JPH0464356B2 - - Google Patents

Info

Publication number
JPH0464356B2
JPH0464356B2 JP9625584A JP9625584A JPH0464356B2 JP H0464356 B2 JPH0464356 B2 JP H0464356B2 JP 9625584 A JP9625584 A JP 9625584A JP 9625584 A JP9625584 A JP 9625584A JP H0464356 B2 JPH0464356 B2 JP H0464356B2
Authority
JP
Japan
Prior art keywords
reaction product
effect
antistatic
molding
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9625584A
Other languages
Japanese (ja)
Other versions
JPS60240782A (en
Inventor
Katsuhisa Kamio
Morio Ninomya
Shoji Ogiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP9625584A priority Critical patent/JPS60240782A/en
Publication of JPS60240782A publication Critical patent/JPS60240782A/en
Publication of JPH0464356B2 publication Critical patent/JPH0464356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は合成樹脂用帯電防止剤に関する。さら
に詳しくはポリオレフイン系樹脂、スチレン系樹
脂、ABS樹脂、ポリアクリル酸樹脂、ポリメタ
クリル酸樹脂に練り込んで、帯電防止効果がすぐ
あらわれ、しかもその効果が高く、かつ永久性効
果を有する帯電防止剤組成物に関する。 合成樹脂はすぐれた絶縁性を有しており、その
性質が利用されているが、いつたん帯電すると、
導電性が低いためリークし難いため、種々の静電
気障害を起し、問題となつている。すなわち、成
型加工時、または加工後の製品に対して帯電によ
るホコリの付着が起り、流通上さらに使用上厄介
な問題となつており、帯電した静電気による電撃
のため火災、怪我等の事故の原因にもなり、また
計器類の誤差の発生の基にもなる。これらの問題
の解決に対し強い要望がある。また最近は樹脂を
電子機器用基材として用いるに際して帯電による
ホコリ付着問題は厳しく、一層帯電防止に対する
要望が強くなつて来ている。 また最近プラスチツクの表面に塗装したり、メ
ツキしたりする表面加工が増えて来ており、この
ようなケースでの帯電が、表面加工の際に影響が
あり、さらに加工工程のスピードアツプに伴な
い、成型して次の加工までの短い時間の間にも、
帯電防止性能を持つことが要求されるようになつ
ている。 つまり樹脂の使用において、永久性の帯電防止
性能と共に加工時における帯電防止性能の付与も
要求されるようになつて来ており、永久性にさら
に成型後すみやかに効果の出て来る帯電防止剤の
要望がある。 以上のような状況に対して、永久性の帯電防止
剤に関する提案が多くあるが、成型後すみやかに
効果の出て来るものは練り込み型では極めて少
く、例え効果があつてもその度合は極めて低く、
従来の永久性帯電防止剤は、成型後効果が出て来
るのに樹脂の種類により差があるが、早くて2〜
3日後からその帯電防止剤の持つレベルの効果に
到達し、その後1〜2年或いは数年その効果を持
続する。そのような効果を示す帯電防止剤とし
て、種々の化合物が報告されている。ポリオレフ
イン用静電防止剤として、オレフインオキサイド
とアルカノールアミンとの反応により得られるβ
−ヒドロキシアルキル−N−ヒドロキシルアミン
の混合物が知られている(特公昭39−57561)が、
これは永久性の帯電防止能はあるが、成型直後の
効果がなく、効果の出て来るのに数日を要し、上
に述べたような成型後すぐ加工したりする場合に
は適していない。さらに、β−ヒドロキシアルキ
ル−N−エタノールアミンとN、N−ジ(β−ヒ
ドロキシアルキル)−N−エタノールアミンの混
合物を帯電防止剤として、ABS樹脂(特公昭50
−14261)とポリスチレン樹脂(特公昭51−7499)
に適用した特許が出願されているが、これらも永
久性効果はあるが、成型直後の効果が低く、上に
述べたような用途には適用が困難である。また後
2者はβ−ヒドロキシアルキル−N−エタノール
アミンとN、N−ジ(β−ヒドロキシアルキル)
−N−エタノールアミンの混合物が、β−ヒドロ
キシアルキル−N−エタノールアミン単独より効
果があるとしているが、β−ヒドロキシアルキル
−N−エタノールアミンが単独またはその含量が
多い程効果が高いことより、効果のレベルが低く
永久的効果も十分ではない。 またこれら上記の帯電防止剤は、耐久性、効果
の回復性を見るために繰り返し水洗を行つた場
合、効果の回復性が遅く、水洗の回数により効果
が低下して行く欠点がある。 以上のようにこれまで報告されている多くは、
永久性の帯電防止効果を目的としており、成型後
すぐ効果が出て、かつ永久性のある効果を有する
ものとして考えられたものではなく、かつこれら
の耐久性効果もレベルが低く長期にわたつて高い
帯電防止効果を有するものではない。また即効的
に効果の出て来るものとしても多くの化合物や組
成物が考えられているが、これらはほんの一時的
効果はあるが、その持続性がなく、また永久性の
帯電防止剤と混合することは不可能か、反つて効
果を低下させてしまう等の欠点がある。 本発明はこのような点に着目して考え出された
ものであり、成型加工や練り込み後数時間で効果
が出始め、1日で高いレベルの効果をあらわし、
その効果が永久的と云える1〜2年から数年間継
続するものである。すなわち本発明は一般式(1)で
示される1,2−エポキシアルカン (但し、R1は炭素数10〜28のアルキル基を示
す)とモノエタノールアミンとを反応して得られ
る反応生成物(A)70〜97重量%と、炭素数7〜21の
アルキル基またはアルケニル基を有する脂肪酸と
アミノエチルエタノールアミンとを反応して得ら
れる反応生成物(B)3〜30重量%と、より成る合成
樹脂用帯電防止剤組成物である。 本発明で用いる1.2−エポキシアルカンは、エ
ポキシ環に炭素数10〜28ケのアルキル基を有して
おり、これらの炭素数の1.2−エポオキアルカン
を単独または2種以上混合して用いられる。 1.2−エポキシアルカンとモノエタノールアミ
ンの反応生成物は1.2−エポキシアルカン1モル
とモノエタノールアミン1〜6モルとを反応して
得られる。この反応は上記の原料を反応器中にて
不活性ガス下で110〜150℃にて加熱することによ
り行われる。ここに得られる反応生成物は一般に
はモノエタノールアミン分子中の1ケの活性水素
に、1.2−エポキシアルカン1分子が付加反応し
て得られる化合物(以下これを「1−1付加体」
と記す)と、モノエタノールアミン分子中の2ケ
の活性水素に2分子の1.2−エポキシアルカンが
反応して得られる化合物(以下これを「2−1付
加体」と記す)の混合物であり、その混合比は重
量比にて「1−付加体」:「2−1付加体」=10:
0〜7:3が良く、出来る限り、「1−1付加体」
