JPH0464092A - Nuclear reactor fuel assembly - Google Patents

Nuclear reactor fuel assembly

Info

Publication number
JPH0464092A
JPH0464092A JP2174524A JP17452490A JPH0464092A JP H0464092 A JPH0464092 A JP H0464092A JP 2174524 A JP2174524 A JP 2174524A JP 17452490 A JP17452490 A JP 17452490A JP H0464092 A JPH0464092 A JP H0464092A
Authority
JP
Japan
Prior art keywords
fuel
spacer
droplet
increase
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2174524A
Other languages
Japanese (ja)
Inventor
Toru Mitsutake
光武 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2174524A priority Critical patent/JPH0464092A/en
Publication of JPH0464092A publication Critical patent/JPH0464092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To convert a passage shape to contrive the improvement of thermal limiting output by making the inner surface of a fuel spacer the form of a truncated cone for narrowing at the inlet part thereof and expanding at the outlet part. CONSTITUTION:When the inner surface of a cylindrical cell 20 of a fuel spacer is constituted so as to become the form of a truncated cone for narrowing at the inlet part thereof and expanding at the outlet, a gas phase velocity is increased to narrow the diameter of droplets because of increasing a droplet velocity and relative velocity and, when the droplet diameter becomes small, droplets are accelerated to increase their mass velocity, the large state of droplet concentration is maintained in a specified interval of the downstream part because a quantity of the droplet deposition per unit length at the just downstream part of the spacer is decreased to increase the quantity of the droplet deposition in the neighborhood of the spacer of the downstream part to increase channel output for producing liquid film dry-out so as to increase thermal limiting output.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は水減速原子炉の燃料集合体に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a fuel assembly for a water-moderated nuclear reactor.

(従来の技術) 最近の水減速原子炉、特にその主流たる軽水減速型原子
炉においては、原子カプラントの運転コスト低減、長期
サイクル運転とこれを実現するための燃料集合体の経済
的燃焼のため、径方向に非均質な形状のものを導入する
ことがなされている。
(Prior art) Recent water-moderated nuclear reactors, especially light water-moderated nuclear reactors, which are the mainstream of water-moderated nuclear reactors, are designed to reduce operating costs of nuclear couplants, achieve long-term cycle operation, and economically burn fuel assemblies to achieve this. , it has been attempted to introduce a non-uniform shape in the radial direction.

第4図に沸騰水型軽水炉(BWR)で用いられている燃
料集合体の一例、すなわちチャンネルボックス3の中心
部に燃料棒4本に相当する太径水ロッド1を配置し、そ
の周囲に60本の燃料棒2を全体として正方形状に配置
した燃料集合体が示されている。ここで、水ロッド1は
熱中性子利用率を高めて次式で与えられる炉心の実効増
倍率を大きくするものであり、燃料の経済的燃焼に寄与
するものである。
Figure 4 shows an example of a fuel assembly used in a boiling water reactor (BWR), in which a large-diameter water rod 1 corresponding to four fuel rods is arranged in the center of a channel box 3, and around it A fuel assembly is shown in which fuel rods 2 are arranged in a generally square shape. Here, the water rod 1 increases the thermal neutron utilization rate to increase the effective multiplication factor of the core given by the following equation, and contributes to economical combustion of fuel.

k  =ε・η・f−p−PL  ・・・(1)lf ここで、kel[’炉心の実効増倍率 ε  :高速中性子の核分裂効果 η  :再生率 f  :熱中性子利用率 p  :共鳴を逃れる確率 PL  :炉心から中性子が漏れる 割合 このように断面積の大きな水ロッドを導入すると、冷却
材の断面内の分布は燃料棒と水ロッドの周囲で異なる。
k = ε・η・f−p−PL (1) lf where, kel['Core effective multiplication factor ε: Nuclear fission effect of fast neutrons η: Regeneration rate f: Thermal neutron utilization rate p: Resonance Escape probability PL: Rate at which neutrons leak from the core When water rods with such a large cross-sectional area are introduced, the distribution of coolant within the cross-section differs around the fuel rods and the water rods.

