JPH0464624B2 - - Google Patents

Info

Publication number
JPH0464624B2
JPH0464624B2 JP60235294A JP23529485A JPH0464624B2 JP H0464624 B2 JPH0464624 B2 JP H0464624B2 JP 60235294 A JP60235294 A JP 60235294A JP 23529485 A JP23529485 A JP 23529485A JP H0464624 B2 JPH0464624 B2 JP H0464624B2
Authority
JP
Japan
Prior art keywords
rubber
weight
parts
tire
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60235294A
Other languages
Japanese (ja)
Other versions
JPS6296546A (en
Inventor
Yasushi Kikuchi
Kazuyoshi Kayama
Kazutsugu Suzuki
Hiroshi Watanabe
Shuichi Akita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd, Nippon Zeon Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP60235294A priority Critical patent/JPS6296546A/en
Priority to DE3635587A priority patent/DE3635587C2/en
Priority to CA000521126A priority patent/CA1289044C/en
Priority to KR1019860008852A priority patent/KR960000901B1/en
Publication of JPS6296546A publication Critical patent/JPS6296546A/en
Publication of JPH0464624B2 publication Critical patent/JPH0464624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、走行時のタイヤトレツド部の発熱が
少なく、低燃費性に優れ、しかも湿潤路面での制
動性および積雪・氷結路面での制動性を共に著し
く改善した空気入りタイヤに関する。 〔従来技術〕 近年、省資源、省エネルギーを目差す社会的要
請のもとに、自動車における低燃費性の要求が非
常に高まつてきている。このために、ガソリン消
費の少ないエンジンの開発など自動車本体の開発
はもちろんのこと、エネルギー損失の少ない低燃
費タイヤの検討が急速に行われてきた。 従来、低燃費タイヤのタイヤ材料用のゴムとし
てヒステリシスロスの少ないゴム材料が求めら
れ、なかでもタイヤのヒステリシスロスの50%以
上を占めるといわれるトレツド部には、ゴム成分
としてヒステリシスロスの少ない天然ゴム、ポリ
イソプレンゴム、ポリブタジエンゴム、ガラス転
移点(Tg)の低いスチレンーブタジエン共重合
体ゴム、およびこれらのブレンド物などが使用さ
れてきた。さらに、ゴム組成物としては、比較的
粒子径の大きいカーボンブラツクを比較的少ない
配合量で配合し、かつ、アロマテイツクオイル等
の軟化剤の配合量もできるだけ少なくしたゴム組
成物がこれまでは使用されてきた。 ところで、最近、タイヤに対してより多くの機
能がいつそう高いレベルで求められるようになつ
た。例えば、上述のようにして開発された低燃費
タイヤにおいて、その低燃費性能を低下させるこ
とがなく、かつ、安全性の面からは湿潤路面およ
び積雪・氷結路面などの各種路面に対応できる高
い制動性能が強く望まれている。 しかし、上述したようにヒステリシスロスの少
ない天然ゴム、ポリイソプレンゴム、ポリブタジ
エンゴム、Tgの低いスチレン−ブタジエン共重
合体ゴムを使用した場合には、特に湿潤路面での
制動性(ウエツトスキツド抵抗性)が劣り、走行
安定性が極端に低下してしまうという欠点があつ
た。また、粒子径の大きなカーボンブラツクを使
用した場合には、低燃費性能は優れるものの、湿
潤路面での制動性および耐摩耗性といつた特性の
低下が避けられたかつた。さらに、これまでの低
燃費タイヤのトレツド部ゴムは、軟化剤の配合量
を少なくしているため低温になると硬くなり易
く、このため積雪や氷結した路面での制動性(ア
イススキツド抵抗性)も十分に満足できるレベル
には達していなかつた。 一方、タイヤの低燃費性能とウエツトスキツド
抵抗性の両特性を満足させる材料として、最近で
は1,2−ビニル結合を50%以上含有するいわゆ
る高ビニルポリブタジエンゴムや高ビニルスチレ
ン−ブタジエン共重合体ゴムが提案されている。
しかし、これらのゴムは、いずれも高いガラス転
移点(Tg)を有するため、耐摩耗性に劣り、し
かも低温で硬化し易く、積雪・氷結路面での制動
性能に著しく劣り、したがつて上述したような全
ての特性を満たすにはやはり不十分である。 このように、現在では、低燃費性能、湿潤路面
での高い制動性、積雪・氷結路面での高い制動性
といつた特性を全て満足するタイヤは提案されて
いない。特に、これまでは、路面が積雪や氷結の
ために滑り易くなる冬期においては、低燃費タイ
ヤを含む一般タイヤでは、これらの路面における
制動性が非常に小さく、スノータイヤの使用を余
儀なくされていた。しかし、使用者のタイヤ交換
にかける時間と手間はかなりのものであり、一般
夏タイヤで上記の3つの特性を満足するオールシ
ーズン用のタイヤの出現が非常に切望されてい
る。 〔発明の目的〕 本発明は、このような要求に応じるためになさ
れたものであつて、走行時のタイヤレツド部の発
熱が少なく、低燃費性に優れ、しかも湿潤路面で
の制動性および積雪・氷結路面での制動性を共に
著しく改善した空気入りタイヤを提供することを
目的とする。このタイヤは、夏冬を問わず通期に
亘つて使用可能ないわゆるオールシーズン用の空
気入りタイヤである。 〔発明の構成〕 この目的を達成するために、本発明者らは、鋭
