JPH046425A - Wave-surface detecting apparatus using phase interference - Google Patents

Wave-surface detecting apparatus using phase interference

Info

Publication number
JPH046425A
JPH046425A JP2107538A JP10753890A JPH046425A JP H046425 A JPH046425 A JP H046425A JP 2107538 A JP2107538 A JP 2107538A JP 10753890 A JP10753890 A JP 10753890A JP H046425 A JPH046425 A JP H046425A
Authority
JP
Japan
Prior art keywords
light
mirror
reflected
laser
under observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107538A
Other languages
Japanese (ja)
Inventor
Nobuhiko Katagiri
片桐 伸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2107538A priority Critical patent/JPH046425A/en
Publication of JPH046425A publication Critical patent/JPH046425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To make it possible to improve compensation accuracy and to enhance light beam condensing efficiency by leading out reference light from light under observation. CONSTITUTION:The light emitted from a laser oscillator 1 is reflected from a primary reflecting mirror 2. The diameter of the laser beam is expanded. The light is condensed on a target T through a variable-shape mirror 3. The light reflected from the target T is condensed in the reverse path. The reflected light is taken out with a directional half mirror 4. The small part of the reflected light is extracted with a compact mirror 5. After the light is amplified by a laser amplifier 6, the diameter of the beam is expanded with a beam expander (collimator) 7, and the reference light is obtained. The interference pattern between the reference light and light under observation is detected by a detector (interference observing device) 8. The driving amount of the variable mirror 3 is determined with a control device 9 based on the relative phase information. Even if the light under observation is propagated along a long distance, the difference between the reference light and the length of the light path can be kept within the coherent length of the laser oscillator 1. The compensation accurace is largely improved. As a result, the light-beam condensing efficiency can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、長距離レーザ伝送の光学補償に適用される波
面検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavefront detection device applied to optical compensation for long-distance laser transmission.

[従来の技術] 遠距離光通信装置等でコヒーレント光の波面検出をする
には、観測光と参照光との干渉現象を利用する。従来は
、参照光を、レーザ発振器の出力をビームスプリッタで
分けて形成していた。
[Prior Art] In order to detect the wavefront of coherent light in a long-distance optical communication device or the like, the phenomenon of interference between observation light and reference light is used. Conventionally, reference light has been formed by dividing the output of a laser oscillator using a beam splitter.

[発明が解決しようとする課題] 2つのレーザ光の干渉現象を観測するためには、両者の
位相がそろっている必要がある。現実のレーザ発振器の
出力は、レーザ光の波長(位相)に微少変動があるため
、実際に干渉を観測するためには、被観測光と参照先の
光路長の差が、レーザ発振器のコヒーレント長以内でな
ければならない。
[Problems to be Solved by the Invention] In order to observe the interference phenomenon of two laser beams, it is necessary that the phases of the two laser beams are aligned. The output of a real laser oscillator has slight fluctuations in the wavelength (phase) of the laser beam, so in order to actually observe interference, the difference between the optical path length of the observed light and the reference destination must be determined by the coherent length of the laser oscillator. Must be within

従来の方式では、レーザ発振器の出力のところで参照光
をとり出しているため、遠距離の光伝送を行なってター
ゲットに反射して戻ってくる光と光路長を合わせるのは
困難であ7た。また、運動ターゲットの場合、ドツプラ
ー効果で波長が変わってしまうので、干渉が観測できな
い。
In the conventional method, since the reference light is taken out at the output of the laser oscillator, it is difficult to perform long-distance optical transmission and match the optical path length with the light reflected back from the target. Furthermore, in the case of a moving target, interference cannot be observed because the wavelength changes due to the Doppler effect.

[課題を解決するための手段及び作用]本発明では、上
記欠点を除(ため参照光を被観測光から導出することを
特徴とする。
[Means and effects for solving the problems] The present invention is characterized in that the reference light is derived from the observed light in order to eliminate the above-mentioned drawbacks.

これにより、被観測光が長距離伝播した光であっても、
参照光との光路長の差を、レーザ発振器のコヒーレント
長以内にとどめることが可能となる。
As a result, even if the observed light is light that has propagated over a long distance,
It becomes possible to keep the difference in optical path length from the reference light within the coherent length of the laser oscillator.

被観測光から参照光をとり出すために、ビームサンプリ
ング装置を用いる。これはたとえば小型ミラーでもよい
。抽出したビームの径を調節し、波面の整った参照光を
得るために、コリメータが必要である。
A beam sampling device is used to extract the reference light from the observed light. This can be, for example, a small mirror. A collimator is required to adjust the diameter of the extracted beam and obtain a reference beam with a well-defined wavefront.

レーザ増幅器は、抽出したビームをコヒーレントに増幅
し、十分な強度の参照光を得るために必要となる。
A laser amplifier is required to coherently amplify the extracted beam and obtain a reference beam of sufficient intensity.

[実施例コ 第1図の実施例で説明すると、レーザ発振器1からの光
は1次反射fIt2で反射され、1次反射鏡によりレー
ザビーム径を広げ、形状可変鏡3によりターゲットTに
集光する。ターゲットTで反射した光は逆の経路で集め
、方向性)1−フミラー4で反射光をとり出す。
[Embodiment] To explain the embodiment in FIG. do. The light reflected by the target T is collected in the opposite path, and the reflected light is taken out by the mirror 4.