が多い方が効果も高く好ましい。混合物中「2−
1付加体」が30%を越えたものは効果が低く実用
的範囲よりはずれる。 「1−1付加体」と「2−1付加体」の混合比
は全アミノ価、部分アミノ価、三級アミン価を測
定し、それと三級アミン化合物(「2−1付加
体」)の理論分子量とより求める。反応生成物(B)
は炭素数7〜21のアルキル基またはアルケニル基
を有する脂肪酸とアミノエチルエタノールアミン
とを反応して得られるが、その反応生成物は一般
式(2)で示されるアルキルイミダゾリンと、 一般式(3)で示される化合物 R2−CONHCH2CH2NHCH2CH2OH ……(3) との化合物よりなり、その混合物の比率は全アミ
ン価、二級アミン価、三級アミン価の測定値より
算出されるが、その混合比率によつて帯電防止効
果は左右されない。炭素数7〜21のアルキル基ま
たはアルケニル基を有する脂肪酸としては、ラウ
リン酸、ミリスチン酸、パルミチン酸、ステアリ
ン酸、オレイン酸、リノール酸、ベヘン酸等が挙
げられ、これは単体または混合して用いられる。
工業的に得られる混合脂肪酸としては、ヤシ油脂
肪酸、牛脂肪酸、その他動植物性油脂脂肪酸が挙
げられる。 以上のようにして得られた反応生成物(A)70〜97
重量%と、炭素数7〜21のアルキル基またはアル
ケニル基を有する脂肪酸とアミノエチルエタノー
ルアミンとを反応して得られる反応生成物(B)3〜
30重量%とを混合するが、両反応物を溶解し、均
一に混合したのち製品とするのが、一定した効果
を得る上で好ましい。 以下比較例、実施例により本発明を説明する。
これに用いた反応生成物(A)及び反応生成物(B)の組
成を表−1、2に示す。
The present invention relates to an antistatic agent for synthetic resins. More specifically, it is an antistatic agent that can be kneaded into polyolefin resins, styrene resins, ABS resins, polyacrylic acid resins, and polymethacrylic acid resins to immediately provide an antistatic effect, which is highly effective and has a permanent effect. Regarding the composition. Synthetic resin has excellent insulating properties, and this property is utilized, but once charged,
Since it has low conductivity and is difficult to leak, it causes various static electricity problems and has become a problem. In other words, dust adhesion due to electrostatic charge occurs during molding or after processing, which poses a troublesome problem in distribution and use, and causes accidents such as fires and injuries due to electric shock caused by electrostatic charge. It also becomes the source of errors in instruments. There is a strong desire to solve these problems. Furthermore, recently, when resins are used as substrates for electronic devices, the problem of dust adhesion due to charging has become severe, and there has been a growing demand for prevention of charging. In addition, surface processing such as painting or plating on the surface of plastics has been increasing recently, and the static electricity generated in such cases has an impact on the surface processing, and as the processing process speeds up, , even during the short time between molding and next processing.
There is a growing demand for antistatic properties. In other words, when using resins, there is a growing demand for permanent antistatic properties as well as antistatic properties during processing. I have a request. In response to the above situation, there are many proposals regarding permanent antistatic agents, but there are very few kneaded-in types that are effective immediately after molding, and even if they are effective, the degree of effectiveness is extremely low. low,
With conventional permanent antistatic agents, the effect appears after molding, although this varies depending on the type of resin, but it takes about 2 to 30 minutes at the earliest.
After 3 days, the antistatic agent reaches its level of effectiveness and continues to be effective for 1 to 2 years or even several years. Various compounds have been reported as antistatic agents that exhibit such effects. As an antistatic agent for polyolefins, β obtained by the reaction of olefin oxide and alkanolamine
-Hydroxyalkyl-N-hydroxylamine mixtures are known (Japanese Patent Publication No. 39-57561),
