JPH0464680B2 - - Google Patents

Info

Publication number
JPH0464680B2
JPH0464680B2 JP13861882A JP13861882A JPH0464680B2 JP H0464680 B2 JPH0464680 B2 JP H0464680B2 JP 13861882 A JP13861882 A JP 13861882A JP 13861882 A JP13861882 A JP 13861882A JP H0464680 B2 JPH0464680 B2 JP H0464680B2
Authority
JP
Japan
Prior art keywords
sugar solution
anion exchange
exchange resin
carbonation
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13861882A
Other languages
Japanese (ja)
Other versions
JPS5928499A (en
Inventor
Fumio Maekawa
Masatoshi Ishikawa
Shigeo Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOCHU SEITO KK
ORUGANO KK
Original Assignee
ITOCHU SEITO KK
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOCHU SEITO KK, ORUGANO KK filed Critical ITOCHU SEITO KK
Priority to JP13861882A priority Critical patent/JPS5928499A/en
Publication of JPS5928499A publication Critical patent/JPS5928499A/en
Publication of JPH0464680B2 publication Critical patent/JPH0464680B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は糖液の清浄方法に関するものであり、
糖液中の不純物である懸濁物質、コロイド物質、
色素成分等を炭酸飽充で除去する際に、この除去
効果と生成する固形物の過性の向上を目的とす
るものである。 従来から糖液を精製する場合、粒状活性炭
過、骨炭過、イオン交換処理などの精製工程の
前処理として、炭酸飽充が行なわれている。 炭酸飽充は糖液に水酸化カルシウムを添加し、
次いで煙道ガス等を吹き込んで水酸化カルシウム
と煙道ガス中の炭酸ガスを反応させ、生成する炭
酸カルシウムに糖液中の懸濁物質、コロイド物
質、色素成分等の不純物を合体せしめて除去する
ものである。 しかしながら従来の炭酸飽充の処理効果はけつ
して満足できるものでなく、かつ反応後の固形物
の過性が悪く、固液分離に多大なエネルギーを
要するという欠点があつた。 本発明者等はこの点に鑑みて、炭酸飽充におい
て懸濁物質、コロイド物質、色素成分等の除去効
果を上昇させ、かつ炭酸飽充反応後の固形物の
過性を向上させるべく種々の検討を行なつた結
果、炭酸飽充反応の後半に超微粒子状の強塩基性
陰イオン交換樹脂を添加すると、懸濁物質、コロ
イド物質、色素成分等の除去率および固形物の
過性が飛躍的に向上することを知見した。また前
記反応にさらにリン酸を添加して反応させると懸
濁物質、コロイド物質、色素成分等の除去率がさ
らに上昇することも知見した。 本発明は上述した知見に基づいてなされたもの
で、その第1発明は不純物を含む糖液を炭酸飽充
するにあたり、炭酸飽充反応の後半に10〜
1000ppmの粒子径0.01〜1.5μの超微粒子状の強塩
基性陰イオン交換樹脂を添加することを特徴とす
る糖液清浄方法であり、またその第2発明は不純
物を含む糖液を炭酸飽充するにあたり、炭酸飽充
反応を少量の水酸化カルシウムが残留する状態で
終了させるか、あるいは炭酸飽充反応の終了後に
新らたに少量の水酸化カルシウムを添加し、次い
で当該水酸化カルシウムが存在する糖液にリン酸
と10〜1000ppmの粒子径0.01〜1.5μ超微粒子状の
強塩基性陰イオン交換樹脂を添加することを特徴
とする糖液清浄方法である。 以下に本発明を詳細に説明する。 本発明の第1発明および第2発明に用いる超微
粒子状の強塩基性陰イオン交換樹脂(以下、超微
粒子状陰イオン交換樹脂という)は、粒子の直径
が1.5μ以下のもので、0.01〜1.5μの範囲に分布し、
肉眼では粒子の形状を確認することは不可能で、
特に0.01μの近辺のものはウイルスの直径に近く、
電子顕微鏡でやつとその形状が確認できる程の超
微粒子状であり、市販品としてはたとえばアンバ
ーライト(登録商標、以下同様)ウルトラフアイ
ンレヂンPXSBがある。 本発明の第1発明は不純物を含む糖液を炭酸飽
充するにあたり、炭酸飽充の後半に超微粒子状陰
イオン交換樹脂を添加するものであるが、本発明
により以下のような効果を奏する。 すなわち前述したごとく本発明に用いる超微粒
子状陰イオン交換樹脂は粒径が極端に小さいの
で、色素成分等の不純物を吸着する反応速度が通
常の陰イオン交換樹脂のそれとは比較にならぬ程
速い。またこのように超微粒子状であるから液中
にコロイド状として分散するが、当該陰イオン交
換樹脂の表面電価と残留する懸濁物質、コロイド
物質、および生成した炭酸カルシウムの微粒子の
表面電価が相反することにより、両者が凝集し、
沈降性および過性に優れたフロツクを形成す
る。 本発明のかかる効果は粒子径が1.5μ以下である
超微粒子状陰イオン交換樹脂特有の効果であり、
これ以外のイオン交換樹脂では本発明の効果を達
成するのは困難である。 なお本発明に用いる超微粒子状陰イオン交換樹
脂を、懸濁物質、コロイド物質、色素成分等の不
純物が存在する糖液に直接添加して反応させても
前述したような効果は達成し得る。 しかしながら、この場合はその処理液の清浄度
を満足し得るためには、当該陰イオン交換樹脂の
添加量を極端に多くせねばならず、添加した当該
陰イオン交換樹脂が使い捨てであることを考えれ
ばコスト的に採算が合わず、全く実施性に欠け
る。 この点、本発明は懸濁物質、コロイド物質、色
素成分等の不純物を含む糖液をまず炭酸飽充し、
当該処理によつて除去し易い不純物を先に炭酸カ
ルシウムに合体させて除去し、次いで炭酸飽充の
後半に超微粒子状陰イオン交換樹脂を添加して、
炭酸飽充反応で除去し得なかつた残留する不純物
および微粒子状の炭酸カルシウムを当該陰イオン
交換樹脂で吸着あるいは凝集させるので、その添
加量を少なくすることができ実用的である。なお
本発明において炭酸飽充反応の後半という意味は
炭酸飽充反応が終了した時点まで含むものであ
り、炭酸飽充反応を終了した後に超微粒子状陰イ
オン交換樹脂を添加してもさしつかえない。但
し、炭酸飽充反応の前半あるいは中間に当該陰イ
オン交換樹脂を添加すると本来であれば炭酸飽充
で除去できる不純物まで当該陰イオン交換樹脂の
吸着あるいは凝集の対象物となつてしまい、当該
陰イオン交換樹脂の有効利用の点で好ましくな
い。 次に超微粒子状陰イオン交換樹脂の添加量を説
明すると、前述したごとく当該添加量を多くすれ
ばする程処理性能能的には満足するが、しかしコ
スト的に採算が合わなくなり実用的でなくなる。
この実用性から考慮して添加量は1000ppm以下と
する必要があるが、通常は20〜500ppmの添加量
で充分である。なお添加量をあまり少なくすると
本発明の効果を達成できず、少なくとも10ppm以
上添加する必要がある。 また超微粒子状陰イオン交換樹脂を糖液に添加
するに際しては、当該陰イオン交換樹脂を適当な
濃度のエマルジヨンとし、当該エマルジヨンを炭
酸飽充反応の後半に糖液に添加するとよい。 次に本発明の第2発明を説明すると、第2発明
は炭酸飽充を若干改良し、この改良した炭酸飽充
に超微粒子状陰イオン交換樹脂を用いるもので、
炭酸飽充反応を少量の水酸化カルシウムが残留す
る状態で終了させるか、あるいは炭酸飽充反応の
終了後に新らたに少量の水酸化カルシウムを添加
し、次いでこのような水酸化カルシウムが存在す
る糖液にリン酸と10〜1000ppmの超微粒子状陰イ
