the external configuration of an automatic analyzer to which the present invention is applied. All the main units and wiring of this device are built into the base 1, and an intermediate cover 2. Frame 3 is assembled, and side covers are installed.4. Side cover R (not shown) 5 and back cover (not shown) 6
are assembled to form the exterior. A waste liquid bottle (not shown) for storing waste liquid is located at the front left end of the base 1.
A waste liquid box 8 for putting in and taking out 7 and a floppy disk 9 are installed at the front right end. A unit used as an interface with this device is attached to the right inclined surface of the frame 3.

即ち上方よりプリンタ10.CRTII、キーボード1
2.バーコードリーダ13(図示なし)がそれぞれ操作
しやすい位置に配設されている。装置操作部の左側大き
なエリアには内部の状態が観察できる程度の透明部をも
った上カバー14が開閉可能に取付けられている。上カ
バー14を開くとその内部には、前記中間カバ−2上面
より見える分注機構15.試料テーブル16と、更に中
間カバー2の内部にあって上面より見えない試薬テーブ
ル17が該試料テーブル16の直下に位置し、又左側に
は、試料と試薬を反応させる反応テーブル18(図示せ
ず)が設置されている。上カバー14を開いて見える傾
斜面19内左側には、試料と試薬の反応液を吸引し、反
応液中に存在する固相と分離する洗浄機構2oが取付け
られている。
That is, the printer 10. CRTII, keyboard 1
2. Barcode readers 13 (not shown) are arranged at easy-to-operate positions. An upper cover 14 is attached to a large area on the left side of the device operation section so as to be openable and closable, and has a transparent portion that allows the internal state to be observed. When the upper cover 14 is opened, there is a dispensing mechanism 15 visible from the upper surface of the intermediate cover 2. A sample table 16 and a reagent table 17 which is inside the intermediate cover 2 and cannot be seen from the top surface are located directly below the sample table 16, and on the left side there is a reaction table 18 (not shown) for reacting the sample and reagent. ) is installed. A cleaning mechanism 2o is attached to the left side of the inclined surface 19 that is visible when the upper cover 14 is opened and that sucks the reaction liquid of the sample and reagent and separates it from the solid phase present in the reaction liquid.

該洗浄機構20に接続し反応液を吸引するペリスタポン
プ21が洗浄機構20の左側に設置され、固相を洗浄す
る洗浄液を供給する洗浄シリンジポンプ22(図示なし
)と、前記分注機構15にて試料・試薬を秤量する分注
シリンジポンプ23(図示なし)とが、前記サイドカバ
ーL4の内側に設置されている。更に前記サイトカバー
R5の内側にはマイクロコンピュータを組込んだ基板ユ
ニット24.前記裏カバー6の内側にはコンプレッサユ
ニット25(図示なし)が組込まれており、前記試薬テ
ーブル17に配列された試薬容器35を試薬が劣化しな
い温度に冷却保持されるべく設置された試薬保冷庫26
(図示なし)に冷水循環可能に接続されている。尚試薬
冷却にはペルチェによる方法、その他どのような方法で
冷却されてもよい。
A peristaltic pump 21 that is connected to the washing mechanism 20 and sucks the reaction liquid is installed on the left side of the washing mechanism 20, and a washing syringe pump 22 (not shown) that supplies a washing liquid for washing the solid phase and the dispensing mechanism 15 A dispensing syringe pump 23 (not shown) for weighing samples and reagents is installed inside the side cover L4. Further, inside the site cover R5 is a board unit 24 incorporating a microcomputer. A compressor unit 25 (not shown) is built into the inside of the back cover 6, and a reagent cooler is installed to keep the reagent containers 35 arranged on the reagent table 17 cooled to a temperature at which the reagents do not deteriorate. 26
(not shown) so that cold water can be circulated. The reagent may be cooled by a Peltier method or any other method.

次に第2図以降について説明する。Next, FIG. 2 and subsequent figures will be explained.