Although it has a permanent antistatic ability, it is not effective immediately after molding and takes several days to become effective, making it unsuitable for processing immediately after molding as mentioned above. do not have. Furthermore, a mixture of β-hydroxyalkyl-N-ethanolamine and N,N-di(β-hydroxyalkyl)-N-ethanolamine was used as an antistatic agent in ABS resin
-14261) and polystyrene resin (Special Publication No. 51-7499)
Patent applications have been filed for this method, but these also have a permanent effect, but the effect immediately after molding is low, and it is difficult to apply them to the above-mentioned uses. The latter two are β-hydroxyalkyl-N-ethanolamine and N,N-di(β-hydroxyalkyl)
It is said that a mixture of -N-ethanolamine is more effective than β-hydroxyalkyl-N-ethanolamine alone; however, the more effective β-hydroxyalkyl-N-ethanolamine is alone or the higher its content. The level of effectiveness is low and the permanent effect is not sufficient. In addition, these antistatic agents have the disadvantage that, when repeatedly washed with water to check durability and recovery of the effect, the recovery of the effect is slow, and the effect decreases with the number of washings. As mentioned above, most of the reports so far are
The purpose is to have a permanent antistatic effect, and it is not intended to be effective immediately after molding and has a permanent effect, and these durable effects are also of a low level and will not last for a long time. It does not have a high antistatic effect. There are also many compounds and compositions that are considered to have immediate effects, but these have only temporary effects but are not long-lasting, and they can be mixed with permanent antistatic agents. It is either impossible to do so, or it has drawbacks such as warping and reducing the effectiveness. The present invention was devised with attention to these points, and the effect begins to appear within a few hours after molding and kneading, and shows a high level of effect within a day.
The effect lasts from one to two years to several years, which can be considered permanent. That is, the present invention relates to a 1,2-epoxyalkane represented by the general formula (1). (However, R 1 represents an alkyl group having 10 to 28 carbon atoms) and monoethanolamine. This is an antistatic agent composition for synthetic resins comprising 3 to 30% by weight of a reaction product (B) obtained by reacting a fatty acid having an alkenyl group with aminoethylethanolamine. The 1,2-epoxy alkanes used in the present invention have an alkyl group having 10 to 28 carbon atoms in the epoxy ring, and 1,2-epoxy alkanes having these carbon atoms may be used alone or in a mixture of two or more. The reaction product of 1.2-epoxyalkane and monoethanolamine is obtained by reacting 1 mole of 1.2-epoxyalkane with 1 to 6 moles of monoethanolamine. This reaction is carried out by heating the above raw materials in a reactor under an inert gas at 110-150°C. The reaction product obtained here is generally a compound obtained by the addition reaction of one molecule of 1,2-epoxyalkane to one active hydrogen in a monoethanolamine molecule (hereinafter referred to as a "1-1 adduct").