意研究した結果、トレツド部に新規なスチレン−
ブタジエン共重合体ゴムを含有するゴム組成物を
用いることにより低燃費性で湿潤路面および積
雪・氷結路面での制動性に優れた空気入りタイヤ
が得られることを見い出し、本発明をなすにいた
つた。 したがつて、本発明は、トレツド部が外表面側
ゴム層と内面側ゴム層の少なくとも2層からなる
空気入りタイヤにおいて、 (1) 前記外表面側ゴム層は、原料ゴム100重量部
が天然ゴムおよび/またはポリイソプレンゴム
20〜90重量部とスチレン−ブタジエン共重合体
ゴム80〜10重量部からなり、該共重合体ゴムは
結合スチレン量が5〜30重量%、ブタジエン部
の1,2−ビニル結合量が10〜85%で分子鎖末
端あるいは分子鎖中に下記式()で示される
原子団が導入されており、 かつ、スズ−ブタジエニル結合で結合された
分岐状重合体(A)と上記式()で示される
原子団が少なくとも1個導入された重合体
(B)との割合A/Bが0.1以上4.0未満であり、
(2)補強剤として、比表面積(N2SA)が60〜
140m2/g、ジブチルフタレート吸油量(DBP
吸油量)が100〜150ml/100gであるカーボン
ブラツクを原料ゴム100重量部に対し30〜80重
量部含有していることを特徴とする空気入りタ
イヤを要旨とするものである。 以下、本発明の構成について詳しく説明する。 第1図は、本発明のタイヤの一例の子午半断面
説明図である。第1図において、Tはトレツド部
であり、このトレツド部Tはキヤツプ層(外表面
側ゴム層)1およびアンダー層(内面側ゴム層)
2から構成される。3は左右一対のビード部4,
4間に装架されたカーカス層であり、トレツド部
Tにおいてはこのカーカス層3の外周を取り囲む
ようにベルト層5が配置されている。6はトレツ
ド溝、7はサイド部である。 (1) 本発明においては、外表面側ゴム層1は、天
然ゴムおよび/又はポリイソプレンゴム20〜90
重量部と特定のスチレン−ブタジエン共重合体
ゴム10〜80重量部含有するのである(ゴム分合
計100重量部)。この範囲外の配合割合では、低
燃費性、湿潤路面での制動性、積雪・氷結路面
での制動性のいずれかの特性が悪くなるので好
ましくないからである。ただし、他のジエン系
ゴム、例えば、ポリブタジエンゴム、アクリロ
ニトリル−ブタジエン共重合体ゴム、非変性ス
チレン−ブタジエン共重合体ゴムなどを30重量
部以下含んでいてもよい。 ここで用いるスチレン−ブタジエン共重合体
ゴムには、分子鎖末端或いは分子鎖中に下記式
で示される原子団が導入されている。 上記式()で示される原子団の導入は、下
記式の結合 (式中Mは、O原子又はS原子を表わす)を
有する化合物(以下、化合物Aと称する)をス
チレン−ブタジエン共重合体と反応させること
によつて行われる。 化合物Aとしては、N,N−ジメチルホルム
アミド、N,N−ジエチルホルムアミド;N,
N−ジエチルアセトアミド;アミノアセトアミ
ド、N,N−ジメチル−N',N'−ジメチルア
ミノアセトアミド、N−フエニルジアセトアミ
ド;N,N−ジメチルアクリルアミド、N,N
−ジメチルメタアクリルアミド;プロピオンア
ミド、N,N−ジメチルプロピオンアミド;4
−ピリジルアミド、N,N−ジメチル−4−ピ
リジルアミド;N,N−ジメチルベンズアミ
ド、p−アミノベンズアミド、N',N'−(p−
ジメチルアミノ)ベンズアミド、N,N−ジメ
チル−N′−(p−エチルアミノ)ベンズアミ
ド、N−アセチル−N−2−ナフチルベンズア
ミド;ニコチンアミド、N,N−ジエチルニコ
チンアミド;コハク酸アミド、マレイン酸アミ
ド、N,N,N',N'−テトラメチルマレイン
酸アミド;コハクイミド、マレイミド、N−メ
チルマレイミド、N−メチルフタルイミド、
1,2−シクロヘキサンジカルボキシミド、N
−メチル−1,2−シクロヘキサンジカルボキ
シミド;オキサミド、2−フラミド、N,N,
N',N'−テトラメチルオキサミド、N,N−
ジメチル−2−フラミド;N,N−ジメチル−
8−キノリンカルボキシアミド;N,N−ジメ
チル−p−アミノ−ベンザルアセトアミド、
N,N−ジメチル−N',N'−(p'−ジメチルア
ミノ)シンナミリデンアセトアミド;N,N−
ジメチル−N',N'−(2−ジメチルアミノ)ビ
ニルアミド、N'−(2−メチルアミノ)ビニル
アミド;尿素、N,N'−ジメチル尿素、N,
N,N',N'−テトラメチル尿素;カルバミン
酸メチル、N,N−ジエチルカルバミン酸メチ
ル;ε−カプロラクタム、N−メチル−ε−カ
プロラクタム、N−アセチル−ε−カプロラク
タム、2−ピロリドン、N−メチル−2−ピロ
リドン、N−アセチル−2−ピロリドン、2−
ピペリドン、N−メチル−2−ピペリドン、2
−キノロン、N−メチル−2−キノロン、2−
インドリノン、N−メチル−2−インドリノ
ン;イソシアヌル酸、N,N',N”−トリメチ
ルイソシアヌル酸等およびこれらの対応の含硫
黄化合物が例示できる。なかでも特に好ましい
化合物は、窒素にアルキル基が結合した化合物
である。 前記式()で示される原子団が導入された
スチレン−ブタジエン共重合体ゴムの製造方法
としては、例えば、(a)アルカリ金属基材触媒お
よび/又はアルカリ土類金属基材触媒を用いて
スチレンとブタジエンとを重合させ、重合反応
が完了した溶液中に化合物Aを添加する方法、
(b)スチレン−ブタジエン共重合体を適当な溶剤
に溶解させた溶液中で、該共重合体にアルカリ
金属および/又はアルカリ土類金属を付加さ
せ、引き続き化合物Aを添加して反応させる方
法等が例示できる。 この場合の重合反応および付加反応に使用さ
れるアルカリ金属基材触媒は、リチウム、ルビ
ジウム、セシウム等の金属そのもの、或いはこ
れらの炭化水素化合物もしくは極性化合物との
錯体(例えば、n−ブチルリチウム、2−ナフ
チルリチウム、カリウム−テトラヒドロフラン
錯体、カリウム−ジエトキシエタン錯体等)で
ある。また、アルカリ土類金属基材触媒は、特
開昭51−115590号、特開昭52−9090号、特開昭
57−100146号などに記載されているバリウム、
ストロンチウム、カルシウム等の化合物を主成
分とする触媒系等が例示できる。いずれの金属
基材触媒も通常の溶液重合の触媒として使用さ
れるものでよく、特に制限されるものでない。 反応終了後、化合物Aの導入された不飽和ゴ
ム状重合体は、メタノール等の凝固剤の添加、