第2図は、試料・試薬の秤量精度に関与している流路系
統図を示す。図中15は分注機構で上下動作回転動作が
可能であり分注アーム151の一方に分注プローブ15
2が接続されている。該分注プローブコ、52と接続し
たチューブは分注シリンジポンプ23と接続され、更に
その延長上には電磁弁(A)27、電磁弁(B)28が
直列に接続されている。電磁弁(B)28と床置きの蒸
留水タンク29との間の流路には、卓上まで蒸留水を吸
上げるダイヤフラムポンプ30、蒸留水タンク29内及
びダイヤフラムポンプ30から発生した水中の気泡を捕
獲するエアートラップ31.ポンプ30の出口に接続さ
れたポンプ30の流出力を測定する圧力計32が接続さ
れている。エアートラップ31に捕獲された気泡は前記
分注プローブ152の外周を洗浄する洗浄水と一緒に流
出し、電磁弁(C)33を通って蒸留水タンク29に戻
されるか前述の洗浄槽34に流れ出る。この流路切替え
は該電磁弁(C)33によって行われる。分注プローブ
152の内外を洗浄した水は排液タンク35に溜められ
る。
FIG. 2 shows a flow path system diagram that is involved in the weighing accuracy of samples and reagents. 15 in the figure is a dispensing mechanism that can move up and down and rotate, and a dispensing probe 15 is attached to one side of the dispensing arm 151.
2 are connected. The tube connected to the dispensing probe 52 is connected to the dispensing syringe pump 23, and furthermore, a solenoid valve (A) 27 and a solenoid valve (B) 28 are connected in series on its extension. The flow path between the solenoid valve (B) 28 and the floor-mounted distilled water tank 29 includes a diaphragm pump 30 that sucks up distilled water up to the tabletop, and a diaphragm pump 30 that removes air bubbles generated in the distilled water tank 29 and from the diaphragm pump 30. Air trap to capture31. A pressure gauge 32 is connected to the outlet of the pump 30 and measures the outflow force of the pump 30. The air bubbles captured in the air trap 31 flow out together with the cleaning water that cleans the outer periphery of the dispensing probe 152, and are returned to the distilled water tank 29 through the solenoid valve (C) 33 or to the aforementioned cleaning tank 34. It flows out. This flow path switching is performed by the solenoid valve (C) 33. The water used to clean the inside and outside of the dispensing probe 152 is stored in the drain tank 35.

洗浄槽34で洗浄された分注プローブ152は、試料テ
ーブル16上にセットされた試料容器161に移動しそ
の中の試料を前述の分注シリンジ27の動作で微量吸引
した後反応テーブル18上にセットされた反応容器18
1に移動し、その中に該吸引試料を吐出する。この動作
は図示していない試薬容器内の試薬移送についても行わ
れる。分注プローブ152の動作は矢印で示した順序で
それぞれの槽及び容器を移動し分注動作を行う。次に動
作を第3図によって説明する。
The dispensing probe 152 that has been cleaned in the cleaning tank 34 is moved to the sample container 161 set on the sample table 16, and after aspirating a small amount of the sample therein by the operation of the aforementioned dispensing syringe 27, it is placed on the reaction table 18. Set reaction container 18
1 and discharge the aspirated sample into it. This operation is also performed for transferring reagents in reagent containers (not shown). The dispensing probe 152 moves through the respective tanks and containers in the order indicated by the arrows and performs dispensing operations. Next, the operation will be explained with reference to FIG.

第3図は第2図で説明した各ユニットの動作タイムチャ
ートを示す。本発明ではここで従来の自動分析装置にな
い2つの動作について詳述する。
FIG. 3 shows an operation time chart of each unit explained in FIG. 2. In the present invention, two operations not found in conventional automatic analyzers will be described in detail.

1つは電磁弁(A)27.電磁弁(B)28.電磁弁(
C)33の動作とダイヤフラムポンプ30の動作の関係
である。
One is a solenoid valve (A) 27. Solenoid valve (B)28. solenoid valve(
C) The relationship between the operation of the pump 33 and the operation of the diaphragm pump 30.

即ち分注機構15が下降すると同時にポンプ30を停止
し同時に電磁弁(B)28を開にする。
That is, at the same time as the dispensing mechanism 15 descends, the pump 30 is stopped and the solenoid valve (B) 28 is opened at the same time.

この動作により電磁弁(A)27.電磁弁(B)28間
に残留した水圧は、開放され、分注シリンジ23が動作
している間中、電磁弁(A)27の閉動作を安定に保ち
試料の秤量精度を相当向上させることが出来た。従来の
タイムチャートと電磁弁(A)27.電磁弁(B)28
間の残留圧力変動36とポンプ吐出圧力変動37の関係
を第4図に示し、本発明の同様な関係を第5図に示す。
This operation causes the solenoid valve (A) 27. The water pressure remaining between the solenoid valves (B) 28 is released, and the closing operation of the solenoid valves (A) 27 is kept stable throughout the period when the dispensing syringe 23 is operating, and the accuracy of weighing the sample is considerably improved. was completed. Conventional time chart and solenoid valve (A)27. Solenoid valve (B) 28
The relationship between the residual pressure fluctuation 36 and the pump discharge pressure fluctuation 37 is shown in FIG. 4, and a similar relationship according to the present invention is shown in FIG.

