JPH0464010A - Nondestructive measuring apparatus for casehardened layer - Google Patents

Nondestructive measuring apparatus for casehardened layer

Info

Publication number
JPH0464010A
JPH0464010A JP17522490A JP17522490A JPH0464010A JP H0464010 A JPH0464010 A JP H0464010A JP 17522490 A JP17522490 A JP 17522490A JP 17522490 A JP17522490 A JP 17522490A JP H0464010 A JPH0464010 A JP H0464010A
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
receiver
measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17522490A
Other languages
Japanese (ja)
Inventor
Tomiyuki Ooyashiki
大屋敷 富幸
Kazuo Kirihara
桐原 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17522490A priority Critical patent/JPH0464010A/en
Publication of JPH0464010A publication Critical patent/JPH0464010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To achieve continuous measurement by measuring the distance of a wave sender which sends ultrasonic beams and a wave receiver which receives the ultrasonic beans, with use of the surface wave of the ultrasonic beams. CONSTITUTION:The distance between a wave sender 2 and a wave receiver 3 provided on two points on a circumference of a body 1 to be detected can be changed. The propagating speed of the ultrasonic beams at each position of the wave receiver 2 is obtained as the position is changed sequentially from A to C, whereby the thickness of a layer which is set through hardening is measured. When the surface wave of the ultrasonic beams is propagated via a ultrasonic wave transmitting/receiving part 6 between the wave sender 2 and wave receiver 3 provided on the surface of the body, and the propagating time is measured by a propagating time measuring part 7, the distance L of the propagating path of the transverse wave of the ultrasonic beams between the sender 2 and receiver 3 can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧延用鍛鋼ロールの焼入硬化層の厚さを非破壊
的に測定する装置に係り、特に、超音波を利用すること
により距離を精度良く迅速に測定することにより、焼入
硬化層の厚さを精度よく測定する装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for non-destructively measuring the thickness of a hardened layer of a forged steel roll for rolling, and in particular, it relates to a device for non-destructively measuring the thickness of a hardened layer of a forged steel roll for rolling. The present invention relates to a device that accurately measures the thickness of a hardened layer by accurately and quickly measuring the thickness of the hardened layer.

〔従来の技術〕[Conventional technology]

特願昭55−90628号明細書には超音波による鍛鋼
ロールの硬化層測定について開示されている。
Japanese Patent Application No. 55-90628 discloses measuring the hardened layer of a forged steel roll using ultrasonic waves.

特願昭62−319220号明細書では円柱機の焼入硬
化深度測定方法が出願されている。
Japanese Patent Application No. 62-319220 discloses a method for measuring the hardening depth of a cylindrical machine.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

超音波の音速を測定することにより鍛鋼ロールの焼入硬
化層の厚みを測定する場合、超音波送波子と受波子を一
定間隔で設置し、この間の伝播時間を測定するが、同時
に送波子と受波子の間隔を測定する必要がある。送波子
、及び、受波子は円柱の同一円周上に設置し、受波子を
、順次、移動しながらこの間の超音波の伝播時間を測定
することから、送波子と受波子の間隔も連続的に測定す
る必要がある。
When measuring the thickness of the hardened layer of a forged steel roll by measuring the sound velocity of ultrasonic waves, an ultrasonic transmitter and a receiver are installed at a fixed interval, and the propagation time between them is measured. It is necessary to measure the spacing between receivers. The transmitter and receiver are installed on the same circumference of a cylinder, and the propagation time of the ultrasonic waves is measured while moving the receiver sequentially, so the spacing between the transmitter and receiver is also continuous. need to be measured.

本発明は送波子と受波子の間隔を超音波表面波により測
定するもので、測定装置の構成も簡略化され迅速な間隔
の測定が可能となった。
The present invention measures the distance between a transmitter and a receiver using ultrasonic surface waves, and the configuration of the measuring device is simplified, making it possible to quickly measure the distance.

〔課題を解決するための手段〕[Means to solve the problem]

1)鍛鋼ロール表面の組織は安定しており超音波表面波
の音速が一定であるため、伝播時間を測定することによ
り間隔を測定することとした。
1) Since the structure of the forged steel roll surface is stable and the sound speed of the ultrasonic surface wave is constant, it was decided to measure the interval by measuring the propagation time.

2)超音波送波子、及び、受波子の構造を表面波と横波
が同時に発生するようにし、内部と表面の伝播時間を同
時に測定できるようにした。
2) The structure of the ultrasonic wave transmitter and wave receiver is designed so that surface waves and transverse waves are generated simultaneously, so that the internal and surface propagation times can be measured simultaneously.

〔作用〕[Effect]

1)内部の音速を測定するための横波と表面の伝播時間
を測定するための表面波が同時に発生する構造の送波子
及び受波子とした。
1) The transmitter and receiver have a structure in which a transverse wave for measuring the internal sound speed and a surface wave for measuring the surface propagation time are generated simultaneously.

2)超音波で間隔が測定できることから、他の測定手段
を採用する必要がないため装置が簡略化され現場での取
扱いが容易になった。
2) Since the distance can be measured using ultrasonic waves, there is no need to employ other measuring means, which simplifies the device and makes it easier to handle on site.

〔実施例〕〔Example〕

被検体内に送入可能な超音波横波を用いて、硬さの異な
る鍛鋼ロール片を試験片として超音波特性を調べた結果
、硬さ(ショア硬さ)と超音波の伝播速度との間には第
3図に示すように良好な対応関係がある。鍛鋼ロールの
場合、焼入による硬化層は軸心に対して、はぼ、対称に
分布しており、表面近傍で最も硬く内層になるにしたが
って軟質になっている。第1図に示すように被検体1の
円周上の二点間に送波子2と受波子3の間隔を変えるこ
とができるように配置し、受波子の位置をA。
As a result of investigating the ultrasonic properties using forged steel roll pieces with different hardness as test specimens using ultrasonic transverse waves that can be delivered into the test object, we found that the relationship between hardness (Shore hardness) and ultrasonic propagation speed was There is a good correspondence as shown in FIG. In the case of a forged steel roll, the hardened layer due to quenching is distributed symmetrically with respect to the axis, being hardest near the surface and becoming softer toward the inner layer. As shown in FIG. 1, the transmitter 2 and the receiver 3 are arranged between two points on the circumference of the subject 1 so that the distance between them can be changed, and the receiver is positioned at A.

B、Cのように順次変えながら、各位置における超音波
ビームの伝播速度を求めることにより、焼入れによる硬
化層の厚さを測定することが出来る。
By determining the propagation velocity of the ultrasonic beam at each position while changing the position sequentially like B and C, the thickness of the hardened layer due to quenching can be measured.

この場合、超音波ビームの伝播径路りと伝播時間から各
位置における伝播速度を求める必要がある。
In this case, it is necessary to find the propagation velocity at each position from the propagation path and propagation time of the ultrasonic beam.

本発明はこの超音波ビームの伝播径路長の測定を被検体
表面に配置した送波子と受波子間に超音波表面波を伝播
させ伝播時間を測定することにより、送、受波子間の超
音波横波の伝播径路長りを測定することを特徴とした。
The present invention measures the propagation path length of the ultrasonic beam by propagating an ultrasonic surface wave between a transmitter and a receiver placed on the surface of the object and measuring the propagation time. It is characterized by measuring the propagation path length of transverse waves.

超音波の伝播速度は被検体の金属組織により変ることが
知られているが5鍛鋼ロールの表面組織は安定している
ことから超音波表面波の伝播速度も一定している。この
ため、超音波表面波の伝播時間を測定することにより、
伝播径路長を測定することができる。
It is known that the propagation speed of ultrasonic waves varies depending on the metal structure of the specimen, but since the surface structure of the 5 forged steel roll is stable, the propagation speed of ultrasonic surface waves is also constant. Therefore, by measuring the propagation time of ultrasonic surface waves,
Propagation path length can be measured.

第2図は超音波表面波の伝播径路長Qから、超音波横波
伝播径路長りを求めるための算出例である。被検体1の
直径はミクロン単位置でマイクロメータ等により事前に
測定可能であり、半径りも事前に求めることができる。
FIG. 2 is an example of calculation for determining the ultrasonic transverse wave propagation path length from the ultrasonic surface wave propagation path length Q. The diameter of the object 1 can be measured in advance using a micrometer or the like at a single micron position, and the radius can also be determined in advance.

超音波表面波の伝播径路長を測定することにより、第2
図の式(1)から超音波横波の伝播径路長しの測定が可
能となる。
By measuring the propagation path length of ultrasonic surface waves, the second
From equation (1) in the figure, it is possible to measure the propagation path length of the ultrasonic transverse wave.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超音波横波の伝播径路長りを測定する
ための他の測定装置が不要となり、連続的な測定が可能
となった。
According to the present invention, no other measuring device is required for measuring the propagation path length of ultrasonic transverse waves, and continuous measurement becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図は超音波表面波の伝播径路長から超音波横波の伝
播径路長を算出するための説明図、第3図は硬さHs(
ショア硬さ)と超音波伝播速度の関係を実験的に求めた
場合の関係線図を示す。 1・・・被検体、2・・・送波子、3・・・受波子、4
・・・超音波横波、5・・・超音波表面波、6・・・超
音波送受信部、7・・・伝播時間測定部、8・・・経路
長演算部、9・・・伝播速度演算部、10・・・メモリ
部、11・・・硬さ演算第1図 占h
FIG. 1 is a block diagram showing one embodiment of the present invention. Fig. 2 is an explanatory diagram for calculating the propagation path length of an ultrasonic transverse wave from the propagation path length of an ultrasonic surface wave, and Fig. 3 shows the hardness Hs (
A relationship diagram is shown in which the relationship between (Shore hardness) and ultrasonic propagation velocity was determined experimentally. 1... Subject, 2... Transmitter, 3... Receiver, 4
... Ultrasonic transverse wave, 5 ... Ultrasonic surface wave, 6 ... Ultrasonic transmitting and receiving section, 7 ... Propagation time measurement section, 8 ... Path length calculation section, 9 ... Propagation velocity calculation Part, 10... Memory part, 11... Hardness calculation Figure 1 Horoscope h

Claims (1)

【特許請求の範囲】 1、表面に焼入を施した円柱の焼入硬化層の厚さを超音
波ビームの伝播時間及び伝播距離を測定することにより
、非破壊的に測定する硬化層測定装置において、 前記超音波ビームを送出する送波子と前記超音波ビーム
を受波する受波子の間隔を超音波表面波を利用して測定
することを特徴とする非破壊式硬化層測定装置。
[Claims] 1. A hardened layer measuring device that nondestructively measures the thickness of a hardened layer of a cylinder whose surface has been hardened by measuring the propagation time and propagation distance of an ultrasonic beam. A non-destructive cured layer measuring device, characterized in that the distance between a wave transmitter that transmits the ultrasonic beam and a wave receiver that receives the ultrasonic beam is measured using ultrasonic surface waves.
JP17522490A 1990-07-04 1990-07-04 Nondestructive measuring apparatus for casehardened layer Pending JPH0464010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17522490A JPH0464010A (en) 1990-07-04 1990-07-04 Nondestructive measuring apparatus for casehardened layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17522490A JPH0464010A (en) 1990-07-04 1990-07-04 Nondestructive measuring apparatus for casehardened layer

Publications (1)

Publication Number Publication Date
JPH0464010A true JPH0464010A (en) 1992-02-28

Family

ID=15992460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17522490A Pending JPH0464010A (en) 1990-07-04 1990-07-04 Nondestructive measuring apparatus for casehardened layer

Country Status (1)

Country Link
JP (1) JPH0464010A (en)

Similar Documents

Publication Publication Date Title
US7353709B2 (en) Method and system for determining material properties using ultrasonic attenuation
EP0400770B1 (en) Measuring the strength of a material within a moving web
WO2007003058A1 (en) Method and system for determining material properties using ultrasonic attenuation
US4106327A (en) Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis
US5714688A (en) EMAT measurement of ductile cast iron nodularity
EP0242807B1 (en) Method of measurement of residual stresses in the material of the object under test
KR100345351B1 (en) A Method of Determining Angle and Length of Inclined Surface Opening Cracks in Concrete
US4380931A (en) Apparatus and method for quantitative nondestructive wire testing
JPH0464010A (en) Nondestructive measuring apparatus for casehardened layer
Gorgun et al. Ultrasonic testing to measure the stress statement of steel parts
JPH05281201A (en) Method and apparatus for measurement of depth of quenched and hardened layer
JPS62277554A (en) Measuring method for depth of surface cured layer by ultrasonic wave
JP2001208526A (en) Method and apparatus for measuring thickness of surface heterogeneous layer
JP3199941B2 (en) Continuous magnetostriction measuring method and apparatus
CA2511629C (en) Method and system for determining material properties using ultrasonic attenuation
Budenkov et al. Principal regularities of Pochhammer-wave interaction with defects
Howard et al. Monitoring thicknesses along a line using SH guided waves
Canella et al. Ultrasonic inspection of hot thick steel products
JPH03279856A (en) Ultrasonic material testing device
JPS6326340B2 (en)
KR20020011662A (en) Method of Detecting Internal Cracks of Steel Products using Laser-Ultrasonic
JPH0194205A (en) Measurement of propagation distance of ultrasonic wave
JPH01161144A (en) Measuring method for hardening depth of columnar material
JPH01107149A (en) Standard test piece for ultrasonic flaw detector
Palanisamy et al. On the accuracy of AC flux leakage, eddy current, EMAT and ultrasonic methods of measuring surface connecting flaws in seamless steel tubing