JPH0464532B2 - - Google Patents

Info

Publication number
JPH0464532B2
JPH0464532B2 JP59231157A JP23115784A JPH0464532B2 JP H0464532 B2 JPH0464532 B2 JP H0464532B2 JP 59231157 A JP59231157 A JP 59231157A JP 23115784 A JP23115784 A JP 23115784A JP H0464532 B2 JPH0464532 B2 JP H0464532B2
Authority
JP
Japan
Prior art keywords
polymer
thiophene
present
oxidizing agent
electron acceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59231157A
Other languages
Japanese (ja)
Other versions
JPS61111324A (en
Inventor
Ryuichi Sugimoto
Yukako Takahashi
Tadashi Asanuma
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23115784A priority Critical patent/JPS61111324A/en
Publication of JPS61111324A publication Critical patent/JPS61111324A/en
Publication of JPH0464532B2 publication Critical patent/JPH0464532B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機高分子電導体の製造方法に関す
る。さらに詳しくは、チオフエンの新規な重合方
法とそれによつて得られる重合体を基体とする有
機高分子電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an organic polymer conductor. More specifically, the present invention relates to a novel method for polymerizing thiophene and a method for producing an organic polymer conductor based on the polymer obtained thereby.

本発明を実施することにより得られる有機高分
子電導体は電気伝導性又は半伝導性材料として、
また種々の電子素子の材料として用いられる。
The organic polymer conductor obtained by carrying out the present invention can be used as an electrically conductive or semiconductive material.
It is also used as a material for various electronic devices.

〔従来の技術〕[Conventional technology]

電子材料用素材としてのポリチオフエンの製造
方法としてはジブロモチオフエンを原料として合
成する方法(例えば、T.Yamamoto et.al.J.
Polym.Sci.,Polym.Lett.Ed.18 9(1980))及び
チオフエンをモノマーとして電気化学的方法によ
り得る方法(例えばK.Kaneto et.al.,Japan J.
Appl.Phys.21 L567(1982))などが知られてい
る。また、T.Yamamotoらの文献にはジブロモ
チオフエンから得られた重合体にヨウ素をドープ
した半導体の例も示されている。
A method for producing polythiophene as a material for electronic materials is to synthesize it using dibromothiophene as a raw material (for example, T. Yamamoto et.al. J.
Polym.Sci., Polym.Lett.Ed. 18 9 (1980)) and a method of obtaining thiophene as a monomer by an electrochemical method (for example, K.Kaneto et.al., Japan J.
Appl. Phys. 21 L567 (1982)). Furthermore, the literature by T. Yamamoto et al. also shows an example of a semiconductor in which a polymer obtained from dibromothiophene is doped with iodine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来このような方法ではたとえ
ば、T.Yamamotoらの方法では、ジブロモチオ
フエンを原料として、マグネシウム金属やニツケ
ル触媒を用いるためコストが高くなり、また触媒
残渣が大量に重合体中に残留する可能性が大き
く、電気伝導率も10-6〜10-1(Scm-1)とあまり
高いものが得られない問題があつた。
However, conventional methods such as those of T. Yamamoto et al. use dibromothiophene as a raw material and magnesium metal or nickel catalysts, resulting in high costs and large amounts of catalyst residue remaining in the polymer. There was a problem in that it was difficult to obtain a very high electrical conductivity of 10 -6 to 10 -1 (Scm -1 ).

一方、電気化学的方法によれば白金などの高価
な電極を使用して特殊な電解質や電解装置を必要
とするなどコスト高で大量合成には不適であり、
また電解液が分解して、重合体中に不純物として
取り込まれる可能性が大きい等の問題を有してい
る。
On the other hand, electrochemical methods use expensive electrodes such as platinum and require special electrolytes and electrolyzers, making them expensive and unsuitable for mass synthesis.
Further, there is a problem that the electrolyte is likely to decompose and be incorporated into the polymer as impurities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は安価に容易に金属的な電気伝導
性を有するチオフエン重合体の製造方法を提供す
ることにある。
An object of the present invention is to provide a method for easily producing a thiophene polymer having metallic electrical conductivity at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これらの問題を解決するため、
鋭意検討したところ、金属的伝導率を持つたチオ
フエン重合体を安価に大量に製造し得る方法を見
い出して、本発明を完成した。
In order to solve these problems, the present inventors
After extensive research, the present invention was completed by discovering a method for producing thiophene polymers with metallic conductivity in large quantities at low cost.

すなわち、本発明は、チオフエンを遷移金属化
合物を酸化剤として用いて重合して得られる重合
体に電子受容体を存在させることを特徴とする有
機高分子電導体の製造方法である。
That is, the present invention is a method for producing an organic polymeric conductor, characterized in that an electron acceptor is present in a polymer obtained by polymerizing thiophene using a transition metal compound as an oxidizing agent.

本発明において、チオフエン重合体は、チオフ
エンモノマーと酸化剤とを混合するだけで容易に
生成する。
In the present invention, a thiophene polymer is easily produced by simply mixing a thiophene monomer and an oxidizing agent.