即ち第5図では残留圧力38はポンプ3oと蒸留水タン
ク29との落差で僅かに負圧となるが電磁弁(A)27
に対しては閉動作を助ける方向に作用するため良い方向
に作用し分注精度は向上する。
That is, in FIG. 5, the residual pressure 38 becomes slightly negative pressure due to the head difference between the pump 3o and the distilled water tank 29, but the solenoid valve (A) 27
Since it acts in a direction that helps the closing operation, it acts in a positive direction and improves the dispensing accuracy.

もう一つの分注精度向上方法を第3図と第7図によって
詳述する。従来試薬容器(図示せず)は、キャップを取
外すことにより容易に試薬吸引が可能であったが、試薬
の微量使用により容量寸法も小形となり特に免疫自動分
析装置に使用の試薬は抗原抗体反応させる高価品である
ため少量の容器とし且蒸発防止にゴム等の膜を接着しで
ある。試薬吸引時はこの膜を分注プローブ152で突破
るが、分注プローブ152を抜取った後は再び膜の密閉
で試薬の蒸発は防止できる。しかしながら、分注プロー
ブ152は液面検知の取付けが不可能なため試薬容器の
底から膜面までの長さ試薬により汚染されてしまう。従
って分注プローブ152の外周洗浄は汚染された長さ以
上に洗浄水を吹きかけ流水洗浄する必要がある。その洗
浄状態を第6図に示す。従来は分注プローブ162を洗
浄後一段モーションで洗浄槽34の上方に引上げていた
が、洗浄長さが長いため分注プローブ162の外壁につ
いた水は図に示す大きな水滴となって先端に付着し、次
の動作で試料又は試薬を薄めてしまうことがあった。本
実はこの点を改良すへく検討したが洗浄槽34よりゆっ
くり引上げる方法は時間のロスとなることから一度洗浄
槽34内で途中まで引上げた後−時ストップし水玉が下
に降りて来る頃を見はからって上方まで引上げる二段モ
ーション方法とした。この関係を第7図に示す。
Another method for improving dispensing accuracy will be explained in detail with reference to FIGS. 3 and 7. Conventional reagent containers (not shown) allow reagents to be aspirated easily by removing the cap, but the capacity size is also small due to the use of small amounts of reagents, and reagents used in automatic immunoanalyzers in particular are used for antigen-antibody reactions. Since it is an expensive item, it is packaged in small quantities and is covered with a film made of rubber or the like to prevent evaporation. When the reagent is aspirated, the dispensing probe 152 breaks through this membrane, but after the dispensing probe 152 is removed, the membrane is sealed again to prevent evaporation of the reagent. However, since the dispensing probe 152 cannot be attached to detect the liquid level, the length from the bottom of the reagent container to the membrane surface is contaminated by the reagent. Therefore, to clean the outer periphery of the dispensing probe 152, it is necessary to spray cleaning water over the contaminated length and clean it with running water. The cleaning state is shown in FIG. Conventionally, the dispensing probe 162 was pulled up above the cleaning tank 34 in a single motion after cleaning, but because the cleaning length was long, the water that adhered to the outer wall of the dispensing probe 162 became large water droplets as shown in the figure and attached to the tip. However, the sample or reagent may be diluted in the next operation. In fact, we have seriously considered improving this point, but the method of slowly pulling it up from the cleaning tank 34 results in a loss of time, so once it has been pulled up halfway in the cleaning tank 34, it stops and the water drops come down. We used a two-stage motion method that started when the time was right and pulled it upwards. This relationship is shown in FIG.

この二段動作により分注プローブ162への水玉付着は
無くなり、試料・試薬分注精度の格段の向上が図られた
This two-stage operation eliminates water droplets from adhering to the dispensing probe 162, and significantly improves sample/reagent dispensing accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分注シリンジ23の動作時、ポンプ3
0を停止させ電磁弁(B)28を開にして電磁弁(A)
27どの間の残留圧力を解放することと、洗浄槽34内
から分注プローブ162を引上げる動作を二段モーショ
ンにしたことにより高感度免疫自動分析装置の製品化が
達成出来た。その結果を分注再現性例として第8図、第
9図に示す。
According to the present invention, when the dispensing syringe 23 is operated, the pump 3
Stop the solenoid valve (B) 28 and open the solenoid valve (A).
By releasing the residual pressure between the tubes 27 and 27, and by making the operation of pulling up the dispensing probe 162 from the cleaning tank 34 into a two-step motion, it was possible to commercialize a highly sensitive automatic immunoanalyzer. The results are shown in FIGS. 8 and 9 as examples of dispensing reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の免疫自動分析装置全体の外
観図、第2図はその装置の試料・試薬秤量系の流路図、
第3図は流路図の動作タイムチャート、第4図、第5図
は電磁弁の動作と残留圧の関係図、第6図、第7図は分
注プローブに付着する水滴の状態図、第8図、第9図は
分注再現性例を示す図である。 1・・・ベース、2・・・中間カバー、3・・フレーム
、4・・サイトカバーし、5・・・サイドカバーR76
・・・裏カバー、7・・廃液ボルト、8・・廃液ボック
ス、9・・・フロッピーディスク、10 ・プリンタ、
11・・・CI?、 T、12・・・キーボード、13
・・バーコードリーダ。 第1区
FIG. 1 is an external view of the entire automatic immunoanalyzer according to an embodiment of the present invention, and FIG. 2 is a flow path diagram of the sample/reagent weighing system of the device.
Figure 3 is an operation time chart of the flow path diagram, Figures 4 and 5 are relationship diagrams between solenoid valve operation and residual pressure, Figures 6 and 7 are state diagrams of water droplets attached to the dispensing probe, FIG. 8 and FIG. 9 are diagrams showing examples of dispensing reproducibility. 1...Base, 2...Intermediate cover, 3...Frame, 4...Sight cover, 5...Side cover R76
... Back cover, 7. Waste liquid bolt, 8. Waste liquid box, 9. Floppy disk, 10. Printer.
11...CI? , T, 12...Keyboard, 13
...Barcode reader. Ward 1

Claims (1)

【特許請求の範囲】 1、試料・試薬を秤量し移送する分注機構と、試料をセ
ットする試料テーブル、試薬をセットする試薬テーブル
、反応容器をセットする反応テーブル及び反応容器内の
反応液の濃度を計測する光度計と操作部を備えた自動分
析装置で、分析に供する蒸留水タンクが低い位置例えば
床に設置され、分析装置が高い位置例えば卓上に設置さ
れた関係にあり低い位置の蒸留水タンクより高い位置の
分析装置に水を吸上げるポンプを有する自動分析装置に
おいて、呼び水を必要としない自給式の小形ダイヤフラ
ムポンプを用い自動的に蒸留水タンクより水を吸上げ分
析装置内部の流路系に加圧して供給する方式で、前述の
分注機構によつて試料又は試薬を分注する時、秤量系の
流路にある電磁弁2個のうちポンプ側の電磁弁をポンプ
の動作を一時ストップした時に開にして、電磁弁間の残
留圧力を開放するようにしたことを特徴とする微量試料
を精度良く分注する方法。 2、試料・試薬を吸引し反応容器に吐出した後の分注プ
ローブを効率よく洗浄する方法において試料・試薬吸引
による分注プローブの汚れが長い寸法例えば30mmに
及んだ時、洗浄槽での洗浄を更に長い寸法例えば35m
m洗浄する必要があり、この場合洗浄後の分注プローブ
一段モーションの引上げにより分注プローブ外周には思
わぬ水滴(水膜)が付着し且時間経過と共に下降する場
合、分注プローブ二段モーション引上げ動作とし一段目
は分注プローブの先端に洗浄水がかかる位置まで上げ、
次に水滴が下降したタイミング(約1.5秒間後)で二
段目の引上げを行うことにより分注プローブの水滴を除
去するようにしたことを特徴とする微量試料を精度良く
分注する方法。
[Claims] 1. A dispensing mechanism that weighs and transfers samples and reagents, a sample table that sets samples, a reagent table that sets reagents, a reaction table that sets reaction containers, and a reaction liquid in the reaction containers. This is an automatic analyzer equipped with a photometer for measuring concentration and an operating section.The distilled water tank used for analysis is installed in a low position, for example on the floor, and the analyzer is installed in a high position, for example on a tabletop. In automatic analyzers that have a pump that sucks water up to the analyzer located higher than the water tank, a self-contained small diaphragm pump that does not require priming is used to automatically draw water from the distilled water tank and flow inside the analyzer. When dispensing a sample or reagent using the above-mentioned dispensing mechanism, the solenoid valve on the pump side of the two solenoid valves in the flow path of the weighing system is operated by pump operation. A method for accurately dispensing a minute amount of sample, characterized in that the residual pressure between the solenoid valves is released by opening the solenoid valve when the solenoid valve is temporarily stopped. 2. In the method of efficiently cleaning the dispensing probe after aspirating the sample/reagent and discharging it into the reaction vessel, when the dispensing probe is dirty due to sample/reagent suction and extends to a long dimension, e.g. 30 mm, For cleaning longer dimensions e.g. 35m
In this case, if unexpected water droplets (water film) adhere to the outer circumference of the dispensing probe when the dispensing probe is pulled up in the single-stage motion after cleaning, and the dispensing probe descends over time, the dispensing probe in the two-stage motion The first stage is a lifting operation, and the tip of the dispensing probe is raised to the point where the cleaning water is applied.
A method for dispensing a trace amount of sample with high precision, characterized in that the water droplet of the dispensing probe is removed by performing a second pull-up at the timing when the water droplet descends (approximately 1.5 seconds later). .
JP10761390A 1990-04-25 1990-04-25 Method for accurately dispensing very small amount of specimen Pending JPH046468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10761390A JPH046468A (en) 1990-04-25 1990-04-25 Method for accurately dispensing very small amount of specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10761390A JPH046468A (en) 1990-04-25 1990-04-25 Method for accurately dispensing very small amount of specimen