従って、上述のように燃料の効率的燃焼の観点からは良
い特性を持つが、燃料の効率的な冷却の観点からは冷却
材が水ロツド周辺に集まる傾向があり、集合体の運転範
囲を限定する設計条件の一つである熱的限界出力の向上
に寄与するとはいえない。
Therefore, as mentioned above, it has good characteristics from the viewpoint of efficient fuel combustion, but from the viewpoint of efficient fuel cooling, the coolant tends to collect around the water rod, which limits the operating range of the assembly. It cannot be said that this contributes to improving the thermal limit output, which is one of the design conditions.

一方、燃料集合体の熱的限界出力に影響する集合体構成
要素には、集合体断面形状の他に燃料スペーサがある。
On the other hand, assembly components that affect the thermal limit output of the fuel assembly include fuel spacers in addition to the assembly cross-sectional shape.

燃料スペーサは通常の燃料集合体で7ケ所設置されてお
り、燃料棒間のギャップ間隔を保持し、集合体の形状を
維持している。第5図にこれを示す。この図において、
2は燃料棒、3はチャンネルボックス、4は燃料スペー
サ、5は上部タイプレート、6は下部タイプレートであ
り、7は燃料有効長である。
Fuel spacers are installed at seven locations in a normal fuel assembly to maintain the gap between fuel rods and maintain the shape of the assembly. This is shown in Figure 5. In this diagram,
2 is a fuel rod, 3 is a channel box, 4 is a fuel spacer, 5 is an upper tie plate, 6 is a lower tie plate, and 7 is a fuel effective length.

一般的に燃料スペーサ設計で考慮されている点にま下記
(1)〜(10)のものがある。すなわち、1)集合体
の耐震性 2)燃料棒間隔の保持 3)燃料棒振動の抑制 4)燃料棒熱膨張のゆとり 5)燃料集合体組立ての容易さ 6)燃料棒との接触面積の最小化 7 熱的限界出力の最大化 8)集合体圧力損失の最小化 9 寄生的中性子吸収の最小化 IO)部品点数の最小化 ところで、燃料スペーサは熱的限界出力に重大な影響を
及ぼしており、熱的限界出力時の沸騰遷移開始点位置は
、燃料スペーサの直上流側1cm以内に限定される。こ
れは二相環状流の流動様式において、燃料スペーサによ
って上流側の冷却材に渦が生じ、その渦によって燃料棒
表面に付着していだ液膜が剥がれ、伝熱効率が急激に悪
化するためと考えられている。第6図はこの冷却材流へ
の状態を説明する概念図を示す、第6図において8は液
膜、9はスペーサ等の障害物である。スペーサ9の上流
側において幅りの範囲が沸騰遷移開始の位置である。
Points (1) to (10) below are generally considered in fuel spacer design. In other words, 1) seismic resistance of the assembly 2) maintenance of fuel rod spacing 3) suppression of fuel rod vibration 4) allowance for thermal expansion of fuel rods 5) ease of assembling the fuel assembly 6) minimum contact area with fuel rods 7) Maximization of the thermal limit power 8) Minimization of the assembly pressure loss 9) Minimization of parasitic neutron absorption IO) Minimization of the number of parts By the way, the fuel spacer has a significant effect on the thermal limit power. The boiling transition start point position at the thermal limit output is limited to within 1 cm immediately upstream of the fuel spacer. This is thought to be because in the flow mode of the two-phase annular flow, a vortex is created in the coolant on the upstream side by the fuel spacer, and the vortex peels off the liquid film that has adhered to the fuel rod surface, causing a rapid deterioration of heat transfer efficiency. It is being FIG. 6 shows a conceptual diagram explaining the state of the coolant flow. In FIG. 6, 8 is a liquid film, and 9 is an obstacle such as a spacer. The wide range on the upstream side of the spacer 9 is the position where boiling transition starts.

燃料スペーサの及ぼす沸騰遷移開始へのメカニズムとし
て考えられているのは主として次の(a)(b)2点が
ある。
The following two points (a) and (b) are mainly considered as mechanisms for the start of boiling transition exerted by the fuel spacer.

(a)冷却材の混合による燃料棒表面液膜への液滴供給
の効果(ミキシング効果) (b)流れ妨害の軽減による燃料棒表面を覆う液膜破断
抑制の効果(スクラビング効果)このような知見からス
ペーサ設計要素としては、上記(a)に対応するのは第
7図に示すように燃料スペーサ10に設けたミキシング
タブ11やその肉厚増加がある。また上記(b)に対応
するのは端面の刃状加工等(第6図参照)がある。
(a) Effect of supplying droplets to the liquid film on the fuel rod surface by mixing coolant (mixing effect) (b) Effect of suppressing breakage of the liquid film covering the fuel rod surface by reducing flow obstruction (scrubbing effect) From what we know, spacer design elements that correspond to the above (a) include the mixing tab 11 provided on the fuel spacer 10 and an increase in its wall thickness, as shown in FIG. Also, corresponding to the above (b), there is edge-shaped processing of the end face (see Fig. 6).

さらに、環状流ドライアウトを想定して、熱的限界出力
向上を図るスペーサ形状としては、上記の外に (c)スペーサ直上流部での液膜流量の増加(d)スペ
ーサ直上流部での液滴沈着量の増加が考えられる。
Furthermore, assuming annular flow dryout, the spacer shape to improve the thermal limit output includes (c) an increase in the liquid film flow rate immediately upstream of the spacer, and (d) an increase in the liquid film flow rate immediately upstream of the spacer. This may be due to an increase in the amount of droplet deposition.

このような点から従来第8図の示すように、厚さが均一
な円筒形スペーサ要素12を用いて第9図に示すように
構成した燃料集合体が提案されている。この図において
、13は水ロッド、14はチャンネルボックスである。
From this point of view, as shown in FIG. 8, a fuel assembly constructed as shown in FIG. 9 using cylindrical spacer elements 12 having a uniform thickness has been proposed. In this figure, 13 is a water rod and 14 is a channel box.

しかし、原子カプラントの運転コスト低減、あるいは長
期サイクル運転上これを実現するための燃料集合体の経
済的燃焼のために、径方向に非均質な形状のスペーサを
導入することが提案されている。
However, it has been proposed to introduce a spacer having a non-uniform shape in the radial direction in order to reduce the operating cost of an atomic coupler or to achieve economical combustion of a fuel assembly for long-term cycle operation.

(発明が解決しようとする課題) 本発明は径方向非均−な形状、ローカルピーキング増大
に伴う熱的限界出力低下の抑制または限界出力向上に対
処してなされたもので、原子炉燃料集合体において、燃
料スペ〜す内部の流路形状を改善して熱的限界出力の向
上を実現することを目的とするものである。
(Problems to be Solved by the Invention) The present invention was made in order to suppress a decrease in the thermal limit output due to a radially non-uniform shape and an increase in local peaking, or to improve the limit output. The purpose of this invention is to improve the flow path shape inside the fuel space to improve the thermal limit output.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明は、燃料棒を囲む円
筒状の外形を有する燃料スペーサを軸方向に複数個設置
することにより燃料棒相互の間隔を保持した燃料集合体
において、前記スペーサの内面が入口部で狭まる円錐台
形状、出口部で広まる円錐台形状を有することを特徴と
するものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a structure in which a plurality of fuel spacers having a cylindrical outer shape are installed in the axial direction to surround the fuel rods. In the fuel assembly in which mutual spacing is maintained, the inner surface of the spacer has a truncated conical shape that narrows at the inlet and a truncated conical shape that widens at the outlet.

(作 用) 次に、本発明による燃料集合体の作用について説明する
(Function) Next, the function of the fuel assembly according to the present invention will be explained.

燃料スペーサ部で挟まり流路を形成すると気相流速が増
加し、液滴流速との相対速度が増加するため、液滴の細
径化(break−up)が生しる。通常、気相部にジ
ェット流により液が吹き出すときの液滴径は、次の(2
)式で定義される気液相対速度のウェーバ(Webe+
 )数が一定となるような値に細径化されることが知ら
れている。
When a flow path is formed between the fuel spacer portions, the gas phase flow velocity increases, and the relative velocity with respect to the droplet flow velocity increases, resulting in a break-up of the droplet. Normally, when liquid is blown out into the gas phase by a jet stream, the droplet diameter is as follows (2
) of the gas-liquid relative velocity defined by the equation
) is known to be reduced in diameter to a constant value.

We= (ug−uIり 2pgd(na!/a・・・
(2) ここで、U 、気相流速、U、:液相流速。
We= (ug-uIri 2pgd(na!/a...
(2) Here, U: gas phase flow rate, U: liquid phase flow rate.

ρ :気相密度、d  :液滴直径 g              maxσ:表面張力 燃料スペーサ出口部の広まり流れ流路では、液滴の合体
が生じるが、区間が短いためその割合は小さいと考えら
れる。
ρ: gas phase density, d: droplet diameter g maxσ: surface tension Although droplets coalesce in the widening flow channel at the fuel spacer outlet, the rate of coalescence is considered to be small because the section is short.

液滴直径が小さくなると、気相との摩擦により液滴は加
速され、液滴の質量速度が増加し、燃料スペーサ直下流
部での単位長さ当りの液滴沈着量が減少するため、次の
(3)式で定義される液滴濃度Cの大きな状態が下流部
の一定区間維持される。
As the droplet diameter decreases, the droplet is accelerated by friction with the gas phase, the mass velocity of the droplet increases, and the amount of droplet deposited per unit length immediately downstream of the fuel spacer decreases. A state in which the droplet concentration C is large as defined by equation (3) is maintained for a certain period in the downstream region.

C−GE/GG/ρ2    ・・・(3)ここで、G
E :液滴質量速度 G6 :気相質量速度 下流部の燃料スペーサ付近の液滴沈着量が増加し、液膜
流量が増加すると、液膜ドライアウトの生じるチャンネ
ル出力が増加する。
C-GE/GG/ρ2...(3) Here, G
E: Droplet mass velocity G6: Gas phase mass velocity When the amount of droplet deposition near the fuel spacer downstream increases and the liquid film flow rate increases, the channel output where liquid film dryout occurs increases.

ところで、上述の効果は、挟まり部と広まり部の間に直
管部を設けても同様であるが、直管部が整流作用を持つ
ため乱れが低減し、燃料スペーサによる局所圧力損失が
低減する。このような構造は、ベンチュリ管として流速
計として用いられており、不可逆的な圧力損失の少ない
形状として知られている。
By the way, the above-mentioned effect is the same even if a straight pipe section is provided between the sandwiched part and the widened part, but since the straight pipe part has a rectifying effect, turbulence is reduced and local pressure loss due to the fuel spacer is reduced. . Such a structure is used as a venturi tube as a current meter, and is known as a shape with little irreversible pressure loss.

このようなメカニズムにより、熱的限界出力の増加する
原子炉燃料集合体を提供することができる。
Such a mechanism can provide a reactor fuel assembly with increased thermal critical power.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係る円筒状セルの構成図で
あり、同図(a)は本実施例の円筒状セルの斜視図、同
図(b)は同図(II)のI−I方向から見た断面図で
ある。
FIG. 1 is a block diagram of a cylindrical cell according to an embodiment of the present invention, and FIG. 1(a) is a perspective view of the cylindrical cell of this embodiment, and FIG. It is a sectional view seen from the II direction.

第1図に示す円筒状セル20の内面は、入口部21で狭
まる円錐台形状、出口部22で広まる円錐台形状となる
ように構成されている。したがって、スペーサ直上流部
近傍の液滴沈着量は増加するので、第3図に示すように
本実施例のものは従来例に比べて熱的限界出力が増加す
る。
The inner surface of the cylindrical cell 20 shown in FIG. 1 is configured to have a truncated conical shape narrowing at the inlet portion 21 and widening at the outlet portion 22. Therefore, the amount of droplets deposited in the vicinity immediately upstream of the spacer increases, so that, as shown in FIG. 3, the thermal limit output of this embodiment is increased compared to the conventional example.

第2図は本発明の他の実施例に係る円筒状セルの構成図
であり、同図(a)は本実施例の円筒状セルの斜視図、
同図(b)は同図(a)のn−n方向から見た断面図で
ある。
FIG. 2 is a configuration diagram of a cylindrical cell according to another embodiment of the present invention, and FIG. 2(a) is a perspective view of the cylindrical cell of this embodiment;
Figure (b) is a sectional view taken from the nn direction of figure (a).

第2図に示すように、本実施例の円筒状セル23の内面
は入口部24で狭まる円錐台形状、出口部25で広まる
円錐台形状とし、上下の円錐台形状の中央部26に直管
部を有するように構成したものである。したがって、本
実施例においても、上記実施例と同様にスペーサ直上流
部で液滴沈着量を増加し、従来例に比べて熱的限界出力
が増加する。
As shown in FIG. 2, the inner surface of the cylindrical cell 23 of this embodiment has a truncated conical shape that narrows at the inlet portion 24 and widens at the outlet portion 25, and the upper and lower truncated conical central portions 26 have straight pipes. It is constructed so that it has a section. Therefore, in this embodiment as well, the amount of droplets deposited immediately upstream of the spacer is increased as in the above embodiment, and the thermal limit output is increased compared to the conventional example.

上記各実施例のいずれの燃料スペーサにおいても、最も
厚い部分の肉厚と同様の肉厚を有する通常の円筒セルと
同様の熱的限界出力特性が得られるとともに、スペーサ
部での局所圧力損失は低減する。
In any of the fuel spacers of the above embodiments, thermal limit output characteristics similar to those of a normal cylindrical cell having a wall thickness similar to that of the thickest part can be obtained, and the local pressure loss at the spacer portion can be reduced. reduce

[発明の効果] 以上説明したように、本発明によれば、スペーサを直上
流部で液滴沈着量を増加させるようにしたので、限界出
力特性の向上が期待できるとともに、スペーサ部での局
所圧力損失は最も厚い部分の肉厚と同様の肉厚を有する
通常の円筒セルに比べて低減するというすぐれた効果を
奏する。
[Effects of the Invention] As explained above, according to the present invention, since the amount of droplet deposition is increased immediately upstream of the spacer, an improvement in the limit output characteristics can be expected, and the local This has an excellent effect of reducing pressure loss compared to a normal cylindrical cell having a wall thickness similar to that of the thickest part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例に係る円筒状セルの斜
視図、同図(b)は同図(a)のI−I方向から見た断
面図、第29 (a)は本発明の他の実施例に係る円筒
状セルの斜視図、同図(b)は同図(3)のn−m方向
から見た断面図、第3図は本発明と従来例との熱的限界
出力を比較した図、第4図は従来の燃料集合体の概略平
面図、第5図は従来の燃料集合体の一部欠如した斜視図
、第6図は冷却材流の状態を説明する概念図、第7図は
従来の燃料スペーサの斜視図、第8図は従来の円筒形ス
ペーサ要素の斜視図、第9図は第8図の円筒形スペーサ
要素を用いた燃料集合体の概略平面図である。 1・・・大水径ロッド  2・・・燃料棒3.14・・
・チャンネルボックス 4、lO・・・燃料スペーサ 5・・・上部タイプレート 6・・・下部タイプレート 11・・・ミキシングタブ 12.20.23・・・円筒形セル 13・・・水ロンド (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 二ニ営滋唆デ砕 第 図 第 図 1ム 第 凶
FIG. 1(a) is a perspective view of a cylindrical cell according to an embodiment of the present invention, FIG. 1(b) is a sectional view taken from the direction II in FIG. 1(a), and FIG. A perspective view of a cylindrical cell according to another embodiment of the present invention, FIG. 3(b) is a sectional view seen from the nm direction of FIG. Fig. 4 is a schematic plan view of a conventional fuel assembly, Fig. 5 is a partially cutaway perspective view of a conventional fuel assembly, and Fig. 6 explains the state of coolant flow. 7 is a perspective view of a conventional fuel spacer, FIG. 8 is a perspective view of a conventional cylindrical spacer element, and FIG. 9 is a schematic diagram of a fuel assembly using the cylindrical spacer element of FIG. 8. FIG. 1... Large water diameter rod 2... Fuel rod 3.14...
・Channel box 4, lO...Fuel spacer 5...Upper tie plate 6...Lower tie plate 11...Mixing tab 12.20.23...Cylindrical cell 13...Water rondo (8733 ) Agent: Yoshiaki Inomata, patent attorney (and others)
1 person) 2nd instigation and destruction diagram 1st mu

Claims (1)

【特許請求の範囲】[Claims] 燃料棒を囲む円筒状の外形を有する燃料スペーサを軸方
向に複数個設置することにより燃料棒相互の間隔を保持
した燃料集合体において、前記スペーサの内面が入口部
で狭まる円錐台形状、出口部で広まる円錐台形状を有す
ることを特徴とする原子炉燃料集合体。
In a fuel assembly in which a distance between the fuel rods is maintained by installing a plurality of fuel spacers having a cylindrical outer shape surrounding the fuel rods in the axial direction, the inner surface of the spacer has a truncated conical shape narrowing at the inlet part, and an outlet part. A nuclear reactor fuel assembly characterized by having a truncated conical shape that widens in width.
JP2174524A 1990-07-03 1990-07-03 Nuclear reactor fuel assembly Pending JPH0464092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174524A JPH0464092A (en) 1990-07-03 1990-07-03 Nuclear reactor fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174524A JPH0464092A (en) 1990-07-03 1990-07-03 Nuclear reactor fuel assembly

Publications (1)

Publication Number Publication Date
JPH0464092A true JPH0464092A (en) 1992-02-28

Family

ID=15980033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174524A Pending JPH0464092A (en) 1990-07-03 1990-07-03 Nuclear reactor fuel assembly

Country Status (1)

Country Link
JP (1) JPH0464092A (en)

Similar Documents

Publication Publication Date Title
JP2642761B2 (en) Fuel bundles for boiling water reactors
US5481578A (en) Perforated tube debris catcher for a nuclear reactor
JPH06273559A (en) Spacer with swirl vane for fuel bundle of boiling water nuclear reactor
KR20030013910A (en) Spacer Grid with Hybrid Flow Mixing Device for Nuclear Fuel Assembly
JPH0464092A (en) Nuclear reactor fuel assembly
JP3338508B2 (en) Nuclear fuel assemblies for light water reactors
JP3434790B2 (en) Heterogeneous fuel assemblies for fast reactors
WO1995024042A1 (en) Critical power enhancement system for a pressurized fuel channel type nuclear reactor using chf enhancement appendages
JP2002533689A (en) Fuel assemblies for boiling water reactors.
JPH05157867A (en) Fuel assembly
JP2523694B2 (en) Fuel assembly
JP4202200B2 (en) Reactor internal structure
JPH0743486A (en) Fuel spacer
JP3761232B2 (en) Reactor fuel assembly
JPH06214074A (en) Fuel assembly for nuclear reactor
JP2007024708A (en) Fuel assembly for boiling water reactor
JPH0295297A (en) Nuclear reactor fuel assembly
JP2002006073A (en) Fuel assembly
JP2003344575A (en) Spacer with vanes for boiling water reactor and fuel assembly
JP3188155B2 (en) Lower nozzle for fuel assembly
JPH03128486A (en) Control rod for nuclear reactor
JPH06249987A (en) Fuel spacer and fuel assembly
JPS6049271B2 (en) fuel rod spacer
JPH01250894A (en) Fuel assembly of nuclear reactor
JP2010286386A (en) Fuel assembly for nuclear reactor