) and a compound obtained by reacting two molecules of 1,2-epoxyalkane with two active hydrogen atoms in a monoethanolamine molecule (hereinafter referred to as "2-1 adduct"), The mixing ratio is "1-adduct": "2-1 adduct" = 10:
0 to 7:3 is good, and as much as possible, "1-1 adduct"
It is preferable that there is a large amount of , since the effect is high. In the mixture “2-
1 adduct exceeding 30% is less effective and falls outside the practical range. The mixing ratio of "1-1 adduct" and "2-1 adduct" is determined by measuring the total amino value, partial amino value, and tertiary amine value, and then comparing it with the tertiary amine compound ("2-1 adduct"). Determine from the theoretical molecular weight. Reaction product (B)
is obtained by reacting a fatty acid having an alkyl group or an alkenyl group having 7 to 21 carbon atoms with aminoethylethanolamine, and the reaction product is an alkylimidazoline represented by the general formula (2), Compound represented by general formula (3) R 2 −CONHCH 2 CH 2 NHCH 2 CH 2 OH ...(3) The ratio of the mixture is determined by the total amine value, secondary amine value, and tertiary amine value. However, the antistatic effect is not affected by the mixing ratio. Examples of fatty acids having an alkyl group or alkenyl group having 7 to 21 carbon atoms include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and behenic acid, which can be used alone or in combination. It will be done.
Examples of industrially obtained mixed fatty acids include coconut oil fatty acids, beef fatty acids, and other animal and vegetable oil fatty acids. Reaction product (A) 70-97 obtained as above
% by weight, a reaction product (B) obtained by reacting a fatty acid having an alkyl group or an alkenyl group having 7 to 21 carbon atoms with aminoethylethanolamine 3-
30% by weight, but in order to obtain a consistent effect, it is preferable to dissolve both reactants and mix them uniformly before preparing the product. The present invention will be explained below using comparative examples and examples.
The compositions of the reaction product (A) and reaction product (B) used in this are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】 次に表−1の反応生成物(A)と表−2の反応生成
物(B)の比率(重量)を変えて混合し、合成樹脂に
練込んだ帯電防止性を測定し、その結果を表−3
に示す。試験方法は次の通り。 (1) 測定用プレートの作成 (i) ポリスチレンプレート(以下「HI−PS」
と記す):耐衝撃性ポリスチレンに対し、1.5
重量%の試料(表−3のNo.1〜18)を加え
て、均一に混合後、押出成型機にて、帯電防
止剤配合ペレツトを作成し、それを次に射出
成型機にて220〜230℃で、厚さ3mmのプレー
トに成型した。 (ii) ABSプレート(以下「ABS」と記す):
ABS樹脂をポリスチレンと同様に処理して
ABSプレートを得た。 (iii) 高密度ポリエチレンプレート(以下「HD
−PE」と記す):高密度ポリエチレン樹脂に
0.5重量%の試料(表−3のNo.1〜18)を加
え、均一に混合後、押出成型機を通してペレ
ツトを得、それを200〜210℃で、射出成型し
て3mm厚さのプレート得た。 (iv) ポリプロピレンプレート(以下「PP」と
記す):ポリプロピレン樹脂をポリエチレン
プレートと同様に処理してポリプロピレンプ
レートを得た。 (2) 帯電防止効果の測定 測定用プレートにつき、成型直後、成型2日
後、成型7日後、成型2ケ月後の静電気体電後
の半減期(秒)を、スタツクオネストメーター
(宍戸商会製)を用いて測定し、帯電防止効果
を測定した。 (3) 測定結果 表−3の測定No.1〜2、8〜11、17〜18は本
発明の範囲外にあり、測定No.3〜7、12〜16は
本発明の範囲内に入るものである。 それらの測定結果より、 (i) 反応生成物(A):反応生成物(B)の混合比が97:
3から70:30の範囲のものが、成型直後から
2ケ遂まですぐれだ帯電防止性を示した。 (ii) 反応生成物(A)、反応生成物(B)の各々単体よ
り、両者を混合したものの方が、成型直後よ
りすぐれた帯電防止性を示した。 以下表−4に実施例による測定結果を示す。試
料に表−1の反応生成物(A)と表−2の反応生成物
(B)を用い、その混合比率(重量)が(A):(B)=90:
10より成り、測定用プレートの作成、帯電防止性
の測定は先に述べた方法により行い、測定を行つ
た。
[Table] Next, the reaction product (A) in Table 1 and the reaction product (B) in Table 2 were mixed at different ratios (weight), and the antistatic properties kneaded into the synthetic resin were measured. Table 3 shows the results.