Publications (1)

Publication Number Publication Date
JPH046468A true JPH046468A (en) 1992-01-10

Family

ID=14463613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10761390A Pending JPH046468A (en) 1990-04-25 1990-04-25 Method for accurately dispensing very small amount of specimen

Country Status (1)

Country Link
JP (1) JPH046468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040931A (en) * 2005-08-05 2007-02-15 Hitachi High-Tech Science Systems Corp Autoanalyzer
JP2012047504A (en) * 2010-08-25 2012-03-08 Hitachi High-Technologies Corp Automatic analyzer
JP2014215210A (en) * 2013-04-26 2014-11-17 株式会社堀場製作所 Whole blood immunoassay system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040931A (en) * 2005-08-05 2007-02-15 Hitachi High-Tech Science Systems Corp Autoanalyzer
JP2012047504A (en) * 2010-08-25 2012-03-08 Hitachi High-Technologies Corp Automatic analyzer
JP2014215210A (en) * 2013-04-26 2014-11-17 株式会社堀場製作所 Whole blood immunoassay system
US9465026B2 (en) 2013-04-26 2016-10-11 Horiba, Ltd. Apparatus for measuring blood cells and immunity from whole blood

Similar Documents

Publication Publication Date Title
JP2001343392A (en) Liquid dispensing device and automatic analytical device using it
JP6310767B2 (en) Automatic analyzer and nozzle cleaning method
WO2012105398A1 (en) Automatic analyzing device
JP6517565B2 (en) Dispensing nozzle cleaning method and automatic analyzer
WO2017145672A1 (en) Automated analysis device and cleaning method
US11953513B2 (en) Automated analyzer
JP4443271B2 (en) Automatic analyzer
JPH11183484A (en) Automatic analyzing apparatus
JPH046468A (en) Method for accurately dispensing very small amount of specimen
JP2011106828A (en) Dispensing device, automated analysis apparatus, and dispensing method
JP2002048803A (en) Container closing unit and bar-code pasting unit
JP4615618B2 (en) Reagent suction method
JP2004251797A (en) Automatic analyzer
WO2022091545A1 (en) Automatic analysis device
JP2008304334A (en) Dispenser and autoanalyzer
JPH028746A (en) Analyzer
JPH03230000A (en) Pressure reducing absorbing device of liquid
JP4576340B2 (en) Automatic analyzer
WO2020230403A1 (en) Automatic analyzing device
JP2011095058A (en) Biochemical analyzing device and dispensing method
JP2007316010A (en) Container-discarding method and autoanalyzer
JPH0645255Y2 (en) Liquid dispensing device
JP3866857B2 (en) Reaction solution stirring mechanism in whole blood blood cell immunoassay device
JP7002669B2 (en) Automatic analyzer
US20220034926A1 (en) Automatic analyzer