本発明に使用する酸化剤としては、チタン、バ
ナジウム、クロム、モリブデン、タングステン、
鉄、ルテニウム、パラジウム、白金、ロジウム、
イリジウム等の金属の塩化物、硫酸塩、硝酸塩、
アセチルアセトナート化合物などの遷移金属化合
物が挙げられる。これらの酸化剤は1種あるいは
2種以上混合して用いても差支えない。
Oxidizing agents used in the present invention include titanium, vanadium, chromium, molybdenum, tungsten,
iron, ruthenium, palladium, platinum, rhodium,
Chlorides, sulfates, nitrates of metals such as iridium,
Examples include transition metal compounds such as acetylacetonate compounds. These oxidizing agents may be used alone or in combination of two or more.

本発明においては、溶媒は特に用いなくとも構
わないが、急激な反応を抑えるために適当な有機
溶媒を使用することが好ましい。
In the present invention, it is not necessary to use a particular solvent, but it is preferable to use a suitable organic solvent in order to suppress rapid reaction.

使用しうる有機溶媒としては、ヘキサン、ヘプ
タンなどの炭化水素、クロロメチレン、クロロホ
ルム、クロロベンゼンなどのハロゲン化炭化水
素、テトラヒドロフラン、ジオキサンなどのエー
テル化合物などが好適である。
Suitable organic solvents that can be used include hydrocarbons such as hexane and heptane, halogenated hydrocarbons such as chloromethylene, chloroform and chlorobenzene, and ether compounds such as tetrahydrofuran and dioxane.

これらの酸化剤溶液中にチオフエンモノマーを
滴下することによりチオフエン重合体が生成す
る。
A thiophene polymer is produced by dropping a thiophene monomer into these oxidizing agent solutions.

生成した重合体は過した後、新しい溶媒を用
いて洗浄し、乾燥すれば良い。このようにして得
られるチオフエン重合体は酸化剤を含むが、これ
らの酸化剤は電子受容体として働くため、特に電
子受容体を添加しなくとも高電導性高分子として
用いることができる。即ち、酸化剤としてチオフ
エン重合体に対して電子受容体である遷移金属化
合物を使用した場合は、遷移金属化合物が除去さ
れない条件下にチオフエン重合体を分離すること
で新たに電子受容体を添加しなくても、チオフエ
ン重合体に電子受容体を存在させることが可能で
あり、添加したのと同様の効果が得られる。
After the produced polymer is filtered, it may be washed with a fresh solvent and dried. The thiophene polymer thus obtained contains an oxidizing agent, but since these oxidizing agents act as electron acceptors, it can be used as a highly conductive polymer even without adding an electron acceptor. That is, when a transition metal compound, which is an electron acceptor, is used as an oxidizing agent for a thiophene polymer, a new electron acceptor can be added by separating the thiophene polymer under conditions that do not remove the transition metal compound. Even without it, it is possible to have an electron acceptor present in the thiophene polymer, and the same effect as when it is added can be obtained.

また別の電子受容体を添加したい場合には、生
成した重合体をアルコールで洗浄することにより
酸化剤が洗い流されるので、乾燥後あらためて、
電子受容体を添加することにより高電導性重合体
が得られる。
If you want to add another electron acceptor, the oxidizing agent will be washed away by washing the generated polymer with alcohol, so add it again after drying.
Highly conductive polymers can be obtained by adding electron acceptors.

本発明において電子受容体としては、比較的電
子親和力が大きく、チオフエン重合体から電子を
浮け取ることが可能なものであれば良く、特に制
限はないが、先に示した遷移金属化合物又はヨウ
素などの無機化合物が好ましく使用できる。
In the present invention, the electron acceptor may be one that has a relatively large electron affinity and is capable of removing electrons from the thiophene polymer, and is not particularly limited, but may include the transition metal compounds mentioned above, iodine, etc. Inorganic compounds can be preferably used.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに説明する。 The present invention will be further explained below with reference to Examples.

実施例 1 200ml三ツ口フラスコ内を窒素で置換したあと
無水塩化第二鉄1gと精製したクロロホルム50ml
を入れた。この溶液中に室温でチオフエン1mlを
加えたところ速やかに重合が起つて黒色の沈澱が
生成した。
Example 1 After purging the inside of a 200ml three-necked flask with nitrogen, 1g of anhydrous ferric chloride and 50ml of purified chloroform were added.
I put it in. When 1 ml of thiophene was added to this solution at room temperature, polymerization occurred immediately and a black precipitate was formed.

生成した重合体をグラスフイルターで過し、
さらにクロロホルムで4回洗浄したのち、減圧で
乾燥した。生成物を500Kg/cm2で圧縮成形して電
気伝導度を測定したところ13Scm-1であつた。
Pass the generated polymer through a glass filter,
After further washing with chloroform four times, it was dried under reduced pressure. The product was compression molded at 500 Kg/cm 2 and its electrical conductivity was measured to be 13 Scm -1 .

実施例 2 実施例1と同様にしてチオフエンを重合したの
ち、洗浄をクロロホルムの代わりにエタノールで
行なつたところ、重合体の色が黒から赤褐色にな
つた。この生成物を実施例1と同様にして電気伝
導度を測定したところ5×10-10Scm-1であつた。
この生成物をヨウ素蒸気に3時間さらしたのち、
同様にして電気伝導度を測定したところ24Scm-1
であつた。
Example 2 After polymerizing thiophene in the same manner as in Example 1, washing was performed with ethanol instead of chloroform, and the color of the polymer changed from black to reddish brown. The electrical conductivity of this product was measured in the same manner as in Example 1 and found to be 5×10 -10 Scm -1 .
After exposing this product to iodine vapor for 3 hours,
The electrical conductivity was measured in the same way and was 24Scm -1.
It was hot.

実施例 3 酸化剤として五塩化モリブデンを用いた他は実
施例1と同様にして重合を行なつて得られた重合
体の電気伝導度は8Scm-1であつた。
Example 3 Polymerization was carried out in the same manner as in Example 1 except that molybdenum pentachloride was used as the oxidizing agent, and the electrical conductivity of the polymer obtained was 8 Scm -1 .

〔発明の効果〕〔Effect of the invention〕

以上のように本発明を実施することにより金属
的電気伝導性を有する高分子電導体が安価に、容
易に得られる。
By carrying out the present invention as described above, a polymer conductor having metallic electrical conductivity can be easily obtained at low cost.

これらの伝導体は、電子受容体をドーピング、
脱ドーピングすることが可能であり、たとえば電
池電極用材料として使用した場合内部抵抗が小さ
くなるなどの効果があり、工業的価値がある。
These conductors dope electron acceptors,
It can be de-doped, and when used as a material for battery electrodes, for example, it has the effect of reducing internal resistance, and has industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1 チオフエンを遷移金属化合物を酸化剤として
用いて重合して得られる重合体に、電子受容体を
存在させることを特徴とする有機高分子電導体の
製造方法。
1. A method for producing an organic polymer conductor, which comprises causing an electron acceptor to exist in a polymer obtained by polymerizing thiophene using a transition metal compound as an oxidizing agent.
JP23115784A 1984-11-05 1984-11-05 Production of organic polymeric conductor Granted JPS61111324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23115784A JPS61111324A (en) 1984-11-05 1984-11-05 Production of organic polymeric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23115784A JPS61111324A (en) 1984-11-05 1984-11-05 Production of organic polymeric conductor

Publications (2)

Publication Number Publication Date
JPS61111324A JPS61111324A (en) 1986-05-29
JPH0464532B2 true JPH0464532B2 (en) 1992-10-15

Family

ID=16919190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23115784A Granted JPS61111324A (en) 1984-11-05 1984-11-05 Production of organic polymeric conductor

Country Status (1)

Country Link
JP (1) JPS61111324A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544432B2 (en) * 1988-03-09 1996-10-16 清蔵 宮田 Method for producing highly conductive organic polymer
EP0385523A1 (en) * 1989-02-20 1990-09-05 SOLVAY (Société Anonyme) Process for preparing electrically conductible polymers derived from 3-alkylthiophenes and electrical devices containing them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912933A (en) * 1982-06-29 1984-01-23 バイエル・アクチエンゲゼルシヤフト Oxidation polymerization using no+ or no2+

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912933A (en) * 1982-06-29 1984-01-23 バイエル・アクチエンゲゼルシヤフト Oxidation polymerization using no+ or no2+

Also Published As

Publication number Publication date
JPS61111324A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
Daoust et al. Structure-property relationships in alkoxy-substituted polythiophenes
Yamamoto et al. Preparation and characterization of poly (thienylene) s.
Zagórska et al. Chemical synthesis and characterization of soluble poly (4, 4′-dialkyl-2, 2′-bithiophenes)
US5151221A (en) Conductive plastic composites
Rinaldi et al. Solid phase photopolymerization of pyrrole in poly (vinylchloride) matrix
Kijima et al. Electrochemical synthesis of carbyne catalyzed by nickel complex
JPS62109821A (en) Production of heterocyclic five-membered ring compound polymer composition
JPH0464532B2 (en)
Naarmann et al. Synthesis of New Electronicaly Conducting Polymers
JPH0369371B2 (en)
JPH0556367B2 (en)
JPH0794538B2 (en) Novel polymer and method for producing the same
US5219492A (en) Conductive plastic composites
Martinez et al. Chemical and electrochemical polymerization of thiophene derivatives
JPH01261471A (en) Conductive polymer having improved solubility
Hebert Oxidative and Non-Oxidative Approaches to High Molecular Weight Ether-Substituted Polythiophenes
JP2893637B2 (en) Method for producing 5-membered heterocyclic polymer compound
JPH062819B2 (en) Method for producing conductive composite
JPS61231031A (en) Production of carbon disulfide polymer
JPS61276818A (en) Tellurophene polymer and production thereof
JPS61192725A (en) Production of selenophene polymer
JPS61111325A (en) Production of composite electroconductive composition
Sherwood et al. Ruthenium‐incorporated, metathesis‐active polyacetylene
JPH0348935B2 (en)
JPH0362175B2 (en)