オン交換樹脂を添加するものである。 糖液を炭酸飽充するにあたり、前述したような
手法により50〜1000ppmの未反応の水酸化カルシ
ウムを存在させ、次いで当該水酸化カルシウムを
中和するに要する量のリン酸を添加し、リン酸カ
ルシウムを生成させると、炭酸飽充反応では除去
し得なかつた残留する色素成分を当該リン酸カル
シウムに吸着せしめることができ、特に色素成分
の除去には効果があることを本発明の出願人は既
に知見として得ていた。 しかしながらこの方法は色素成分の除去効果は
向上するものの逆に固形物の過性能が低下する
という欠点があり、工業化に問題があつた。 ところが本発明のごとくこの反応に超微粒子状
陰イオン交換樹脂が加わると、色素成分の除去効
果がさらに向上するとともに、固形物の過性が
飛躍的に向上することを知見した。 この固形物の過性が向上する効果は残留する
懸濁状あるいはコロイド状の不純物および炭酸カ
ルシウムの微粒子と新らたに生成されたリン酸カ
ルシウムの微粒子が、添加した超微粒子状陰イオ
ン交換樹脂によつて凝集するためと考えられる。 第2発明における超微粒子状陰イオン交換樹脂
の添加量も、前述したごとく10〜1000ppmの範囲
が好ましく、通常は20〜500ppmで充分である。
また添加方法もエマルジヨン状の当該陰イオン交
換樹脂を糖液に添加するとよい。なお超微粒子状
陰イオン交換樹脂の添加時期としては、リン酸と
同時に添加してもよいし、リン酸を添加してリン
酸カルシウムを生成し、その後に添加してもよ
く、いずれも本発明の効果を達成し得る。 また前述したごとく、炭酸飽充の後半あるいは
改良した炭酸飽充に超微粒子状陰イオン交換樹脂
を添加すると、生成した炭酸カルシウム、あるい
は炭酸カルシウムとリン酸カルシウムの混合物等
のフロツクは沈降性が飛躍的に増加するので、当
該フロツクを沈降させた後その上澄液を過する
こともでき、これにより過装置の負担をさらに
低減させることができる。 以上説明したごとく、本発明の第1発明、第2
発明ともに極少量の超微粒子状陰イオン交換樹脂
を単に添加するのみで、脱色率および固形物の
過性を向上させることができ、したがつて後段の
各種精製装置の負担を低減させることができると
ともに、炭酸飽充で生成するフロツクの過にお
けるエネルギー消費を大巾に低下させることがで
きる。また本発明は超微粒子状陰イオン交換樹脂
の添加設備を追加するのみで、従来の炭酸飽充装
置をそのまま利用でき、新らたな過設備を設置
する必要がなく、設備費もそれ程増加させないと
いう利点もある。 以下に本発明の効果をより明確にするために実
施例について説明する。 実施例 1 精製糖工場の粗糖液(Bx65、PH6.5、色価(r.
b.u)1500、灰分0.15%、酸性アルコール濁度75
%)1に水酸化カルシウム10gを、水に溶解さ
せたスラリー状で添加し、60℃に加温後、PHが
8.5になるまで炭酸ガス(煙道ガスを用いた)を
吹き込み炭酸飽充を行なつた。次いでここに粒子
径の分布0.01〜1.5μの、超微粒子状陰イオン交換
樹脂アンバーライトウルトラフアインレジン
PXSBを乾燥樹脂換算で100ppm炭酸飽充糖液に
添加し、15分間撹拌して反応を行つたのちに沈整
した。 その結果、約5分間で生成フロツクは沈殿し、
上澄液とフロツクの界面が明確に観察できた。こ
の上澄液とフロツクをデカンテイシヨンして分離
し、上澄液をNo.2紙を用いて過し、その液
の色価と濁度を測定した。また上澄液についてニ
コルソン方式の過性も測定した。その結果を発
明方法−1として第1表に示した。 また比較のために従来方法として、本発明と全
く同じ条件で炭酸飽充だけを行ない、超微粒子状
陰イオン交換樹脂を添加しない場合の上澄液につ
いて同じように色価濁度を測定し、またニコルソ
ン方式の過性も測定し、比較例1として第1表
に示した。 さらに比較するため本発明と同じ粗糖液を用い
て炭酸飽充をすることなく、直接100ppmの同様
な超微粒子状陰イオン交換樹脂を添加反応させ、
その上澄液について同じように色価と濁度を測定
し、またニコルソン方式の過性も測定し、比較
例2として第1表に示した。
The present invention relates to a method for cleaning sugar solution,
Suspended substances and colloidal substances that are impurities in sugar solution,
The purpose of this method is to improve the removal effect and the permeability of the solids produced when coloring components and the like are removed by carbonation. Conventionally, when refining a sugar solution, carbonation has been carried out as a pretreatment for purification steps such as granular activated carbon filtration, bone charcoal filtration, and ion exchange treatment. Carbonation is achieved by adding calcium hydroxide to the sugar solution.
Next, flue gas or the like is blown in to cause calcium hydroxide to react with carbon dioxide gas in the flue gas, and impurities such as suspended solids, colloidal substances, and pigment components in the sugar solution are combined with the generated calcium carbonate and removed. It is something. However, the effects of conventional carbonation saturation treatment are not entirely satisfactory, and the solids after the reaction have poor permeability and require a large amount of energy for solid-liquid separation. In view of this point, the present inventors have developed various methods to increase the removal effect of suspended solids, colloidal substances, pigment components, etc. during carbonation, and to improve the superstitivity of solids after the carbonation reaction. As a result of our studies, we found that adding ultrafine particles of strongly basic anion exchange resin in the latter half of the carbonation saturation reaction dramatically improved the removal rate of suspended solids, colloidal substances, pigment components, etc., and the permeability of solids. We found that the results improved significantly. It has also been found that when phosphoric acid is further added to the reaction, the removal rate of suspended solids, colloidal substances, pigment components, etc. is further increased. The present invention has been made based on the above-mentioned findings, and the first invention is to carbonate a sugar solution containing impurities, and in the latter half of the carbonation reaction.