水蒸気によるストリツピングなどの通常の分離
方法を用いて反応溶液中から回収される。得ら
れた不飽和ゴム状重合体には、分子鎖末端或い
は分子鎖中に、 なる原子団として化合物Aが導入されてい
る。 化合物Aが導入される部位は、分子鎖の末端
或いはそれ以外の部位であつてもよいが、好ま
しくは分子鎖の末端である。分子鎖の末端がジ
エニル構造の共重合体と化合物Aとの反応で得
られた重合体を使用することにより、低燃費性
の改善がさらに大となるからである。 スチレン−ブタジエン共重合体ゴムが前記式
()で示される原子団を分子鎖内に有してい
ることが本発明の必須の構成用件である。この
スチレン−ブタジエン共重合体ゴムを含有する
ゴム組成物は、前記式()で示される原子団
を有さない通常のスチレン−ブタジエン共重合
体ゴムからなるゴム組成物に比べると著しく改
善された反発弾性を示す。したがつて、このゴ
ム組成物をトレツドに用いた空気入りタイヤ
は、他の特性を高いレベルに維持しながら低燃
費性を非常に改善することが可能となる。 また、本発明で用いるスチレン−ブタジエン
共重合体ゴムは、結合スチレン量が5〜30重量
%、好ましくは10〜30重量%であり、また、ブ
タジエン部の1,2−ビニル結合量が10〜85
%、好ましくは30〜75%である。 結合スチレン量が5重量%未満では、ゴム組
成物のウエツトスキツド抵抗が低下し、湿潤路
面におけるタイヤの制動性能を悪化させるので
好ましくない。一方、30重量%を越えると、湿
潤路面での制動性が大きくなる反面、積雪・氷
結路面での制動性および耐摩耗性が悪化するの
で好ましくない。 1,2−ビニル結合量が10%未満では製造が
困難な上に湿潤路面での制動性の改善効果が小
さく、一方、85%を越えると発熱性が大きくな
ると共に氷結路面での制動性、耐摩耗性が大幅
に低下するため好ましくない。 また、本発明で用いるスチレン−ブタジエン
共重合体ゴムは、タイヤ製造時に良好な加工性
を得るために、スズ−ブタジエニル結合で結合
された分岐状重合体を含んでいてもよい。ただ
し、スズ−ブタジエニル結合の形成のためにス
チレン−ブタジエン共重合体ゴムの分子鎖末端
が利用されすぎると前記式()で示される原
子団を導入するための有効分子鎖末端が減少す
るので、タイヤ製造時に良好な加工性を保ちな
がら本発明の目的であるタイヤ性能を得ようと
するには、スズ−ブタジエニル結合で結合され
た分岐状重合体(A)と分子鎖内に前記式
()で示される原子団が少なくとも1個導入
された重合体(B)との割合A/Bが0.1以上
4.0未満の範囲にあることが好ましい。 (2) また、本発明においては、外表面側ゴム層1
が、補強剤として、カーボンブラツクを原料ゴ
ム100重量部に対して30〜80重量部含有してい
るのである。 カーボンブラツクの配合量が30重量部未満で
は、タイヤとして十分な湿潤路面での制動性、
耐摩耗性が得られない。一方、80重量部を越え
るとタイヤの低燃費性が悪化し、加えて、トレ
ツド部の硬度が低温で高くなるため氷結路面で
滑り易くなり、好ましくないからである。 ここで用いるカーボンブラツクの特性として
は、窒素吸着法による比表面積(N2SA)が60
〜140m2/g、好ましくは75〜120m2/gで、ジ
ブチルフタレート吸油量(DBP吸油量)が100
〜150ml/100g、好ましくは110〜140ml/100g
の範囲にあることが必要である。 N2SAが60m2/g未満では、タイヤの低燃費
性に優れるものの、湿潤路面での制動性、耐摩
耗性が著しく悪化する。一方、N2SAが140
m2/gを越えるとタイヤの低燃費性が劣ること
になるで好ましくない。 DBP吸油量が100ml/100g未満では、タイヤ
の耐摩耗性が低下し、さらに操縦安定性が悪く
なるので好ましくない。150ml/100gを越える
と、低温でトレツド部が硬化し易く、積雪・氷
結路面での制動性が低下するので好ましくな
い。 さらに、このカーボンブラツクとしては、遠
心沈降法により測定される凝集体分布の半値幅
(ΔDst)が85〜130mμのものが、低燃費性の改
善にはよりいつそうの効果があるので好まし
い。 本発明では、トレツド部は少なくとも2層か
らなる空気入りタイヤの外表面側ゴム層に上述
したようなゴム成分、カーボンブラツクからな
るゴム組成物を使用したことを特徴とするが、
このゴム組成物は、通常のゴム工業で用いられ
る配合剤である加硫剤、加硫促進剤、加硫助
剤、老化防止剤、軟化剤等を含んでいてもよ
い。また、本発明のタイヤは、乗用車用タイヤ
をはじめ、トラツク・バス用タイヤなど全ての
タイヤに適用できるものであり、タイヤの種類
には特に限定されるものではない。 以下に実施例、比較例を示す。 実施例、比較例 ここで用いたスチレン−ブタジエン共重合体ゴ
ム(SBR)の特性を第1表に、カーボンブラツ
クの特性を第表に示した。 第表に示す配合のゴムを第1図に示す2層ト
レツド構造を有するタイヤのキヤツプ層に用い、
165SR13のタイヤを18種作製した。各タイヤにつ
いて、湿潤路制動試験、氷結路制動試験、転がり
抵抗試験を実車試験により下記の方法で行い評価
した。この結果を第表に併記した。 (1) 湿潤路制動試験: アスフアルト舗装路面に散水し、40Km/hrから
の制動距離を測定し、比較例1のタイヤを100と
したときの指数で評価した。指数が大きいほど制
動性能は良好である。 (2) 氷結路制動試験: 気温−5〜−10℃の雰囲気下、完全に凍結した
路面において速度40Km/hrで走行中にブレーキを
かけ、完全に停止するまでの距離を測定し、比較
例1のタイヤを100としたときの指数で評価した。
指数が大きいほど制動性能は良好である。 (3) 転がり抵抗試験: 径707mmの室内試験用ドラム上にて、タイヤ内
圧1.9Kg/cm2、荷重420Kgを負荷し、100Km/hrの
速度で予備走行を30分行つた後、60Km/hrの速度
で転がり抵抗を測定し、比較例1のタイヤを100
としたときの指数で評価した。指数が小さいほど
転がり抵抗が低く、低燃費性に優れる。