Shown below. The test method is as follows. (1) Preparation of measurement plate (i) Polystyrene plate (hereinafter referred to as “HI-PS”)
): 1.5 for impact-resistant polystyrene
% by weight of the samples (Nos. 1 to 18 in Table 3) were added and mixed uniformly, an extrusion molding machine was used to create antistatic agent-containing pellets, and then an injection molding machine was used to form pellets containing 220 to It was molded into a 3 mm thick plate at 230°C. (ii) ABS plate (hereinafter referred to as "ABS"):
ABS resin is treated in the same way as polystyrene.
An ABS plate was obtained. (iii) High-density polyethylene plate (hereinafter “HD
-PE”): high-density polyethylene resin
Add 0.5% by weight of the sample (Nos. 1 to 18 in Table 3), mix uniformly, pass through an extruder to obtain a pellet, and injection mold it at 200 to 210°C to obtain a 3 mm thick plate. Ta. (iv) Polypropylene plate (hereinafter referred to as "PP"): A polypropylene plate was obtained by treating polypropylene resin in the same manner as a polyethylene plate. (2) Measurement of antistatic effect For the measurement plate, measure the half-life (in seconds) after static electricity immediately after molding, 2 days after molding, 7 days after molding, and 2 months after molding using a static electricity meter (manufactured by Shishido Shokai). was used to measure the antistatic effect. (3) Measurement results Measurement Nos. 1 to 2, 8 to 11, and 17 to 18 in Table 3 are outside the scope of the present invention, while measurement Nos. 3 to 7 and 12 to 16 are within the scope of the present invention. It is something. From those measurement results, (i) the mixing ratio of reaction product (A): reaction product (B) is 97:
Those with a ratio of 3 to 70:30 exhibited excellent antistatic properties from immediately after molding to the second trial. (ii) A mixture of reaction product (A) and reaction product (B) showed better antistatic properties immediately after molding than each of them alone. Table 4 below shows the measurement results according to the examples. The reaction product (A) in Table 1 and the reaction product in Table 2 were added to the sample.
Using (B), the mixing ratio (weight) is (A):(B)=90:
The measurement plate was prepared and the antistatic property was measured using the method described above.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式(1)で示される1.2−エポキシアルカン (但し、R1は炭素数10〜28のアルキル基を示
す)とモノエタノールアミンとを反応して得られ
る反応生成物(A)70〜97重量%と、炭素数7〜21の
アルキル基またはアルケニル基を有する脂肪酸と
アミノエチルエタノールアミンとを反応して得ら
れる反応生成物(B)3〜30重量%と、より成ること
を特徴とする帯電防止剤組成物。
[Claims] 1. 1,2-Epoxyalkane represented by general formula (1) (However, R 1 represents an alkyl group having 10 to 28 carbon atoms) and monoethanolamine. An antistatic agent composition comprising 3 to 30% by weight of a reaction product (B) obtained by reacting a fatty acid having an alkenyl group with aminoethylethanolamine.
JP9625584A 1984-05-14 1984-05-14 Antistatic agent composition Granted JPS60240782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9625584A JPS60240782A (en) 1984-05-14 1984-05-14 Antistatic agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9625584A JPS60240782A (en) 1984-05-14 1984-05-14 Antistatic agent composition