It is a method for purifying a sugar solution characterized by adding ultrafine particles of strongly basic anion exchange resin with a particle size of 0.01 to 1.5μ and 1000 ppm, and the second invention is a method for purifying a sugar solution containing impurities with carbonic acid. In doing so, either the carbonate saturation reaction is terminated with a small amount of calcium hydroxide remaining, or a small amount of calcium hydroxide is newly added after the carbonation saturation reaction is completed, and then the calcium hydroxide is present. This is a sugar solution cleaning method characterized by adding phosphoric acid and a strongly basic anion exchange resin in the form of ultrafine particles of 10 to 1000 ppm and a particle size of 0.01 to 1.5 μm to a sugar solution. The present invention will be explained in detail below. The ultrafine particulate strongly basic anion exchange resin (hereinafter referred to as ultrafine anion exchange resin) used in the first and second inventions of the present invention has a particle diameter of 1.5μ or less, and 0.01~ Distributed in the range of 1.5μ,
It is impossible to see the shape of particles with the naked eye,
In particular, those around 0.01μ are close to the diameter of the virus,
It is in the form of ultrafine particles whose shape can be seen with an electron microscope, and commercially available products include, for example, Amberlite (registered trademark, hereinafter the same) Ultra Fine Resin PXSB. The first invention of the present invention is to add an ultrafine particulate anion exchange resin in the latter half of the carbonation process when a sugar solution containing impurities is carbonated, and the present invention provides the following effects. . In other words, as mentioned above, the particle size of the ultrafine anion exchange resin used in the present invention is extremely small, so the reaction rate for adsorbing impurities such as pigment components is much faster than that of ordinary anion exchange resins. . In addition, since they are in the form of ultrafine particles, they are dispersed in the liquid as a colloid, but the surface charge of the anion exchange resin and the surface charge of the remaining suspended matter, colloidal matter, and fine particles of calcium carbonate produced are By contradicting each other, the two cohere,
Forms flocs with excellent sedimentation and permeability. This effect of the present invention is unique to the ultrafine anion exchange resin having a particle size of 1.5μ or less,
It is difficult to achieve the effects of the present invention with other ion exchange resins. The above-described effects can also be achieved by directly adding the ultrafine anion exchange resin used in the present invention to a sugar solution containing impurities such as suspended matter, colloidal matter, and pigment components. However, in this case, in order to satisfy the cleanliness of the treatment liquid, the amount of the anion exchange resin added must be extremely large, and it is important to consider that the added anion exchange resin is disposable. In other words, it is not cost-effective and is completely impractical. In this regard, the present invention first carbonates a sugar solution containing impurities such as suspended solids, colloidal substances, and pigment components, and
Impurities that are easily removed by this treatment are first combined with calcium carbonate and removed, and then, in the latter half of carbonation, an ultrafine anion exchange resin is added,
Since residual impurities and fine particulate calcium carbonate that cannot be removed by the carbonation saturation reaction are adsorbed or aggregated by the anion exchange resin, the amount added can be reduced, which is practical. In the present invention, the latter half of the carbonation reaction includes the time when the carbonation reaction is completed, and the ultrafine anion exchange resin may be added after the carbonation reaction is completed. However, if the anion exchange resin is added during the first half or middle of the carbonation reaction, even impurities that could normally be removed by carbonation become adsorbed or coagulated by the anion exchange resin. This is not preferable in terms of effective use of the ion exchange resin. Next, to explain the amount of ultrafine particulate anion exchange resin added, as mentioned above, the larger the amount added, the more satisfactory the processing performance will be, but it will become unprofitable in terms of cost and become impractical. .
Considering this practicality, the amount added should be 1000 ppm or less, but usually an amount of 20 to 500 ppm is sufficient. Note that if the amount added is too small, the effects of the present invention cannot be achieved, so it is necessary to add at least 10 ppm or more. In addition, when adding the ultrafine anion exchange resin to the sugar solution, it is preferable to make the anion exchange resin into an emulsion of an appropriate concentration and add the emulsion to the sugar solution during the latter half of the carbonation reaction. Next, to explain the second invention of the present invention, the second invention slightly improves carbonation saturation, and uses an ultrafine particulate anion exchange resin for this improved carbonation saturation.
Either the carbonate saturation reaction is terminated with a small amount of calcium hydroxide remaining, or a small amount of new calcium hydroxide is added after the carbonation saturation reaction is completed, and then such calcium hydroxide is present. Phosphoric acid and 10 to 1000 ppm of ultrafine anion exchange resin are added to the sugar solution. To carbonate the sugar solution, 50 to 1000 ppm of unreacted calcium hydroxide is brought into existence using the method described above, and then phosphoric acid is added in an amount necessary to neutralize the calcium hydroxide to dissolve the calcium phosphate. The applicant of the present invention has already found out that the remaining pigment components that could not be removed by the carbonation saturation reaction can be adsorbed to the calcium phosphate, and that it is particularly effective in removing pigment components. was. However, although this method improves the effect of removing pigment components, it has the disadvantage that the permeability of solids decreases, and this poses a problem in industrialization. However, it has been found that when an ultrafine anion exchange resin is added to this reaction as in the present invention, the effect of removing the pigment component is further improved and the superposition of the solid material is dramatically improved. This effect of improving the permeability of solids is due to the fact that residual suspended or colloidal impurities, fine particles of calcium carbonate, and newly formed fine particles of calcium phosphate are removed by the added ultrafine anion exchange resin. This is thought to be due to agglomeration. The amount of the ultrafine anion exchange resin added in the second invention is also preferably in the range of 10 to 1000 ppm, as described above, and usually 20 to 500 ppm is sufficient.