[Technical Field of the Invention] The present invention provides a pneumatic tire that generates less heat in the tire tread when running, has excellent fuel efficiency, and has significantly improved braking performance on wet roads and on snowy and icy roads. Regarding. [Prior Art] In recent years, the demand for low fuel consumption in automobiles has increased significantly due to social demands for resource and energy conservation. For this reason, not only the development of automobiles themselves, such as engines that consume less gasoline, but also fuel-efficient tires that reduce energy loss have been rapidly investigated. Conventionally, rubber materials with low hysteresis loss have been required as tire materials for fuel-efficient tires, and in particular, natural rubber with low hysteresis loss has been used as a rubber component for the tread portion, which is said to account for more than 50% of the hysteresis loss of tires. , polyisoprene rubber, polybutadiene rubber, styrene-butadiene copolymer rubber with a low glass transition point (Tg), and blends thereof have been used. Furthermore, as far as rubber compositions have been concerned, there have been rubber compositions that contain a comparatively small amount of carbon black with a relatively large particle size and also contain as little as possible the amount of a softener such as aromatic oil. has been used. By the way, recently, more and more functions have been required of tires at a very high level. For example, the fuel-efficient tires developed as described above do not reduce their fuel-efficiency performance, and from the standpoint of safety, have high braking performance that can be used on various road surfaces such as wet roads, snow-covered roads, and icy roads. Performance is highly desired. However, as mentioned above, when using natural rubber, polyisoprene rubber, polybutadiene rubber, or styrene-butadiene copolymer rubber with low Tg, which has low hysteresis loss, braking performance (wet skid resistance), especially on wet road surfaces, is poor. The problem was that the running stability was extremely poor. Furthermore, when carbon black with a large particle size was used, although the fuel efficiency performance was excellent, deterioration of properties such as braking performance on wet road surfaces and wear resistance could be avoided. Furthermore, the tread rubber of conventional fuel-efficient tires contains a small amount of softener, so it tends to harden at low temperatures, and therefore has sufficient braking performance (ice skid resistance) on snowy or icy roads. had not reached a satisfactory level. On the other hand, recently, so-called high vinyl polybutadiene rubber and high vinyl styrene-butadiene copolymer rubber containing 50% or more of 1,2-vinyl bonds have been developed as materials that satisfy both fuel efficiency and wet skid resistance properties of tires. Proposed.
However, all of these rubbers have a high glass transition point (Tg), so they have poor abrasion resistance, and they also harden easily at low temperatures, resulting in significantly inferior braking performance on snowy and icy roads. However, it is still insufficient to satisfy all such characteristics. Thus, at present, no tire has been proposed that satisfies all of the characteristics of low fuel consumption, high braking performance on wet road surfaces, and high braking performance on snowy and icy roads. Particularly in the winter, when roads become slippery due to snow and ice, conventional tires, including fuel-efficient tires, have very poor braking performance on these surfaces, forcing the use of snow tires. . However, it takes a considerable amount of time and effort for users to change tires, and there is a strong desire for an all-season tire that satisfies the above three characteristics while being a regular summer tire. [Objective of the Invention] The present invention has been made to meet these demands, and has low heat generation in the tire lead portion during driving, excellent fuel efficiency, and improved braking performance on wet road surfaces and improved snow and snow accumulation. The purpose of the present invention is to provide a pneumatic tire that has significantly improved braking performance on icy road surfaces. This tire is a so-called all-season pneumatic tire that can be used throughout the year, regardless of summer or winter. [Structure of the Invention] In order to achieve this object, the present inventors have made extensive research and have developed a novel styrene-based material for the tread portion.
We have discovered that by using a rubber composition containing butadiene copolymer rubber, a pneumatic tire with low fuel consumption and excellent braking performance on wet road surfaces and snowy/icy roads can be obtained, and we have developed the present invention. . Therefore, the present invention provides a pneumatic tire in which the tread portion is composed of at least two layers, an outer surface rubber layer and an inner surface rubber layer, (1) The outer surface rubber layer has 100 parts by weight of raw material rubber. Rubber and/or polyisoprene rubber
20 to 90 parts by weight and 80 to 10 parts by weight of styrene-butadiene copolymer rubber, the copolymer rubber has a bound styrene content of 5 to 30% by weight, and a 1,2-vinyl bond content of the butadiene moiety of 10 to 10% by weight. In 85% of cases, an atomic group represented by the following formula () is introduced at the end of the molecular chain or into the molecular chain. and the ratio A/B of the branched polymer (A) bonded by a tin-butadienyl bond to the polymer (B) into which at least one atomic group represented by the above formula () has been introduced is 0.1 or more and less than 4.0. and
(2) As a reinforcing agent, the specific surface area (N 2 SA) is 60~
140m 2 /g, dibutyl phthalate oil absorption (DBP)
The pneumatic tire is characterized by containing 30 to 80 parts by weight of carbon black having an oil absorption of 100 to 150 ml/100 g per 100 parts by weight of raw rubber. Hereinafter, the configuration of the present invention will be explained in detail. FIG. 1 is an explanatory diagram of a meridional half cross section of an example of the tire of the present invention. In FIG. 1, T is a tread portion, and this tread portion T includes a cap layer (outer surface rubber layer) 1 and an under layer (inner surface rubber layer).
Consists of 2. 3 is a pair of left and right bead portions 4,
A belt layer 5 is disposed so as to surround the outer periphery of the carcass layer 3 in the tread portion T. 6 is a tread groove, and 7 is a side portion. (1) In the present invention, the rubber layer 1 on the outer surface side is made of natural rubber and/or polyisoprene rubber of 20 to 90%
parts by weight and 10 to 80 parts by weight of a specific styrene-butadiene copolymer rubber (total rubber content: 100 parts by weight). This is because a blending ratio outside this range is undesirable because any of the characteristics of fuel efficiency, braking performance on wet road surfaces, and braking performance on snowy/icy road surfaces will deteriorate. However, it may also contain 30 parts by weight or less of other diene rubbers, such as polybutadiene rubber, acrylonitrile-butadiene copolymer rubber, unmodified styrene-butadiene copolymer rubber, and the like. The styrene-butadiene copolymer rubber used here has an atomic group represented by the following formula introduced at the end or into the molecular chain. The introduction of the atomic group shown in the above formula () is the bond of the following formula (In the formula, M represents an O atom or an S atom) (hereinafter referred to as compound A) is reacted with a styrene-butadiene copolymer. Compound A includes N,N-dimethylformamide, N,N-diethylformamide;
N-diethylacetamide; aminoacetamide, N,N-dimethyl-N',N'-dimethylaminoacetamide, N-phenyldiacetamide; N,N-dimethylacrylamide, N,N
-dimethylmethacrylamide; propionamide, N,N-dimethylpropionamide; 4
-pyridylamide, N,N-dimethyl-4-pyridylamide; N,N-dimethylbenzamide, p-aminobenzamide, N',N'-(p-
dimethylamino)benzamide, N,N-dimethyl-N'-(p-ethylamino)benzamide, N-acetyl-N-2-naphthylbenzamide; nicotinamide, N,N-diethylnicotinamide; succinic acid amide, maleic acid Amide, N,N,N',N'-tetramethylmaleic acid amide; succinimide, maleimide, N-methylmaleimide, N-methylphthalimide,
1,2-cyclohexanedicarboximide, N
-Methyl-1,2-cyclohexanedicarboximide; oxamide, 2-furamide, N,N,
N',N'-tetramethyloxamide, N,N-
Dimethyl-2-furamide; N,N-dimethyl-
8-quinolinecarboxamide; N,N-dimethyl-p-amino-benzalacetamide;
N,N-dimethyl-N',N'-(p'-dimethylamino)cinnamylideneacetamide; N,N-
Dimethyl-N',N'-(2-dimethylamino)vinylamide, N'-(2-methylamino)vinylamide; urea, N,N'-dimethylurea, N,
N,N',N'-tetramethylurea; methyl carbamate, N,N-methyl diethylcarbamate; ε-caprolactam, N-methyl-ε-caprolactam, N-acetyl-ε-caprolactam, 2-pyrrolidone, N -Methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, 2-
piperidone, N-methyl-2-piperidone, 2
-quinolone, N-methyl-2-quinolone, 2-
Examples include indolinone, N-methyl-2-indolinone; isocyanuric acid, N,N',N"-trimethylisocyanuric acid, etc., and their corresponding sulfur-containing compounds. Among these, particularly preferred compounds are those in which an alkyl group is bonded to nitrogen. The method for producing the styrene-butadiene copolymer rubber into which the atomic group represented by the formula () is introduced includes, for example, (a) an alkali metal-based catalyst and/or an alkaline earth metal-based catalyst; A method of polymerizing styrene and butadiene using a catalyst and adding compound A to the solution after the polymerization reaction is completed,
(b) A method in which a styrene-butadiene copolymer is dissolved in a suitable solvent, an alkali metal and/or an alkaline earth metal is added to the copolymer, and then Compound A is added and reacted, etc. can be exemplified. In this case, the alkali metal-based catalyst used in the polymerization reaction and addition reaction is a metal itself such as lithium, rubidium, or cesium, or a complex of these metals with a hydrocarbon compound or a polar compound (for example, n-butyllithium, 2 -naphthyllithium, potassium-tetrahydrofuran complex, potassium-diethoxyethane complex, etc.). In addition, alkaline earth metal-based catalysts are disclosed in JP-A-51-115590, JP-A-52-9090, and JP-A-Sho 52-9090.
Barium, which is listed in No. 57-100146, etc.
Examples include catalyst systems containing compounds such as strontium and calcium as main components. Any metal-based catalyst may be used as a catalyst for normal solution polymerization, and is not particularly limited. After the reaction is completed, the unsaturated rubbery polymer into which Compound A has been introduced is treated by adding a coagulant such as methanol,
It is recovered from the reaction solution using conventional separation methods such as steam stripping. The obtained unsaturated rubbery polymer contains at the end of the molecular chain or in the molecular chain, Compound A is introduced as an atomic group. The site into which compound A is introduced may be at the end of the molecular chain or any other site, but is preferably at the end of the molecular chain. This is because by using a polymer obtained by reacting a copolymer having a dienyl structure at the end of the molecular chain with Compound A, the fuel efficiency can be further improved. It is an essential condition of the present invention that the styrene-butadiene copolymer rubber has an atomic group represented by the above formula () in its molecular chain. A rubber composition containing this styrene-butadiene copolymer rubber is significantly improved compared to a rubber composition containing a normal styrene-butadiene copolymer rubber that does not have the atomic group represented by the above formula (). Shows rebound resilience. Therefore, a pneumatic tire using this rubber composition in its tread can greatly improve fuel efficiency while maintaining other characteristics at a high level. Furthermore, the styrene-butadiene copolymer rubber used in the present invention has a bound styrene content of 5 to 30% by weight, preferably 10 to 30% by weight, and a 1,2-vinyl bond content of the butadiene moiety of 10 to 30% by weight. 85
%, preferably 30-75%. If the amount of bound styrene is less than 5% by weight, the wet skid resistance of the rubber composition decreases, which impairs the braking performance of the tire on wet road surfaces, which is undesirable. On the other hand, if it exceeds 30% by weight, braking performance on wet road surfaces increases, but braking performance on snowy/icy roads and abrasion resistance deteriorate, which is not preferable. If the amount of 1,2-vinyl bond is less than 10%, it is difficult to manufacture and the effect of improving braking performance on wet roads is small. On the other hand, if it exceeds 85%, heat generation increases and braking performance on icy roads increases. This is not preferred because the wear resistance is significantly reduced. Further, the styrene-butadiene copolymer rubber used in the present invention may contain a branched polymer bonded with tin-butadienyl bonds in order to obtain good processability during tire manufacturing. However, if the molecular chain ends of the styrene-butadiene copolymer rubber are used too much to form tin-butadienyl bonds, the effective molecular chain ends for introducing the atomic group represented by the above formula () will decrease. In order to obtain the tire performance that is the objective of the present invention while maintaining good processability during tire manufacturing, it is necessary to combine the branched polymer (A) bonded with tin-butadienyl bonds with the formula () in the molecular chain. The ratio A/B to the polymer (B) into which at least one atomic group represented by is introduced is 0.1 or more.
Preferably, it is in a range of less than 4.0. (2) In addition, in the present invention, the outer surface side rubber layer 1
However, carbon black is contained as a reinforcing agent in an amount of 30 to 80 parts by weight per 100 parts by weight of raw rubber. If the amount of carbon black is less than 30 parts by weight, the tire will not have sufficient braking performance on wet roads.
Abrasion resistance cannot be obtained. On the other hand, if it exceeds 80 parts by weight, the fuel efficiency of the tire will deteriorate, and in addition, the hardness of the tread portion will increase at low temperatures, making it easier to slip on icy roads, which is undesirable. The carbon black used here has a specific surface area (N 2 SA) of 60% by nitrogen adsorption method.
~140m 2 /g, preferably 75-120m 2 /g, with dibutyl phthalate oil absorption (DBP oil absorption) of 100
~150ml/100g, preferably 110-140ml/100g
It is necessary to be within the range of . If the N 2 SA is less than 60 m 2 /g, the tire will have excellent fuel efficiency, but its braking performance and wear resistance on wet road surfaces will deteriorate significantly. On the other hand, N 2 SA is 140
If it exceeds m 2 /g, the fuel efficiency of the tire will deteriorate, which is undesirable. If the DBP oil absorption amount is less than 100ml/100g, it is not preferable because the wear resistance of the tire decreases and the steering stability deteriorates. If it exceeds 150 ml/100 g, the tread portion tends to harden at low temperatures and braking performance on snowy or icy roads decreases, which is undesirable. Furthermore, it is preferable that the carbon black has a half-value width (ΔDst) of aggregate distribution measured by centrifugal sedimentation of 85 to 130 mμ, since it is more effective in improving fuel efficiency. In the present invention, the tread portion is characterized in that a rubber composition comprising the above-mentioned rubber component and carbon black is used for the outer surface rubber layer of a pneumatic tire comprising at least two layers.
This rubber composition may contain compounding agents commonly used in the rubber industry, such as a vulcanizing agent, a vulcanization accelerator, a vulcanization aid, an anti-aging agent, and a softening agent. Further, the tire of the present invention can be applied to all tires such as tires for passenger cars, tires for trucks and buses, and the type of tire is not particularly limited. Examples and comparative examples are shown below. Examples and Comparative Examples The properties of the styrene-butadiene copolymer rubber (SBR) used here are shown in Table 1, and the properties of carbon black are shown in Table 1. A rubber having a composition shown in Table 1 is used in the cap layer of a tire having a two-layer tread structure shown in FIG.
We created 18 types of 165SR13 tires. Each tire was evaluated by performing a wet road braking test, an icy road braking test, and a rolling resistance test using actual vehicle tests using the following methods. The results are also listed in Table 1. (1) Wet road braking test: Water was sprinkled on the asphalt paved road surface, the braking distance from 40 km/hr was measured, and the index was evaluated with the tire of Comparative Example 1 set as 100. The larger the index, the better the braking performance. (2) Icy road braking test: The brakes were applied while driving at a speed of 40 km/hr on a completely frozen road in an atmosphere of -5 to -10°C, and the distance until it came to a complete stop was measured. Evaluation was made using an index when a tire of 1 is set as 100.
The larger the index, the better the braking performance. (3) Rolling resistance test: On an indoor test drum with a diameter of 707 mm, a tire internal pressure of 1.9 Kg/cm 2 and a load of 420 Kg were applied, and after 30 minutes of preliminary running at a speed of 100 Km/hr, a test of 60 Km/hr was performed. The rolling resistance was measured at speed, and the tire of Comparative Example 1 was
It was evaluated using the index when The smaller the index, the lower the rolling resistance and the better fuel efficiency.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、トレツド
部に新規なスチレン−ブタジエン共重合体ゴムを
含有したゴム組成物を用いると共に、この共重合
体ゴムにおけるスズ−ブタジエニル結合で結合さ
れた分岐状重合体の含有量を特定の範囲内とした
ので、タイヤ製造時における良好な加工性を保持
しながら、低燃費性に優れ、しかも湿潤路面およ
び積雪・氷結路面での制動性を同時に満足するオ
ールシーズン用の空気入れタイヤを得ることがで
きる。
As explained above, according to the present invention, a rubber composition containing a novel styrene-butadiene copolymer rubber is used in the tread portion, and branched polymers bonded by tin-butadienyl bonds in this copolymer rubber are used. By keeping the content of the coalesces within a specific range, this all-season tire maintains good workability during tire manufacturing, has excellent fuel efficiency, and also satisfies braking performance on wet, snowy, and icy roads. You can get pneumatic tires for.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタイヤの一例の子午半断面説
明図である。 1……外表面側ゴム層、2……内面側ゴム層、
3……カーカス層、4……ビード部、5……ベル
ト層、6……トレツド溝、7……サイド部、T…
…トレツド部。
FIG. 1 is an explanatory diagram of a meridional half cross section of an example of the tire of the present invention. 1...Rubber layer on the outer surface side, 2...Rubber layer on the inner surface side,
3...Carcass layer, 4...Bead part, 5...Belt layer, 6...Tread groove, 7...Side part, T...
...Torezdo department.