反射光の小部分を小型ミラー5で抽出し、レーザ増幅器
6で増幅した後、ビームエキスパンダ(コリメータ)7
でビーム径を拡げ、参照光とする。この参照光と被観測
光(反射光)の干渉パターンを検出器8で検出し、この
情報(相対位相情報)に基いて、制御器9により形状可
変鏡3の駆動量を決定する。
A small portion of the reflected light is extracted by a small mirror 5, amplified by a laser amplifier 6, and then transferred to a beam expander (collimator) 7.
Expand the beam diameter with and use it as a reference beam. The interference pattern between the reference light and the observed light (reflected light) is detected by the detector 8, and based on this information (relative phase information), the drive amount of the variable shape mirror 3 is determined by the controller 9.

ここで、レーザ増幅器のゲインは、参照光の強度と被観
測光の強度がなるべく近くなるよう調節する。
Here, the gain of the laser amplifier is adjusted so that the intensity of the reference light and the intensity of the observed light are as close as possible.

[発明の効果] 本発明により、長距離の空間光伝送系の補償系に、干渉
型の波面検出法を適用できるようになり、補償精度が大
幅に改善される。この結果、ビーム集光効率がアップす
る。
[Effects of the Invention] According to the present invention, it becomes possible to apply an interferometric wavefront detection method to a compensation system of a long-distance spatial optical transmission system, and the compensation accuracy is greatly improved. As a result, beam focusing efficiency increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るレーザ伝送系の概念図
である。
FIG. 1 is a conceptual diagram of a laser transmission system according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] ビームサンプリング装置と、コリメータと、コヒーレン
ト光増幅器またはコヒーレント光アッテネータと、干渉
観測装置とを具備し、観測光の一部をビームサンプリン
グ装置でとり出し、コリメータでビーム径や波面形状を
調節し、参照光を形成し、参照光と観測光の光強度をコ
ヒーレント光増幅器またはコヒーレント光アッテネータ
で調整した上で干渉観測装置へ導き、観測光の波面を検
出することを特徴とする波面検出装置。
Equipped with a beam sampling device, a collimator, a coherent optical amplifier or a coherent optical attenuator, and an interference observation device, a part of the observation light is taken out by the beam sampling device, the beam diameter and wavefront shape are adjusted by the collimator, and the beam is used for reference. A wavefront detection device that forms light, adjusts the light intensities of a reference light and observation light using a coherent optical amplifier or a coherent optical attenuator, and guides the light to an interference observation device to detect the wavefront of the observation light.
JP2107538A 1990-04-25 1990-04-25 Wave-surface detecting apparatus using phase interference Pending JPH046425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107538A JPH046425A (en) 1990-04-25 1990-04-25 Wave-surface detecting apparatus using phase interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107538A JPH046425A (en) 1990-04-25 1990-04-25 Wave-surface detecting apparatus using phase interference

Publications (1)

Publication Number Publication Date
JPH046425A true JPH046425A (en) 1992-01-10

Family

ID=14461731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107538A Pending JPH046425A (en) 1990-04-25 1990-04-25 Wave-surface detecting apparatus using phase interference

Country Status (1)

Country Link
JP (1) JPH046425A (en)

Similar Documents

Publication Publication Date Title
JP3091840B2 (en) High energy laser focus sensor
US4005935A (en) Method and apparatus for providing a phase compensated optical beam
CN110632045B (en) Method and device for generating parallel super-resolution focal spots
WO2001007865A3 (en) System and method for ultrasonic laser testing using a laser source to generate ultrasound having a tunable wavelength
KR910020668A (en) Tracking Control for Light Beam Control
CA2385678A1 (en) Method and apparatus for detecting ultrasonic surface displacements using post-collection optical amplification
US4271355A (en) Method for mitigating 2πN ambiguity in an adaptive optics control system
US10401291B2 (en) Standing wave interferometric microscope
JP4459961B2 (en) Laser phase difference detection device and laser phase control device
JP4786540B2 (en) Laser optical path length difference detection device, laser phase control device, and coherent optical coupling device
JPH046425A (en) Wave-surface detecting apparatus using phase interference
US6088107A (en) High resolution positioner
JPH02253103A (en) Two-luminous flux interferometer
JP4290698B2 (en) Apparatus and method for self-controlling phase with an amplifier having a stimulated Brillouin scattering phase conjugate mirror
US5155557A (en) Optical alignment detection apparatus
CN114815282B (en) Device for realizing super resolution of angular radial associated light source
JP2874712B2 (en) Spatial optical transmitter
Mikhaylyuk et al. Diagnostic system for shock processes investigation in matter under the influence of intense laser pulses
JP2611169B2 (en) Laser beam focusing and irradiation equipment
JPH0371049A (en) Interferometer for optical thermal displacement detection
JPH11248412A (en) Low-coherent interference measuring instrument
JPS61133813A (en) Surface shape measuring apparatus
JPS6318207A (en) Apparatus for measuring surface shape
Cairoli et al. Interferometric detection of a vibrating and rotating rough target
Sugizaki et al. Phased array MOPA system using an adaptive mirror