Also, it is preferable to add the anion exchange resin in the form of an emulsion to the sugar solution. The ultrafine particulate anion exchange resin may be added at the same time as the phosphoric acid, or may be added after phosphoric acid is added to produce calcium phosphate, both of which have the same effect as the present invention. can be achieved. Furthermore, as mentioned above, when ultrafine anion exchange resin is added during the latter half of carbonation or improved carbonation, the sedimentation properties of calcium carbonate or a mixture of calcium carbonate and calcium phosphate dramatically increase. Therefore, it is possible to filter the supernatant liquid after settling the flocs, thereby further reducing the load on the filtering equipment. As explained above, the first invention and the second invention of the present invention
In both inventions, by simply adding a very small amount of ultrafine particulate anion exchange resin, the decolorization rate and the permeability of solids can be improved, and the burden on various subsequent purification devices can therefore be reduced. At the same time, it is possible to greatly reduce the energy consumption in the flow of flocs produced by carbonation. In addition, the present invention allows conventional carbonation saturation equipment to be used as is by simply adding equipment for adding ultrafine particulate anion exchange resin, and there is no need to install new filtration equipment, and equipment costs do not increase significantly. There is also an advantage. Examples will be described below to make the effects of the present invention more clear. Example 1 Raw sugar solution from a refined sugar factory (Bx65, PH6.5, color value (r.
bu) 1500, ash 0.15%, acidic alcohol turbidity 75
%) 1 in the form of a slurry dissolved in water, and after heating to 60℃, the pH was
Carbonation was carried out by blowing carbon dioxide gas (using flue gas) until the temperature reached 8.5. Next, here is the ultrafine particulate anion exchange resin Amberlite Ultra Fine Resin with a particle size distribution of 0.01 to 1.5μ.
PXSB was added to a saturated carbonate solution at 100 ppm in terms of dry resin, stirred for 15 minutes to react, and then settled. As a result, the produced flocs precipitated in about 5 minutes,
The interface between the supernatant and floc could be clearly observed. The supernatant liquid and floc were separated by decantation, the supernatant liquid was passed through No. 2 paper, and the color value and turbidity of the liquid were measured. The supernatant liquid was also measured for Nicholson's transient properties. The results are shown in Table 1 as Invention Method-1. In addition, as a conventional method for comparison, the color value turbidity was measured in the same manner for the supernatant liquid when only carbonation was carried out under exactly the same conditions as in the present invention, and no ultrafine particulate anion exchange resin was added. The Nicholson method transient was also measured and shown in Table 1 as Comparative Example 1. For further comparison, using the same crude sugar solution as in the present invention, without carbonation, 100 ppm of the same ultrafine anion exchange resin was directly added and reacted.
The color value and turbidity of the supernatant liquid were measured in the same manner, and the Nicholson method was also measured, and the results are shown in Table 1 as Comparative Example 2.

【表】 なお第1表において、色価、濁度、過性は以
下のようにして測定した。 色価;試料をPH7.0およびBx50±0.2に調整後、分
光光度計により420nmの吸光度を測定して
次式により求めた。 色価(r.b.u)= 1000×(−logT420nm+2logT720nm)/b×c ここでb;セルの長さ c;Bxから求めた試料の糖濃度(g/
ml) 濁度;試料をPH7.0およびBx50±0.2に調整後、分
光光度計により、720nmの吸光度を測定し
て次式により吸光係数を求め、 吸光係数=−logT720nm/b×c 吸光係数から表により透光百分率TSを求
め、次いで以下の式より濁度を求めた。 濁度=100−TS 過性;試料をニコルソン過試験器に満たし、
温度20±1℃で1Kg/cm2Gの窒素ガスで加
圧し、試料を過し、最初の2分間は廃
棄し、次の5分間の液の重量を示す。 実施例 2 原料糖(生産地タイ、糖度97.1%、水分0.4
%、、還元糖0.84%、灰分0.49%、色価(r.b.u)
10984)を水に溶解してBx55の粗糖液を調整し
た。 当該粗糖液1に、水酸化カルシウムのスラリ
ーを加えながらPHを9.0に維持するように炭酸ガ
スを吹き込んで炭酸飽充を行なつた。なお反応温
度を55〜65℃とし、水酸化カルシウムの添加量が
糖の固形物に対して約1%になるまで続行した。
次いで当該PH9.0の糖液にリン酸を約150ppm添加
してPHを7.0に調整した後、温度を70℃に上昇さ
せて約5分間反応させた。続いて前記糖液に粒子
径の分布0.01〜1.5μの超微粒子状陰イオン交換樹
脂アンバーライトウルトラフアインレジンPXSB
を乾燥樹脂換算で200ppm添加し、撹拌を15分間
続けて反応させた。反応液を15分間沈整するとフ
ロツクは沈殿し、上澄液とフロツクの界面が明確
に観察できた。この上澄液とフロツクをデカンテ
イシヨンして分離し、上澄液をNo.2紙を用いて
過し、その液の色価と濁度を測定した。また
上澄液についてニコルソン方式の過性も測定し
た。その結果を発明方法−2として第2表に示し
た。 また比較するため、同じ粗糖液を用いリン酸を
添加しない通常の炭酸飽充を行ない、その時の色
価、濁度、過性を同様にして測定し、比較例3
として第2表に示した。 さらに比較するため、同じ粗糖液を用い、本発
明と全く同じ条件で炭酸飽充およびリン酸添加を
行ない、超微粒子状陰イオン交換樹脂を添加しな
い場合の上澄液について、同じように色価、濁
度、過性を測定し、比較例4として第2表に示
した。
[Table] In Table 1, color value, turbidity, and transparency were measured as follows. Color value: After adjusting the sample to PH7.0 and Bx50±0.2, the absorbance at 420 nm was measured using a spectrophotometer and calculated using the following formula. Color value (rbu) = 1000 x (-logT420nm + 2logT720nm) / b x c where b: cell length c: sugar concentration of the sample determined from Bx (g/
ml) Turbidity: After adjusting the sample to PH7.0 and Bx50±0.2, measure the absorbance at 720nm using a spectrophotometer and calculate the extinction coefficient using the following formula: Extinction coefficient = -logT720nm/b x c From the extinction coefficient The light transmission percentage TS was determined from the table, and then the turbidity was determined from the following formula. Turbidity = 100−TS transient; fill the sample into a Nicholson superfluous tester,
At a temperature of 20±1° C. and pressurized with 1 Kg/cm 2 G of nitrogen gas, the sample is filtered, the first 2 minutes are discarded, and the weight of the liquid during the next 5 minutes is reported. Example 2 Raw sugar (produced in Thailand, sugar content 97.1%, moisture 0.4
%, reducing sugar 0.84%, ash 0.49%, color value (rbu)
10984) in water to prepare a crude sugar solution of Bx55. While adding a slurry of calcium hydroxide to the crude sugar solution 1, carbon dioxide gas was blown into the crude sugar solution 1 so as to maintain the pH at 9.0 to achieve carbonation. The reaction temperature was set at 55 to 65° C., and the reaction was continued until the amount of calcium hydroxide added was about 1% based on the sugar solids.
Next, about 150 ppm of phosphoric acid was added to the sugar solution having a pH of 9.0 to adjust the pH to 7.0, and then the temperature was raised to 70°C and the reaction was carried out for about 5 minutes. Next, ultrafine anion exchange resin Amberlite Ultra Fine Resin PXSB with a particle size distribution of 0.01 to 1.5μ was added to the sugar solution.
was added at 200 ppm in terms of dry resin, and the reaction was continued with stirring for 15 minutes. When the reaction solution was allowed to settle for 15 minutes, the flocs precipitated, and the interface between the supernatant and the flocs could be clearly observed. The supernatant liquid and floc were separated by decantation, the supernatant liquid was passed through No. 2 paper, and the color value and turbidity of the liquid were measured. The supernatant liquid was also measured for Nicholson's transient properties. The results are shown in Table 2 as Invention Method-2. In addition, for comparison, the same raw sugar solution was used for normal carbonation without adding phosphoric acid, and the color value, turbidity, and excess were measured in the same manner. Comparative Example 3
It is shown in Table 2 as follows. For further comparison, using the same raw sugar solution, carbonation saturation and phosphoric acid addition were carried out under exactly the same conditions as in the present invention, and the color value of the supernatant liquid was determined in the same manner when no ultrafine anion exchange resin was added. , turbidity, and transparency were measured and shown in Table 2 as Comparative Example 4.

【表】 実施例 3 精製糖工場の粗糖液(Bx65、PH6.5、色価(r.
b.u)1500、灰分0.15%、酸性アルコール濁度75
%)1に水酸化カルシウム10gを、水に溶解さ
せたスラリー状で添加し、60℃に加温後、遊離の
水酸化カルシウムが200ppm前後残留するような
点まで炭酸ガスを吹き込み、炭酸飽充を行なつ
た。 次いで炭酸飽充糖液にリン酸を100ppm添加し、
続いて粒子径の分布0.01〜1.5μの超微粒子状陰イ
オン交換樹脂アンバーライトトウルトラフアイン
レジンPXSBを乾燥樹脂換算で100ppm添加し、
70℃に加温して15分間撹拌して反応させた。 反応液を15分間静置した後、その上澄液につい
て実施例1と同じように色価および酸性アルコー
ル濁度を測定し、その結果を発明方法−3として
第3表に示した。 一方同じ粗糖液について同じ量の水酸化カルシ
ウムを添加し、通常の方法、すなわち遊離の水酸
化カルシウムがほとんど残留しない条件で炭酸飽
充を行ない、この反応の終了後に新らたに水酸化
カルシウムを100ppm添加し、次いでリン酸を
100ppm添加し、続いて発明方法−3と同じ量の
超微粒子状陰イオン交換樹脂を添加し、その上澄
液について同じように色価および酸性アルコール
濁度を測定した。その結果を発明方法−4として
第3表に示した。 また比較するために同じ粗糖液について同じ量
の水酸化カルシウムを添加し、リン酸を添加しな
い通常の炭酸飽充を行ない、その上澄液について
同じように色価および酸化アルコール濁度を測定
し、比較例5として第3表に示した。
[Table] Example 3 Raw sugar liquid from refined sugar factory (Bx65, PH6.5, color value (r.
bu) 1500, ash 0.15%, acidic alcohol turbidity 75
%) 1 in the form of a slurry dissolved in water, and after heating to 60℃, carbon dioxide gas was blown in until about 200 ppm of free calcium hydroxide remained to saturate the carbonation. I did this. Next, 100 ppm of phosphoric acid was added to the carbonated saturated solution,
Next, 100 ppm (calculated as dry resin) of ultrafine anion exchange resin Amberlite Ultra Fine Resin PXSB with a particle size distribution of 0.01 to 1.5μ was added.
The mixture was heated to 70°C and stirred for 15 minutes to react. After the reaction solution was allowed to stand for 15 minutes, the color value and acidic alcohol turbidity of the supernatant solution were measured in the same manner as in Example 1, and the results are shown in Table 3 as Invention Method-3. On the other hand, the same amount of calcium hydroxide is added to the same raw sugar solution, carbonation is carried out in the usual manner under conditions where almost no free calcium hydroxide remains, and after this reaction is completed, fresh calcium hydroxide is added. Add 100ppm, then phosphoric acid
100 ppm was added, and then the same amount of ultrafine anion exchange resin as in Invention Method-3 was added, and the color value and acidic alcohol turbidity of the supernatant were measured in the same manner. The results are shown in Table 3 as Invention Method-4. For comparison, we added the same amount of calcium hydroxide to the same raw sugar solution, performed normal carbonation without adding phosphoric acid, and measured the color value and oxidized alcohol turbidity of the supernatant in the same way. , is shown in Table 3 as Comparative Example 5.

【表】 なお第3表において酸性アルコール濁度は以下
のようにして測定した。 すなわちBx40に調整した試料100mlに濃塩酸20
mlを加え、さらにエタノール200mlを加えてすば
やく撹拌する。1時間放置した後、50mmセルを用
い、分光光度計により、720nmの透過率を測定
し、この値を酸性アルコール濁度とした。
[Table] In Table 3, acidic alcohol turbidity was measured as follows. In other words, add 20% concentrated hydrochloric acid to 100ml of the sample adjusted to Bx40.
ml, then add 200ml of ethanol and stir quickly. After standing for 1 hour, transmittance at 720 nm was measured using a spectrophotometer using a 50 mm cell, and this value was defined as acidic alcohol turbidity.

Claims (1)

【特許請求の範囲】 1 不純物を含む糖液を炭酸飽充するにあたり、
炭酸飽充反応の後半に10〜1000ppmの粒子径0.01
〜1.5μの超微粒子状強塩基性陰イオン交換樹脂を
添加することを特徴とする糖液清浄方法。 2 生成する固形物を沈降分離し、その上澄液を
過する特許請求の範囲第1項記載の糖液清浄方
法。 3 不純物を含む糖液を炭酸飽充するにあたり、
炭酸飽充反応を少量の水酸化カルシウムが残留す
る状態で終了させるか、あるいは炭酸飽充反応の
終了後に新たに少量の水酸化カルシウムを添加
し、次いで当該水酸化カルシウムが存在する糖液
にリン酸と10〜1000ppmの粒子径0.01〜1.5μの超
微粒子状強塩基性陰イオン交換樹脂を添加するこ
とを特徴とする糖液清浄方法。 4 生成する固形物を沈降分離し、その上澄液を
過する特許許請求の範囲第3項記載の糖液清浄
方法。
[Claims] 1. In carbonating a sugar solution containing impurities,
10~1000ppm particle size 0.01 in the second half of carbonation saturation reaction
A sugar solution cleaning method characterized by adding ~1.5μ ultrafine particulate strongly basic anion exchange resin. 2. The method for purifying a sugar solution according to claim 1, wherein the produced solids are separated by sedimentation, and the supernatant liquid is filtered. 3. When carbonating a sugar solution containing impurities,
Either the carbonation reaction is terminated with a small amount of calcium hydroxide remaining, or a small amount of calcium hydroxide is newly added after the carbonation reaction is completed, and then phosphorus is added to the sugar solution in which the calcium hydroxide is present. A sugar solution cleaning method characterized by adding an acid and an ultrafine particulate strongly basic anion exchange resin having a particle diameter of 0.01 to 1.5μ and 10 to 1000 ppm. 4. The method for purifying a sugar solution according to claim 3, wherein the produced solids are separated by sedimentation and the supernatant liquid is filtered.
JP13861882A 1982-08-11 1982-08-11 Purification of sugar liquid Granted JPS5928499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13861882A JPS5928499A (en) 1982-08-11 1982-08-11 Purification of sugar liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13861882A JPS5928499A (en) 1982-08-11 1982-08-11 Purification of sugar liquid

Publications (2)

Publication Number Publication Date
JPS5928499A JPS5928499A (en) 1984-02-15
JPH0464680B2 true JPH0464680B2 (en) 1992-10-15

Family

ID=15226283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13861882A Granted JPS5928499A (en) 1982-08-11 1982-08-11 Purification of sugar liquid

Country Status (1)

Country Link
JP (1) JPS5928499A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116825A (en) * 2010-03-19 2013-06-13 Ajinomoto Co Inc Method for manufacturing phosphoric acid from bone, and method and apparatus for utilizing phosphoric acid manufactured from bone for fermentation of sugar
GB201322942D0 (en) 2013-12-23 2014-02-12 Europ Sugars Holdings S A R L Novel purification processes

Also Published As

Publication number Publication date
JPS5928499A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
DE1517398A1 (en) Purification of fresh and waste water
US3480390A (en) Process for producing finely-divided precipitated silicon dioxide
EP0287232B2 (en) Amorphous silicas
JP3340029B2 (en) Method of treating wastewater containing SiO2
CN110791593A (en) Method for decoloring sugar juice by using water-soluble magnesium salt-lime
JPH0464680B2 (en)
Bratskaya et al. Flocculation of humic substances and their derivatives with chitosan
JPH07508924A (en) Method for purifying sludge that mainly contains water
JPH07508175A (en) Method for purifying aqueous enzyme solution
JPH059074B2 (en)
CN114735738A (en) Production process of iron-free high-purity aluminum sulfate
FR2655277A1 (en) PROCESS FOR TREATING WATER WITH SIMULTANEOUS FLOCCULATION AND ADSORPTION USING PARTIALLY HYDROPHOBIC POLYELECTROLYTES
CN108842007B (en) Process method for reducing stoving intensity and separating powdered activated carbon
US2539397A (en) Purification of sugar solutions
JP3130669B2 (en) Method of decolorizing soy sauce with activated carbon
JPS60160900A (en) Treatment of impure sugar solution
US1150194A (en) Process of purifying solutions.
EP0327419A1 (en) Basic aluminium chloride sulfate, process for its preparation, its use as a floculating agent
CN112029913B (en) Sugar juice clarifying and decoloring agent and application thereof
RU2077594C1 (en) Method for purification of hydrolyzate of vegetable raw materials
RU2107027C1 (en) Method of processing of aluminosilicate raw material
RU2125599C1 (en) Method of treating liquid media
US2946660A (en) Method of preparing siliceous pigments
SU1147770A1 (en) Method of cleaning diffusion juice
JPH0468248B2 (en)