Claims (1)

【特許請求の範囲】 1 トレツド部が外表面側ゴム層と内面側ゴム層
の少なくとも2層からなる空気入りタイヤにおい
て、 (1) 前記外表面側ゴム層は、原料ゴム、100重量
部が天然ゴムおよび/またはポリイソプレンゴ
ム20〜90重量部とスチレン−ブタジエン共重合
体ゴム80〜10重量部からなり、該共重合体ゴム
は結合スチレン量が5〜30重量%、ブタジエン
部の1,2−ビニル結合量が10〜85%で分子鎖
末端あるいは分子鎖中に下記式()で示され
る原子団が導入されており、 かつ、スズ−ブタジエニル結合で結合された
分岐状重合体(A)と上記式()で示される
原子団が少なくとも1個導入された重合体
(B)との割合A/Bが0.1以上4.0未満であり、 (2) 補強剤として、比表面積(N2SA)が60〜
140m2/g、ジブチルフタレート吸油量(DBP
吸油量)が100〜150ml/100gであるカーボン
ブラツクを原料ゴム100重量部に対し30〜80重
量部含有している、 ことを特徴とする空気入りタイヤ。
[Scope of Claims] 1. A pneumatic tire in which the tread portion is composed of at least two layers, an outer surface rubber layer and an inner surface rubber layer, (1) the outer surface rubber layer is made of raw material rubber, 100 parts by weight of which is natural rubber. It consists of 20 to 90 parts by weight of rubber and/or polyisoprene rubber and 80 to 10 parts by weight of styrene-butadiene copolymer rubber, and the copolymer rubber has a bound styrene content of 5 to 30% by weight and a butadiene content of 1,2% by weight. - The amount of vinyl bonds is 10 to 85%, and an atomic group represented by the following formula () is introduced at the end of the molecular chain or into the molecular chain, and the ratio A/B of the branched polymer (A) bonded by a tin-butadienyl bond to the polymer (B) into which at least one atomic group represented by the above formula () has been introduced is 0.1 or more and less than 4.0. (2) As a reinforcing agent, the specific surface area (N 2 SA) is 60~
140m 2 /g, dibutyl phthalate oil absorption (DBP)
A pneumatic tire characterized by containing 30 to 80 parts by weight of carbon black having an oil absorption of 100 to 150 ml/100 g per 100 parts by weight of raw rubber.
JP60235294A 1985-10-23 1985-10-23 Pneumatic tire Granted JPS6296546A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60235294A JPS6296546A (en) 1985-10-23 1985-10-23 Pneumatic tire
DE3635587A DE3635587C2 (en) 1985-10-23 1986-10-20 Pneumatic tire
CA000521126A CA1289044C (en) 1985-10-23 1986-10-22 Pneumatic tire
KR1019860008852A KR960000901B1 (en) 1985-10-23 1986-10-22 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235294A JPS6296546A (en) 1985-10-23 1985-10-23 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPS6296546A JPS6296546A (en) 1987-05-06
JPH0464624B2 true JPH0464624B2 (en) 1992-10-15

Family

ID=16983981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235294A Granted JPS6296546A (en) 1985-10-23 1985-10-23 Pneumatic tire

Country Status (4)

Country Link
JP (1) JPS6296546A (en)
KR (1) KR960000901B1 (en)
CA (1) CA1289044C (en)
DE (1) DE3635587C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634860B2 (en) * 1987-06-30 1997-07-30 株式会社ブリヂストン Pneumatic tire
US5843249A (en) * 1996-03-07 1998-12-01 The Goodyear Tire & Rubber Company Truck tire with cap/base construction tread
US6172160B1 (en) * 1996-04-17 2001-01-09 Nippon Zeon Co., Ltd. Diene polymer composition, process for the preparation of the same, and rubber composition containing the same
JP2001261887A (en) * 2000-03-23 2001-09-26 Bridgestone Corp Rubber composition and pneumatic tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142552A (en) * 1984-08-02 1986-03-01 Nippon Zeon Co Ltd Rubber composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629339B2 (en) * 1985-07-29 1994-04-20 日本エラストマ−株式会社 Improved rubber composition for tires

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142552A (en) * 1984-08-02 1986-03-01 Nippon Zeon Co Ltd Rubber composition

Also Published As

Publication number Publication date
KR870003885A (en) 1987-05-06
DE3635587A1 (en) 1987-04-23
JPS6296546A (en) 1987-05-06
CA1289044C (en) 1991-09-17
DE3635587C2 (en) 1995-11-09
KR960000901B1 (en) 1996-01-15

Similar Documents

Publication Publication Date Title
US4822844A (en) Rubber compositions
JP5612727B2 (en) Rubber composition for tire and pneumatic tire
JPS60223840A (en) Tire tread rubber composition
JPS6339015B2 (en)
JPH0421702B2 (en)
JP2018002780A (en) Rubber composition and tire
JPH05411B2 (en)
JPS62156145A (en) Rubber composition for use in tread
JPS6061312A (en) Radial tire for passenger vehicle
JPH0464624B2 (en)
JPS58199203A (en) Pneumatic tyre
JP2002097308A (en) Rubber composition and pneumatic tire using the same
JPH0643517B2 (en) Rubber composition for large pneumatic tires for high speed
JPS62101504A (en) Pneumatic tire
JPS62240337A (en) Rubber composition for tire tread
JPH0753810B2 (en) Rubber composition for tire tread and method for producing the same
JPH09227720A (en) Rubber composition
JP2613043B2 (en) Rubber composition for tread
JP3444814B2 (en) Rubber composition for tire tread
JP2714971B2 (en) Rubber composition for tire tread
JPH07116322B2 (en) Method for producing rubber composition for tread
KR960004675B1 (en) Rubber composition
JP3325683B2 (en) Rubber composition for tire tread
JPS6318613B2 (en)
JPH0559141B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees