JPH0464015B2 - - Google Patents

Info

Publication number
JPH0464015B2
JPH0464015B2 JP58243269A JP24326983A JPH0464015B2 JP H0464015 B2 JPH0464015 B2 JP H0464015B2 JP 58243269 A JP58243269 A JP 58243269A JP 24326983 A JP24326983 A JP 24326983A JP H0464015 B2 JPH0464015 B2 JP H0464015B2
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
furnace
processed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58243269A
Other languages
Japanese (ja)
Other versions
JPS60133326A (en
Inventor
Shigeki Tojo
Tatsuo Kamisaka
Takeo Kawate
Masayoshi Iwasaki
Takefumi Horiuchi
Masato Moritoki
Takeshi Kanda
Takao Fujikawa
Yoshio Kobune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58243269A priority Critical patent/JPS60133326A/en
Priority to DE3447724A priority patent/DE3447724C2/en
Publication of JPS60133326A publication Critical patent/JPS60133326A/en
Priority to US06/873,452 priority patent/US4666314A/en
Priority to US07/209,954 priority patent/USRE33245E/en
Publication of JPH0464015B2 publication Critical patent/JPH0464015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は熱間静水圧加圧(以下、HIPと略記す
る。)装置のにおける被処理体の温度測定方法、
詳しくは光フアイバ等を利用し上記装置における
被処理体温度を測定する方法に関するものであ
る。 (従来技術) 現在、HIP装置には、高温高圧炉内の温度を検
知すべく温度測定手段が講ぜられているが、1600
℃を越える炉内の温度は炉下部からW.5%Re−
W.26%Re熱電対を絶縁管更には保護管に挿入
し、熱接点部を炉内のヒータ位置の高さに固定す
ることによつて測定している。しかし、かかる測
定手段では熱電対素線の劣化が大きく、再現性に
乏しいことから数チヤージでこの測温計を交換す
る必要があり、ランニングコストが非常に高いと
いう欠点がある。 そのため、かかる欠点を解消すべく、熱電対以
外の高温用温度計の採用を考慮し、夫々適否につ
いて検討を試みた。即ち、上記熱電対以外の高温
用温度計として気体温度計、雑音温度計、流体温
度計、放射温度計をとり上げ、これらについて
夫々センサ体の耐圧、高温高圧雰囲気による物性
の変化、信号検出回路の難易度について考察した
ところ、次表の如き結果を得、放射温度計が最も
優れていることが分つた。
(Industrial Application Field) The present invention relates to a method for measuring the temperature of an object to be processed in a hot isostatic pressing (hereinafter abbreviated as HIP) apparatus;
More specifically, the present invention relates to a method of measuring the temperature of an object to be processed in the above-mentioned apparatus using an optical fiber or the like. (Prior art) Currently, HIP equipment is equipped with temperature measurement means to detect the temperature inside the high-temperature and high-pressure furnace.
If the temperature inside the furnace exceeds ℃, W.5% Re− will be applied from the bottom of the furnace.
Measurement is performed by inserting a W.26%Re thermocouple into an insulating tube and then a protection tube, and fixing the hot junction at the height of the heater position in the furnace. However, with this measuring means, the thermocouple wire deteriorates significantly and reproducibility is poor, so the thermometer must be replaced after several charges, and the running cost is extremely high. Therefore, in order to eliminate such drawbacks, we have considered adopting high-temperature thermometers other than thermocouples, and have attempted to examine the suitability of each. That is, we will discuss gas thermometers, noise thermometers, fluid thermometers, and radiation thermometers as high-temperature thermometers other than the above-mentioned thermocouples, and examine the pressure resistance of the sensor bodies, changes in physical properties due to high temperature and high pressure atmospheres, and the characteristics of signal detection circuits. When we considered the difficulty level, we obtained the results shown in the following table, and found that the radiation thermometer was the best.

【表】 ところで、放射温度計を用いて行なわれたHIP
炉内の測温実績としてバツテル研究所においてサ
フアイアの光学窓により炉内光を取り出し放射測
温を行つた報告があり、(D.C.Carmichael、P.D.
Ownby、E.S.Hodge、“Hot Isostatic of
Graphite”BML−1746(1965))、これによれば
高温高圧のため窓が破損し、非常に危険な状態に
なつたため継続して測温がなされていない。 これは光学窓方式では炉室内の熱放射を圧力容
器構成部材に取り付けられた光学窓を通して圧力
容器外に導くため光学窓が透過放射熱により過熱
され、これによつて窓の強度が低下し、高圧力が
作用した場合、破損を招き易い状態に至るからで
ある。 又、上記光学窓の取り付けは圧力容器に開孔す
ることが要求されるが、このような開孔は当然、
圧力容器の耐圧強度を低下させる結果を招来す
る。とりわけ、HIP装置の場合、圧力容器内部に
は高圧ガスが封入されているため光学窓又は圧力
容器の破損は大事故を起す可能性があり安全上問
題である。 一方、光フアイバを導波路として用いた現有の
放射温度計では測温範囲を拡げるためバンドルフ
アイバを用い光量の増加を図つているため却つて
高圧容器内にこれを挿入した場合、圧力シールに
問題がある。 又、水冷を行なわずに100℃以上の雰囲気で用
いることも困難であり、実用的とは云い得ない。 更に、光フアイバを用いた一般的な温度計とし
て特開昭56−129827号公報に光フアイバの入射端
に標準となる温度放射物体を取り付けたものが提
案されているが、これは光フアイバの入射端に上
述の如く標準となる温度放射物体を取り付けてい
るため、温度放射物体が高温になつた場合、光フ
アイバが溶解あるいは失透し、測温が不可能にな
るという欠点がある。即ち、この方式は被測温物
体からの熱放射により温度放射物体の温度を上昇
させ、間接的に被測温物体の温度を測定すること
を意図したものであり、高温雰囲気の温度を測定
することは実質上、不可能である。 しかしながら、HIP装置においては、炉内を所
要の高温雰囲気下に保持することは処理上、極め
て重要な問題であり、そのための適切な測温手段
はHIP装置の実用化と共にひとしく望まれる現下
の課題である。 (発明の目的) 本発明は前述の如き実状と、課題に対処し、
HIP装置における被処理体温度の検出に好適な測
温法を提供することを課題とし、光フアイバの利
用に着目し、特に金属被覆フアイバ又はフアイバ
束もしくはこれと同効のロツド状光学材料を用い
る放射温度計を使用し、それら金属被覆光フアイ
バ等を高温高圧炉内の試料台の穴を通して導き、
直接被測温物体からの熱放射パワーを受光し、こ
れを炉外に取り出して炉内に測温素子を必要とす
ることなく放射測温を行なうことを目的とするも
のである。 (発明の構成) しかして上記目的を達成する本発明の特徴とす
るところは、金属で被覆されている光フアイバ又
は光フアイバ束もしくは同効のロツド状光学材料
(以下、光フアイバ等という)をHIP装置の高圧
炉内にその先端が存在し炉内熱放射光を受光する
ように挿入し、これを高圧容器蓋を通じて容器外
に導き、被処理体を載置せる試料台に開口された
穴を通して前記先端よりその底部を観測するよう
にして該光フアイバ等により伝送される被測温物
体からの熱放射パワーを前記光フアイバ等に接続
された測定系により検知し、HIP装置の被処理体
温度を計測する方法にある。 ここで、前記光フアイバ等に金属を被覆する手
段としては、メタルコート又はメタルシースの何
れでもよい。メタルコートに利用される金属は、
Al、Cu、Co、Ni、MoW、Pd、Pt等、SiO2でな
る光フアイバのSiと安定な合金が挙げられるが、
アルミニウム(Al)が最も一般的である。メタ
ルシースに利用される金属は、Fe、Ti、Cu、
Zn、Pb、Sn、Al、Cr、Co、Ni、Mo、W、Pd、
Pt等、あらゆる金属が利用可能である。 又、ロツド状光学材料としては石英又はサフア
イア等の外、光フアイバと同効的な熱放射パワー
伝送能を有する材料が挙げられ、これらロツド状
光学材料も前記金属により被覆が施される。 次に前記光フアイバ等はHIP装置の高圧容器内
に少くともその先端が存在するように挿入されな
ければならず、その場合、先端の位置はHIP装置
の高圧容器内には基本的にヒータ、断熱層及び被
処理物体を載せる試料台等が設けられているの
で、これらを被測温物体に利用することから、こ
れらの各被測温物体の選択に応じ、その先端、即
ち熱放射パワー(放射エネルギー)の入射端を設
定する。 そして、光フアイバ等の炉外への取り出しは高
圧容器の上蓋でもよいが、通常、下蓋を通じて取
り出され、外部に設けられた放射温度計に接続さ
れる。この場合、高圧容器と光フアイバ等との間
にはシールが必要であるが、光フアイバ等は金属
被覆が施されているのでフランジ等に直接ロウ付
あるいは溶接することが可能になり、高圧シール
を容易かつ確実に行なうことができる。 なお、光量の不足やフアイバの強度の不足など
からフアイバをバンドル(束)にして用いる必要
がある場合にも金属被覆のフアイバとロウ付ある
いは溶接の技術を組み合わせることにより高圧シ
ールが可能である。 (本発明の作用効果) 本発明は上記の如く光フアイバ等の先端をHIP
装置内に挿入し、被測温物体からの熱放射パワー
を伝送し、炉外に取り出してその強さから炉内の
温度を検出する方法であるが、光フアイバ等に入
射する熱放射パワーより物体の温度を検出する原
理は特開昭56−129827号公報にも述べられている
通り既に知られている。 本発明は、かかる既知の原理にもとづく温度検
出方法を特にHIP装置という密閉高圧容器内を対
象として、被処理体を直接測温しようとするもの
で本発明によればHIP装置の炉内における被処理
体の温度を直接光学的な方法で測温することが可
能となる。 即ち、HIP装置の炉内からの熱放射光は金属で
被覆せしめた光フアイバ又は光フアイバ束もしく
は同効のロツド状光学材料により炉外へ導出する
ため、光学窓に比べて非常に安全上優れたものと
なる。この光フアイバ等は周囲が金属で被覆され
ているため高圧シールが容易かつ確実におこなう
ことが可能となる。つまり、この被覆金属を蓋も
しくは蓋への取付部材に対してロー付および/も
しくは溶接によりおこなうことが可能となるため
である。 このような構成で、かつ、被処理体を載置され
た試料台に貫通した穴をあけることにより、この
穴が黒体の働きもするため被処理体の温度測定が
精度良くおこなえ、従つて処理体の温度管理を精
度よく行なうことができる。 かくして従来の熱電対による測温に比し、炉内
に測温素子を必要としないため長期間安定して測
温可能となると共に熱電対の測温上限でも容易に
測温することができる利点があり、しかも光学窓
の如きものを必要としないため安全上の問題もな
く、内部に高圧ガスが封入されているHIP装置の
測温手段として頗る顕著な効果を奏する。 (実施の態様) 以下、上記本発明方法を実施するための各態様
について添付図面を参照しつつ具体的に説明す
る。 第1図は本発明方法を適用するHIP装置の基本
的構成を示し、高圧シリンダ1と、その上下開口
部を密封する上蓋2と下蓋3とによつて画成され
る高圧容器内に断熱層4及びヒータ5を配して炉
を形成し、かつ、下蓋3上に被処理体を載置する
試料台6を設置することによつて構成される。第
2図は上記の如きHIP装置において炉内における
被処理体Mの熱放射を光フアイバ等を用いて外部
に導き、放射パワーを検知して放射測温を行なう
場合の光フアイバ等の測温目標に対応する光フア
イバ等の配置例を示しており、試料台6に穴6′
を貫通する如く設け、そこに光フアイバ等7を埋
め込んで、被処理体M底部を測温目標としてい
る。このようにすれば被処理体Mの温度を直接測
定できる利点があり、頗る効果的である。 又、上記例に示す光フアイバ等7は、第3図
イ,ロ,ハ,ニに夫々示す如きコリメータ8a〜
8dを取り付けることにより測温目標以外から入
射する迷光を除去し、確実に目標物、即ち被測温
物体からの熱放射のみを取り出すことができ、目
標物をより精度よく測温できる。 なお、第3図ロのものはコリメータ8b上に塵
芥が堆積し、光フアイバ等7への入射光量が減少
することを回避できる。 又、第3図ハのコリメータ8cはレンズ9を用
いることにより目標物からの熱放射のみを効率よ
く集光することができ、更にニのコリメータ8d
は絞り10を2段にすることでキヤビテイを形成
したもので、他のものに比し迷光量が減少する。 次に第4図は光フアイバ等7の炉外への取り出
し例であり、光フアイバ等7が試料台6の穴に貫
通されるのを省略しているが、HIP装置の下蓋3
を通じて外部へ取り出し放射温度計11からなる
測定系に接続される。 この場合、下蓋3が図示の如く上下蓋と下下蓋
の両者より構成される場合には、両者間をOリン
グ12等によりシールすることが必要であり、
又、高圧容器と光フアイバ等7もシールが必要で
ある。 第7図イ,ロ,ハはかかる高圧容器と光フアイ
バ等との間のシールの各態様を示し、光フアイバ
等7にはその外面に金属被覆13が施されている
ことから、この金属被覆13を利用し高圧シリン
ダ1壁外面に金属板14を当接する等して両者の
間でロウ付又は溶接15により、更に金属板が厚
い場合にはその上、ボルト16、ナツト17を併
用してシールする。又、第7図ハの如くOリング
18や支持部材19を使用し、ロウ付又は溶接1
5と併用してもよい。 そして、上記の各シール手段は光フアイバが集
束されたフアイバ束である場合でも、ロツド状の
光学材料の場合にも同様に適用される。 かくして光フアイバ等7は炉外に取り出され、
放射温度計11に接続され、温度が検出測定され
るが、第5図はかかる放射温度計11のブロツク
図であり、光電変換素子の受光感度をあげるため
に信号光をチヨツピングし、タイミングを明らか
にするためチヨツパよりロツクイン増幅器に参照
電気信号を送り、同増幅器内で第6図に図示した
電気的、電子的な演算処理回路に従つて演算処理
し、温度として表示する。 勿論、上記放射温度計光温度変換部は通常の放
射温度計で光電変換素子にはSiフオトダイオード
等が用いられるが、その構成は特に本発明の意図
するところではないので詳細は省略する。 (別の実施態様) 本発明方法における光フアイバ等の配置、装設
に関する各態様は上述の如くであるが、以上の説
明では光フアイバ等を単一部材として説明して来
た。しかしながら、光フアイバ等は必らずしも1
個である必要はなく、炉内の異なる場所に複数の
被測温物体を設定し、それらを目標として複数の
光フアイバ等を同時に使用してもよく、この場合
は各光フアイバ等の測温目標に炉内の場所の外、
高さに変化をもたせ、縦方向の分布状況を一挙に
検出することが可能となる。 又、光フアイバを束として使用する場合、その
先端の入射部を蛸足状に拡散して各目標物の熱放
射パワーを伝送させ、測温することも可能であ
る。 更に、前記各態様は下蓋を通じて光フアイバ等
を炉外に導いているが、上蓋を通じても同様であ
ることは勿論である。 又、本発明はHIP装置と同様の機能を有する加
圧焼結炉にも適用し得ることは云うまでもない。
[Table] By the way, HIP conducted using a radiation thermometer
As for the temperature measurement inside the furnace, there is a report that the Battel Research Institute used a Saphire optical window to extract the light inside the furnace and perform radiation temperature measurement (DC Carmichael, PD
Ownby, ESHodge, “Hot Isostatic of
Graphite" BML-1746 (1965)). According to this, the window was damaged due to high temperature and high pressure, creating an extremely dangerous situation, so temperature measurements were not carried out continuously. Because heat radiation is guided out of the pressure vessel through the optical window attached to the pressure vessel components, the optical window is overheated by the transmitted radiation heat, which reduces the strength of the window and prevents it from breaking when high pressure is applied. This is because the installation of the above-mentioned optical window requires opening a hole in the pressure vessel, but such a hole naturally
This results in a decrease in the pressure resistance of the pressure vessel. In particular, in the case of a HIP device, since high-pressure gas is sealed inside the pressure vessel, damage to the optical window or the pressure vessel may cause a major accident and is a safety issue. On the other hand, existing radiation thermometers that use optical fibers as waveguides use bundled fibers to increase the amount of light in order to expand the temperature measurement range, so if they are inserted into a high-pressure container, there is a problem with the pressure seal. There is. Furthermore, it is difficult to use it in an atmosphere of 100° C. or higher without water cooling, and it cannot be said to be practical. Furthermore, as a general thermometer using optical fiber, a standard temperature emitting object attached to the input end of the optical fiber has been proposed in JP-A-56-129827, but this is because the optical fiber is Since the standard temperature radiating object is attached to the input end as described above, there is a drawback that when the temperature radiating object becomes high temperature, the optical fiber melts or devitrifies, making temperature measurement impossible. In other words, this method is intended to indirectly measure the temperature of a temperature-measuring object by increasing the temperature of the temperature-emitting object through heat radiation from the temperature-measuring object, and to measure the temperature of a high-temperature atmosphere. That is virtually impossible. However, in HIP equipment, maintaining the inside of the furnace under the required high-temperature atmosphere is an extremely important issue in terms of processing, and an appropriate temperature measurement method for this is a current issue that is equally desirable as the HIP equipment is put into practical use. It is. (Object of the invention) The present invention addresses the above-mentioned actual situation and problems, and
Our goal is to provide a temperature measurement method suitable for detecting the temperature of a processed object in a HIP device, and we focus on the use of optical fibers, particularly using metal-coated fibers, fiber bundles, or rod-shaped optical materials with the same effect. Using a radiation thermometer, guide the metal-coated optical fibers through a hole in the sample stage in a high-temperature, high-pressure furnace.
The object is to directly receive thermal radiation power from an object to be measured, take it out of the furnace, and perform radiation temperature measurement without requiring a temperature measuring element inside the furnace. (Structure of the Invention) The present invention, which achieves the above object, is characterized by the use of metal-coated optical fibers, optical fiber bundles, or equivalent rod-shaped optical materials (hereinafter referred to as optical fibers, etc.). The tip is inserted into the high-pressure furnace of the HIP device so as to receive the heat radiation inside the furnace, and the light is guided out of the container through the high-pressure container lid, and a hole is opened in the sample stage on which the object to be processed is placed. The measurement system connected to the optical fiber detects the heat radiation power from the temperature-measuring object transmitted by the optical fiber, etc. by observing the bottom part from the tip of the optical fiber, and It's in the method of measuring temperature. Here, the means for coating the optical fiber or the like with metal may be either a metal coat or a metal sheath. The metals used for metal coating are:
Examples include Al, Cu, Co, Ni, MoW, Pd, Pt, etc., which are stable alloys with Si in optical fibers made of SiO2 .
Aluminum (Al) is the most common. The metals used for the metal sheath are Fe, Ti, Cu,
Zn, Pb, Sn, Al, Cr, Co, Ni, Mo, W, Pd,
All metals such as Pt can be used. In addition to quartz or sapphire, the rod-shaped optical materials include materials having the same effective thermal radiation power transmission ability as optical fibers, and these rod-shaped optical materials are also coated with the metal. Next, the optical fiber, etc. must be inserted so that at least its tip is present in the high-pressure container of the HIP device, and in that case, the position of the tip is basically a heater, Since a heat insulating layer and a sample stand on which the object to be processed is placed are provided, these are used as the object to be measured, so depending on the selection of each object to be measured, the temperature at the tip, that is, the thermal radiation power ( Set the incident end of radiant energy). Although the optical fibers and the like may be taken out of the furnace through the upper lid of the high-pressure container, they are usually taken out through the lower lid and connected to a radiation thermometer provided outside. In this case, a seal is required between the high-pressure vessel and the optical fiber, etc., but since the optical fiber is coated with metal, it is possible to braze or weld directly to the flange, etc., making it possible to seal the high-pressure can be carried out easily and reliably. Note that even if it is necessary to use fibers in a bundle due to insufficient light intensity or insufficient strength of the fibers, high-pressure sealing is possible by combining metal-coated fibers with brazing or welding techniques. (Actions and Effects of the Present Invention) As described above, the present invention provides HIP for the tip of an optical fiber, etc.
This is a method in which the temperature inside the furnace is detected by inserting it into the device, transmitting the thermal radiation power from the object to be measured, and taking it out of the furnace. The principle of detecting the temperature of an object is already known as described in Japanese Patent Laid-Open No. 129827/1983. The present invention uses a temperature detection method based on such a known principle to directly measure the temperature of an object to be processed, particularly in a closed high-pressure container called a HIP device. It becomes possible to directly measure the temperature of the object to be processed using an optical method. In other words, the heat radiation from the inside of the HIP device's furnace is led out of the furnace through a metal-coated optical fiber or optical fiber bundle, or an equivalent rod-shaped optical material, which is much safer than an optical window. It becomes something. Since the optical fiber or the like is coated with metal, high-pressure sealing can be performed easily and reliably. In other words, this coating metal can be brazed and/or welded to the lid or a member to be attached to the lid. With this configuration and by drilling a hole through the sample stage on which the object to be processed is placed, this hole also functions as a black body, allowing for accurate temperature measurement of the object to be processed. The temperature of the processing body can be controlled with high precision. In this way, compared to temperature measurement using conventional thermocouples, there is no need for a temperature measurement element inside the furnace, so it is possible to measure temperature stably for a long period of time, and the temperature can be easily measured even at the temperature measurement upper limit of thermocouples. Moreover, since it does not require anything like an optical window, there are no safety problems, and it is extremely effective as a temperature measurement means for HIP equipment that has high-pressure gas sealed inside. (Aspects of Implementation) Hereinafter, each aspect for implementing the method of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 shows the basic configuration of a HIP device to which the method of the present invention is applied. It is constructed by arranging the layer 4 and the heater 5 to form a furnace, and installing a sample stage 6 on which the object to be processed is placed on the lower lid 3. Figure 2 shows the temperature measurement of the optical fiber, etc., when the heat radiation of the object to be processed M in the furnace is guided to the outside using an optical fiber, etc., and the radiation power is detected to measure the radiation temperature in the HIP device as described above. An example of the arrangement of optical fibers, etc. corresponding to the target is shown.
An optical fiber or the like 7 is embedded therein so that the bottom of the object to be processed M is used as a temperature measurement target. This has the advantage that the temperature of the object M to be processed can be directly measured, and is extremely effective. Further, the optical fiber etc. 7 shown in the above example can be used with collimators 8a to 8a as shown in FIGS.
By attaching 8d, stray light incident from sources other than the temperature measurement target can be removed, and only heat radiation from the target object, that is, the object to be temperature measured, can be reliably extracted, and the temperature of the target object can be measured with higher accuracy. Incidentally, the arrangement shown in FIG. 3B can prevent dust from accumulating on the collimator 8b and reducing the amount of light incident on the optical fiber or the like 7. Furthermore, the collimator 8c in FIG.
In this example, a cavity is formed by making the diaphragm 10 into two stages, and the amount of stray light is reduced compared to other types. Next, FIG. 4 is an example of taking out the optical fiber etc. 7 out of the furnace, and the illustration of the optical fiber etc. 7 passing through the hole in the sample stage 6 is omitted, but the lower cover 3 of the HIP device
The radiation thermometer 11 is taken out to the outside and connected to a measurement system consisting of a radiation thermometer 11. In this case, if the lower lid 3 is composed of both an upper lid and a lower lower lid as shown in the figure, it is necessary to seal between the two with an O-ring 12 or the like.
In addition, the high pressure container and the optical fiber 7 also need to be sealed. 7A, 7B, and 7C show various forms of sealing between such a high-pressure container and an optical fiber, etc., and since the optical fiber 7 is coated with a metal coating 13 on its outer surface, this metal coating Using 13, a metal plate 14 is brought into contact with the outer surface of the high-pressure cylinder 1 wall, and brazing or welding 15 is performed between the two, and if the metal plate is thick, a bolt 16 and a nut 17 are also used in addition. Seal. Also, as shown in FIG.
It may be used in combination with 5. The above-mentioned sealing means are similarly applicable to both the case where the optical fiber is a focused fiber bundle and the case where the optical fiber is a rod-shaped optical material. In this way, the optical fiber etc. 7 is taken out of the furnace,
It is connected to a radiation thermometer 11 to detect and measure the temperature. FIG. 5 is a block diagram of such a radiation thermometer 11. In order to increase the light receiving sensitivity of the photoelectric conversion element, the signal light is chopped and the timing is clarified. In order to do this, a reference electrical signal is sent from the chopper to a lock-in amplifier, where it is processed in accordance with the electrical and electronic processing circuit shown in FIG. 6 and displayed as temperature. Of course, the radiation thermometer light temperature conversion section is a normal radiation thermometer, and a Si photodiode or the like is used as the photoelectric conversion element, but its configuration is not particularly intended by the present invention, so details thereof will be omitted. (Another Embodiment) Each aspect regarding the arrangement and installation of the optical fiber etc. in the method of the present invention is as described above, but in the above explanation, the optical fiber etc. has been explained as a single member. However, optical fibers etc. do not necessarily have 1
It is not necessary to set multiple objects to be measured at different locations in the furnace, and use multiple optical fibers at the same time to target them. In this case, the temperature measurement of each optical fiber, etc. Out of the furnace location to the target,
By changing the height, it becomes possible to detect the distribution situation in the vertical direction all at once. In addition, when using optical fibers as a bundle, it is also possible to spread out the incident part at the tip in an octopus shape to transmit the thermal radiation power of each target and measure the temperature. Furthermore, in each of the above embodiments, the optical fibers and the like are led out of the furnace through the lower lid, but it goes without saying that the same can be done through the upper lid. Furthermore, it goes without saying that the present invention can also be applied to a pressure sintering furnace having the same function as a HIP device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はHIP装置の基本的構成を示す概要断面
図、第2図は本発明における光フアイバ等の配置
例を示す要部断面図、第3図イ〜ニは各種のコリ
メータを取り付けた光フアイバ等の先端部断面概
要図、第4図は光フアイバ等の炉外への取り出し
態様を示す要部断面概要図、第5図及び第6図は
本発明に使用する放射温度計及びそのロツクイン
増幅器の各ブロツク図、第7図イ〜ハは光フアイ
バ等のシール構造を示す断面概要図である。 1……高圧シリンダ、2……上蓋、3……下
蓋、4……断熱層、5……ヒータ、6……試料
台、7……光フアイバ等、8a〜8d……コリメ
ータ、11……放射温度計、13……金属被覆。
Fig. 1 is a schematic sectional view showing the basic configuration of the HIP device, Fig. 2 is a sectional view of main parts showing an example of the arrangement of optical fibers, etc. in the present invention, and Fig. 3 A to D are optical fibers with various collimators attached. FIG. 4 is a schematic cross-sectional view of the main part showing how the optical fiber is taken out of the furnace. FIGS. 5 and 6 are a radiation thermometer used in the present invention and its lock-in. Each block diagram of the amplifier and FIGS. 7A to 7C are schematic cross-sectional views showing the sealing structure of optical fibers and the like. DESCRIPTION OF SYMBOLS 1...High pressure cylinder, 2...Upper lid, 3...Lower cover, 4...Insulating layer, 5...Heater, 6...Sample stand, 7...Optical fiber etc., 8a-8d...Collimator, 11... ...radiation thermometer, 13...metal coating.

Claims (1)

【特許請求の範囲】[Claims] 1 金属で被覆せしめた光フアイバ又は光フアイ
バ束もしくは同効のロツド状光学材料を熱間静水
圧加圧装置の高圧炉内にその先端入射部を炉内熱
放射光を受光可能に挿入し、その後端出射側を高
圧容器の蓋を通じて同容器外に導き、かつ、金属
材料からなる高圧容器の蓋もしくは蓋への取付部
材と該金属で被覆せしめた光フアイバ等との固定
をロー付および/または溶接により行ない、該出
射端に測定系を接続した熱間静水圧加圧装置の温
度計測系において、被処理体の温度測定を、被処
理体を載置せる試料台に開口された穴を通して前
記先端入射部よりその底部を観測する如くに行な
うことを特徴とする熱間静水圧加圧装置における
被処理体の温度測定方法。
1. Insert a metal-coated optical fiber or optical fiber bundle or a rod-shaped optical material with the same effect into a high-pressure furnace of a hot isostatic pressurization device so that its tip entrance part can receive the heat radiation inside the furnace, The output side of the rear end is guided to the outside of the high-pressure container through the lid of the high-pressure container, and the lid of the high-pressure container made of a metal material or the attachment member to the lid and the optical fiber coated with the metal are fixed by brazing and/or Or by welding, in the temperature measurement system of a hot isostatic pressurization device with a measurement system connected to the output end, the temperature of the object to be processed is measured through a hole opened in the sample stage on which the object to be processed is placed. A method for measuring the temperature of an object to be processed in a hot isostatic pressurizing apparatus, characterized in that the temperature measurement method is carried out by observing the bottom of the object from the tip entrance section.
JP58243269A 1983-12-22 1983-12-22 Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus Granted JPS60133326A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58243269A JPS60133326A (en) 1983-12-22 1983-12-22 Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus
DE3447724A DE3447724C2 (en) 1983-12-22 1984-12-21 Temperature measuring device of an isostatic hot pressing device having a high pressure furnace
US06/873,452 US4666314A (en) 1983-12-22 1986-06-06 Method and apparatus for measuring temperature in the high pressure furnace of a hot isostatic pressing
US07/209,954 USRE33245E (en) 1983-12-22 1988-06-22 Method and apparatus for measuring temperature in the high pressure furnace of a hot isostatic pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243269A JPS60133326A (en) 1983-12-22 1983-12-22 Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus

Publications (2)

Publication Number Publication Date
JPS60133326A JPS60133326A (en) 1985-07-16
JPH0464015B2 true JPH0464015B2 (en) 1992-10-13

Family

ID=17101352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243269A Granted JPS60133326A (en) 1983-12-22 1983-12-22 Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus

Country Status (1)

Country Link
JP (1) JPS60133326A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632595A (en) * 1986-06-20 1988-01-07 Mitsubishi Heavy Ind Ltd Extra-high pressure type hydrostatic pressure device
JP2747085B2 (en) * 1990-05-10 1998-05-06 工業技術院長 Light energy introduction and condensing device in high-pressure gas atmosphere
JP2571567Y2 (en) * 1990-10-24 1998-05-18 工業技術院長 Device for deriving optical information from high pressure
JP2583227Y2 (en) * 1991-06-19 1998-10-22 東洋化学株式会社 Wall cap
JPH0623006U (en) * 1993-05-19 1994-03-25 株式会社神戸製鋼所 Hot isotropic pressure press

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737670U (en) * 1971-05-25 1972-12-26
JPS5689031A (en) * 1979-12-20 1981-07-20 Hideo Takada Method and device for measuring temperature of seam part or the like
JPS57200827A (en) * 1981-06-04 1982-12-09 Kansai Coke & Chem Co Ltd Temperature measuring method of combustion chamber in coke oven

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638834U (en) * 1979-08-31 1981-04-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737670U (en) * 1971-05-25 1972-12-26
JPS5689031A (en) * 1979-12-20 1981-07-20 Hideo Takada Method and device for measuring temperature of seam part or the like
JPS57200827A (en) * 1981-06-04 1982-12-09 Kansai Coke & Chem Co Ltd Temperature measuring method of combustion chamber in coke oven

Also Published As

Publication number Publication date
JPS60133326A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
JP4077080B2 (en) Optical pyrometer for gas turbine
US9243958B2 (en) Immersion type sensor for measuring temperature
RU2339923C2 (en) Graduation and measurement of temperature in liquid melt using optical fibres
JPS63241436A (en) Throw-in type infrared thermometer for melting material
US6375350B1 (en) Range pyrometer
Muller et al. Temperature measurement of laser heated metals in highly oxidizing environment using 2D single-band and spectral pyrometry
KR20080038455A (en) The method for continuously measuring melting steel temperature and measuring temperature pipe
EP0066516A1 (en) Device for checking the coolant condition in a nuclear reactor
EP0425229A1 (en) High temperature sensor
JPH0464015B2 (en)
Zhang et al. Fiber optic temperature sensor based on the cross referencing between blackbody radiation and fluorescence lifetime
US4666314A (en) Method and apparatus for measuring temperature in the high pressure furnace of a hot isostatic pressing
CN102706474A (en) X-ray imaging equipment for measuring internal temperature of objects and measuring method thereof
US4884896A (en) Production line emissivity measurement system
JP2786811B2 (en) Temperature measurement method
JPH0572531B2 (en)
Claggett et al. Radiation and infrared pyrometers
JPS61182539A (en) Detecting part of radiation temperature
Daneman Fiber-Optic Thermometers
US3483378A (en) Apparatus for determining the emittance of a body
US10175150B2 (en) Resistance compensator to reduce uncertainty in determination of movement of a structural member
EP0229653A2 (en) Method of measuring furnace temperature in hot isostatic pressing unit and device for measuring same
US5220165A (en) Radiation detection system with a foil means for emitting radiant energy
Halls et al. Extending in situ x-ray temperature diagnostics to internal components
CN115128119B (en) Device and method for measuring surface emissivity of liquid metal