Publications (2)

Publication Number Publication Date
JPS60240782A JPS60240782A (en) 1985-11-29
JPH0464356B2 true JPH0464356B2 (en) 1992-10-14

Family

ID=14160090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9625584A Granted JPS60240782A (en) 1984-05-14 1984-05-14 Antistatic agent composition

Country Status (1)

Country Link
JP (1) JPS60240782A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610047B2 (en) * 2000-06-01 2011-01-12 ミヨシ油脂株式会社 Antistatic agent

Also Published As

Publication number Publication date
JPS60240782A (en) 1985-11-29

Similar Documents

Publication Publication Date Title
US3485786A (en) Antistatic polyolefins
US3819656A (en) Uniform mixtures of quaternary ammonium salt isomers
US3891709A (en) Polyoxyalkylene amines
JPH0443104B2 (en)
JPH0464355B2 (en)
JPH0464356B2 (en)
JPH0464553B2 (en)
JPS6230140A (en) Styrene based resin composition
US3435021A (en) Compositions of antistatic agents and polyethylene and crack-free antistatic molded polyethylene bodies
JPH03212435A (en) Polyolefin resin film
JPH06212052A (en) Polyoxymethylene composition
JPH034579B2 (en)
JPS6346102B2 (en)
JPS6144099B2 (en)
JPS6254736A (en) Antistatic agent composition for synthetic resin
JPS642137B2 (en)
JPH08134289A (en) Antistatic agent composition for polypropylene
US3335123A (en) Antistatic polyolefin composition
JP4017199B2 (en) Antistatic agent
JPS63213538A (en) Polyolefin resin composition for injection molding
JPS6254737A (en) Additive composition for synthetic resin
JPS5923350B2 (en) antistatic agent
US2922772A (en) Molding compositions of vinylidene resin polymers and quaternary ammonium destaticizing compounds
JPS6166731A (en) Antistatic agent
JPS62246958A (en) Vehicle member composed of polyamide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees