JPH0463874B2 - - Google Patents

Info

Publication number
JPH0463874B2
JPH0463874B2 JP59113043A JP11304384A JPH0463874B2 JP H0463874 B2 JPH0463874 B2 JP H0463874B2 JP 59113043 A JP59113043 A JP 59113043A JP 11304384 A JP11304384 A JP 11304384A JP H0463874 B2 JPH0463874 B2 JP H0463874B2
Authority
JP
Japan
Prior art keywords
hotimicin
streptomyces
acid
compound
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59113043A
Other languages
Japanese (ja)
Other versions
JPS60258196A (en
Inventor
Hamao Umezawa
Yoshiro Okami
Mikio Morioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microbial Chemistry Research Foundation
Original Assignee
Microbial Chemistry Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microbial Chemistry Research Foundation filed Critical Microbial Chemistry Research Foundation
Priority to JP11304384A priority Critical patent/JPS60258196A/en
Publication of JPS60258196A publication Critical patent/JPS60258196A/en
Publication of JPH0463874B2 publication Critical patent/JPH0463874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は抗菌掻性を有する新芏なダクチミシン
誘導䜓である−゚ピダクチミシン又はその塩に
関する。たた、本発明はホヌチミシンの生産胜
を有しないがホヌチミシンをダクチミシン誘導
䜓に倉換する胜力をも぀ストレプトマむセス属の
菌株を甚いおホヌチミシンの化孊構造を埮生物
的倉換するこずによる−゚ピダクチミシンの補
造法に関するものである。本発明によ぀お提䟛さ
れる−゚ピダクチミシン又はその酞付加塩はす
ぐれた抗菌掻性を瀺し抗菌剀ずしお極めお有甚で
ある。 次匏 で瀺されるホヌチミシンは公知の抗生物質の䞀
぀である特開昭49−126892号、「ゞダヌナル・
オブ・アンチバむオチツク」30å·»533〜570頁
197参照が、その抗菌掻性は必らずしも満足
できるものではない。本発明者らはホヌチミシン
より優れた抗生物質を補造すべく研究䞭に、あ
る皮の埮生物を䜜甚させるず、ホヌチミシンは
䞋蚘の匏〔〕で瀺されるダクチミシンの誘導䜓
に倉換されるこずを知芋した。ダクチミシンは特
開昭55−64597号公報にSF−2052物質の名で蚘茉
された化合物である。 埓぀お、第の本発明によるず、次の立䜓構造
匏 で瀺される−゚ピダクチミシン又はその酞付加
塩が提䟛される。 −゚ピダクチミシンは、−゚ピ−2″−ホル
ムむミドむルホヌチミシンに盞圓する。 匏〔〕の本発明化合物はホヌチミシンの
䜍のアミノ基が゚ピ化され䞔぀䜍のメチルアミ
ノ基がホルムむミドむルグリシル化されたものに
盞圓する化孊構造を有する。 この匏〔〕の化合物凍結也燥品は぀ぎの
理化孊的性質を瀺す。 (1) 塩基性の本物質の硫酞塩癜色粉末 (2) 溶解性氎に極めお良く溶け、メタノヌル、
゚タノヌル、アセトン、クロロホルム、ベンれ
ン、酢酞゚チル、酢酞ブチル、゚ヌテル、−
ヘキサンなどの有機溶剀には䞍溶である。 (3) 元玠分析倀C18H36N6O6・2H2SO4・4H2O
ずしお    理論倀 30.85 6.90 11.99 実隓倀 30.78 7.01 12.00 (4) 融点205℃以䞊で埐々に熱分解耐倉、発
泡、溶融を䌎う (5) 旋光床〔α〕21 D92゜0.15H2O (6) 玫倖線吞収スペクトル末端吞収 (7) 赀倖線吞収スペクトルKBr錠第図に
瀺す通りである。 吞収極倧cm-13400、2940、2040、1715、
1630、1500、1400、1360、1325、1260、
1110、1040 (8) 栞磁気共鳎スペクトル重氎䞭第図に
瀺す通りである。 特城的シグナル1.35ppm、3H、6.5
Hz 6′−−メチル、1.6ppmm1H 
4′−メチレン、2.03ppm〜2.15ppmm3H

3′4′−メチレン、3.15ppm、3H 
−−メチル、3.41ppm、1HJ6′、CH3
6.5Hz 6′−メチン、3.51ppm、3H
−−メチル、3.60ppm、1H 2′−
メチン−、88ppm1H 5′−メチン
3.93ppm、1H.J1;23.6HzJ163.6
Hz −メチン、4.06ppm、、1H、
J323.3HzJ3;411Hz−メチン、
4.23ppm1H −メチン、3.38ppm
、1H、17.5Hzおよび4.47ppm、
1H、17.5Hz2″−メチレン4.42ppm
1H メチレン、4.66ppm、、
1H −メチレン、4.7ppm、1H 
−メチン、5.46ppm、1H、J1′,2′3.2
Hz 1′−アノメリツクプロトン、7.98ppm
、1H ホルムむムドむルのプ
ロトン (9) マススペクトルSIMSにおける分子むオ
ンピヌク433 (10) 高速液䜓クロマトグラフむヌによる保持時
間第衚に瀺す通りである。
The present invention relates to 1-epidactymicin, a novel dactymicin derivative having antibacterial activity, or a salt thereof. Furthermore, the present invention provides the production of 1-epidactymicin by microbially converting the chemical structure of hotimicin B using a strain of the genus Streptomyces that does not have the ability to produce hotimicin B but has the ability to convert hotimicin B into a dactymicin derivative. It concerns the manufacturing method. 1-Epidactymicin or its acid addition salt provided by the present invention exhibits excellent antibacterial activity and is extremely useful as an antibacterial agent. The following formula Hotimicin B, represented by
of Antibiotics, Vol. 30, pp. 533-570 (197)), but its antibacterial activity is not necessarily satisfactory. During research to produce an antibiotic superior to Hotimicin B, the present inventors found that Hotimicin B was converted to a dactymicin derivative represented by the following formula [] when treated with a certain type of microorganism. did. Dactymicin is a compound described in JP-A-55-64597 under the name of substance SF-2052. Therefore, according to the first invention, the following three-dimensional structural formula 1-epidactymicin or an acid addition salt thereof is provided. 1-epidactymicin corresponds to 1-epi-2''-formimidoylhotymicin A. The compound of the present invention of formula []
It has a chemical structure corresponding to that in which the amino group at position is epitomized and the methylamino group at position 4 is formimidoyl glycylated. The compound of this formula [] (lyophilized product) exhibits the following physical and chemical properties. (1) Basic sulfate of this substance: white powder (2) Solubility: extremely soluble in water, methanol,
Ethanol, acetone, chloroform, benzene, ethyl acetate, butyl acetate, ether, n-
It is insoluble in organic solvents such as hexane. (3) Elemental analysis value (C 18 H 36 N 6 O 6・2H 2 SO 4・4H 2 O
): C H N Theoretical value (%) 30.85 6.90 11.99 Experimental value (%) 30.78 7.01 12.00 (4) Melting point: Gradual thermal decomposition (accompanied by browning, foaming, and melting) above 205°C (5) Optical rotation: [α] 21 D +92° (c=0.15%; H 2 O) (6) Ultraviolet absorption spectrum: Terminal absorption (7) Infrared absorption spectrum (KBr tablet): As shown in FIG. Maximum absorption (cm -1 ): 3400, 2940, 2040, 1715,
1630, 1500, 1400, 1360, 1325, 1260,
1110, 1040 (8) Nuclear magnetic resonance spectrum (in heavy water): As shown in Figure 2. Characteristic signal: 1.35ppm (d, 3H, J = 6.5
Hz)...6'-C-methyl, 1.6ppm (m1H)...
4′-methylene, 2.03ppm to 2.15ppm (m3H)
...3',4'-methylene, 3.15ppm (s, 3H)...
4-N-Methyl, 3.41ppm (m, 1HJ6 ', CH3
= 6.5Hz)...6'-methine, 3.51ppm (s, 3H)
3-0-methyl, 3.60ppm (m, 1H)...2'-
Methine-,. 88ppm (1H)
5′-methine,
3.93ppm (t, 1H.J 1 ; 2 = 3.6Hz, J 1 ; 6 = 3.6
Hz)...1-methine, 4.06ppm (d, d, 1H,
J 3 ; 2 = 3.3Hz, J 3 ; 4 = 11Hz) 3-methine,
4.23ppm (t, 1H)...6-methine, 3.38ppm
(d, 1H, J=17.5Hz) and 4.47ppm (d,
1H, J=17.5Hz) 2″-methylene 4.42ppm
(1H)...5 methylene, 4.66ppm (d, d,
1H)...4-methylene, 4.7ppm (t, 1H)...
2-methine, 5.46 ppm (d, 1H, J 1 ′ , 2 ′ = 3.2
Hz)...1′-anomeric proton, 7.98ppm
(s, 1H)...3 (formimidoyl) proton (9) Molecular ion peak in mass spectrum (SIMS): 433 (M+1) (10) Retention time by high performance liquid chromatography: As shown in Table 1 be.

【衚】【table】

【衚】 (11) 薄局クロマトグラフむヌによるRf倀第
衚に瀺す通りである。
[Table] (11) Rf value by thin layer chromatography: 2nd
As shown in the table.

【衚】【table】

【衚】 本発明による匏〔〕の化合物の抗菌スペクト
ルをホヌチミシンFM−ず略蚘する、ホヌ
チミシンFM−ず略蚘する、ダクチミシン
DACず略蚘するず察比しお次の第衚に瀺
す。
[Table] The antibacterial spectrum of the compound of formula [] according to the present invention is compared with Hotimicin B (abbreviated as FM-B), Hotimicin A (abbreviated as FM-A), and Dactimicin (abbreviated as DAC) as follows. It is shown in Table 3.

【衚】【table】

【衚】【table】

【衚】 䞊衚から明らかなように、匏〔〕の本発明化
合物は皮々のグラム陜性现菌およびグラム陰性现
菌に察し広範囲、か぀匷力な抗菌掻性を瀺し、特
に出発原料のホヌチミシンに比べお数倍ないし
数十倍抗菌掻性が増匷されおおり、ホヌチミシン
やダクチミシンず比范しおも遜色のないより匷
い抗菌掻性を有しおいる。 本発明の化合物の酞付加塩の䟋ずしおは、薬孊
的に蚱容できる無機酞、䟋えば、塩酞、臭化氎玠
酞、硫酞、リン酞、あるいは有機酞䟋えば酢酞、
プロピオン酞、ク゚ン酞、メタルスルホン酞、等
ずの塩がある。 第の本発明によるず、ホヌチミシンに、ス
トレプトマむセス属に属しおホヌチミシンの
䜍アミノ基を゚ピ化し䞔぀䜍メチルアミノ基に
ホルムむミドむルグリシル基を導入する胜力を有
する菌を䜜甚させるこずを特城ずする前蚘の匏
〔〕の−゚ピダクチミシン又はその酞付加塩
の補造法が提䟛される。 本発明の方法によれば、化合物〔〕はホヌチ
ミシンを、ストレプトマむセス属に属しお前蚘
の倉換胜力を有する菌珠たたはその倉異株ず接觊
䜜甚させるこずによ぀お補造されるが、ホヌチミ
シンのホヌタミン郚䜍の䜍のアミト基を゚ピ
化し䞔぀䜍のメチルアミノ基をホルムむミドむ
ルグリシル化しうるものであれば、本発明の方法
の䜿甚菌株に特に制限はない。 本発明の方法で䜿甚できる菌珠の䟋ずしおは、
むスタマむシン生産菌ずしお知られるストレプト
マむセス・テンゞマリ゚ンシスStreptomyces
tenjimariensisSS−939株FERM−P4932
特開昭55−145697号公報参照があり、たたス
トレプトマむセス・テンゞマリ゚ンシスSS1507
があげられる。本SS−1507菌株は工業技術院埮
生物工業技術研究所に寄蚗され、その受蚗番号は
埮工研菌寄第 号FERM− で
ある。たた倉異株ずしおは、ストレプトマむセス
属に属するむスタマむシン生産菌株から、たずえ
ば玫倖線照射、コバルト60照射、線照射、ある
いはニトロ゜化合物、アクリゞン色玠化合物、栞
酞塩基類䌌物質等の倉異誘発剀を甚いる通垞の人
工倉異手段で埗られるものがある。本法で䜿甚す
るのに奜適な倉異株ずしおは、むスタマむシン生
産胜がないかもしくは極端に生産胜が䜎䞋しお、
か぀先に述べたホヌチミシンの䜍のアミノ基
を゚ピ化し䜍のメチルアミノ基をホルムむミド
むルグルシル化できる性質を持぀ものである。本
発明の方法で䜿甚できるそれら倉異株の代衚䟋ず
しおは、本発明者らがストレプトマむセス・テン
ゞマリ゚ンシスSS−1507から誘導させたストレ
プトマむセス・テンゞマリ゚ンシス
Streptomyces tenjimariensisSS−1507U−41
をあげるこずができる。本菌株は工業技術院埮生
物工業技術研究所に寄蚗され、その受蚗番号は埮
工研菌寄第7625号FERM−P7625である。こ
れらのストレプトマむセス・テンゞマリ゚ンシス
Streptomyces tenjimariensisSS−1507およ
びストレプトマむセス・テンゞマリ゚ンシス
Streptomyces tenjimariensisSS−1507U−41
の菌孊的諞性質は䞡者共に党く同じであ぀お以䞋
に瀺すごずくである。 (A) 圢態 寒倩培地䞊に良く生育したストレプトマむセ
ス・テンゞマリ゚ンシスStreptomyces
tenjimariensisSS−1507株およびストレプト
マむセス・テンゞマリ゚ンシス
Streptomyces tenjimariensisSS−1507U−
41株は単玔分枝し、良く䌞長した基䞭菌糞から
盎状たたは少しく圎曲した気䞭菌糞を䌞長し、
成熟するず、先端に10〜50の長円筒状巟ミ
クロン、長さ〜ミクロンの胞子の連鎖を
圢成する。螺旋状や車軞分枝は瀺さない。電子
顕埮鏡䞋で胞子衚面は平滑で刺状たたは毛状構
造は芋られない。鞭毛や胞子のうはなく兞型的
なストレプトマむセスである。 (B) 各皮培地䞊の特城 シナヌクロヌス・硝酞塩寒倩培地27℃培
逊匱い無色の発育䞊に癜色の気菌糞を生
じ、次第に青緑色を垯びた灰色17ec
aqua blueカラヌ・ハヌモニヌ・マニナア
ルによる、以䞋同じを増す。培地に顕著な
拡散性色玠を生産するこずはない。 グリセリン・アスパラギン寒倩培地27℃
培逊ず殆んど同じであるが気菌糞は着
生しにくい。 スタヌチ寒倩培地27℃培逊ず殆ん
ど同じであるが気菌糞を着生し、菌発育の呚
蟺のスタヌチは透明ずなる。 チロシン寒倩培地27℃培逊の所
芋に殆んど同じであり、メラニン様色玠を生
産する。 栄逊寒倩培地27℃培逊無色の発育䞊
に癜色の気菌糞を着生し、培地は茶耐色を垯
びる。 むヌスト・麊芜寒倩培地27℃培逊無
色の発育䞊に癜色の気菌糞を着生し、次第に
青緑色を垯びた灰色19bc aqua grayを
瀺す。培地は茶耐色を呈する。 オヌトミヌル寒倩培地27℃培逊無色
の発育䞊に癜色ないし青灰色17ecaqua
blueを垯びた気菌糞を着生する。 (C) 生理的性質 20〜41℃で生育可胜である。 スタヌチ寒倩䞊でスタヌチを加氎分解す
る。 脱脂牛乳の凝固、ペプトン化は殆んど芋ら
れない。 メラニン様色玠をチロシン寒倩培地䞊およ
びペプトン・むヌスト・鉄寒倩培地䞊に生成
する。 (D) 炭玠源の同化性プリツドハム・ゎツドリヌ
プ寒倩培地䞊 グルコヌスずむノシトヌルのみを同化し、ア
ラビノヌス、−キシロヌス、シナヌクロヌ
ス、ラムノヌス、ラフむノヌス、−マンニツ
トは同化しない。−フラクトヌスの同化は疑
わしい。 以䞊の性状はすでに本発明者らが報告した、む
スタマむシン生産菌珠であるストレプトマむセ
ス・テンゞマリ゚ンシスSS−939株特開昭55−
145697号参照ず気菌糞の圢成性、メラニン様色
玠生産性・気菌糞の色調、炭玠源の同化性は党く
同じであるが、ストレプトマむセス・テンゞマリ
゚ンシスSS−1507U−41株においおはむスタマ
むシンの生産胜が殆んどない点においお特城的で
あり、本発明の方法で䜿甚するのに䟿利である。 本発明の方法を実斜するには、ホヌチミンを
化合物〔〕に倉換するために、ホヌチミシン
を含む培地䞭で通垞、本発明の方法で䜿甚できる
菌、特にストレプトマむセス・テンゞマリ゚ンシ
スの䞊蚘菌株を培逊すればよい。即ち、前蚘を菌
を培逊䞭の培逊液内にホヌチミシンを存圚させ
お䜜甚させるのである。本発明の方法で菌の培逊
においおは、通垞の抗生物質生産のための培逊法
が甚いられる。培逊のための栄逊源ずしおは皮々
のものが甚いられる。炭玠源ずしおはブドり糖、
殿粉デキストリン、シペ糖、糖蜜などが単独或い
は組合せお甚いられるし、菌の資化性にもよるが
炭化氎玠、アルコヌル類、有機酞、動物油、怍物
油なども甚いうる。窒玠源ずしおは無機、有機の
窒玠源ずしおは塩化アンモニりム、硝酞アンモニ
りム、硝酞ナトリりム、倧豆粉、脱脂倧豆粉、綿
実粕、グルテンミヌル、コヌンミヌル、小麊胚
芜、ペプトン類、肉゚キス、酵母゚キス、也燥酵
母、コヌン・スチヌプ・リカヌ等が単独或いは組
合せお甚いられる。その他に必芁に応じお、アミ
ノ酞類、栞酞類、ビタミン類や塩化ナトリりム、
炭酞カルシりム、リン酞塩、硝酞マグネシりム、
塩化コバルトなどの無機塩類も添加できる。 培逊法ずしおは液䜓培逊法、ずくに深郚撹拌方
匏による方法が適しおいる。培逊枩床は20℃〜41
℃、奜たしくは25℃〜32℃でPHは䞭性附近がよ
い。たた培地組成、培地の液性、添加物の量、枩
床、撹拌数、通気量などの培逊条件は甚いる菌珠
などに応じお適宜遞択されるこずはいうたでもな
い。化合物〔〕を埗るため、原料のホヌチミシ
ンの添加時期は培逊開始時でも良いし、たた培
逊開始埌、菌が発育した埌でもよいが、培逊開始
埌96時間頃たでに行うのが望たしい。原料添加量
は培地圓り0.1から10皋床で䞀床に加え
おもよいが分割しお加えおもよい。たた、添加す
る、ホヌチミシンは遊離塩基でよいが、塩たず
えば硫酞塩や塩酞塩の圢でもよい。菌ずホヌチミ
シンずの䜜甚時間は原料を添加埌、化合物
〔〕が最も倚く蓄積される時間が遞択される。
これはたずえばバチルス・ズブチリスBacillus
subtilisPCI219を詊隓菌ずしお培逊液䞭の化合
物〔〕の量をペヌパヌデスク法で远跡できる
が、通垞日から日である。 化合物〔〕の採取法は、その培逊液からの単
離粟補も含めお、通垞アミノグリコシド抗生物質
の採取に利甚されおいる方法が甚いられる。すな
わち、カチオンおよびアニオン亀換暹脂による吞
脱着法、カりンタヌむオンを甚いた倚孔性ポリマ
ヌ暹脂による吞脱着法、掻性炭による吞脱着法、
シリカゲルカラムクロマトグラフむヌなどの方法
を適圓に組合せお䜿甚できる。 具䜓的には、培逊液から化合物〔〕を採取す
るためには、䟋えば培逊液のPHをないしに調
敎したのち、過しお菌䜓を陀き、再床PHをな
いしに調敎し、この化孊構造を有する物質の吞
着、溶離に適切なカルボン酞基、スルホン酞基、
等を有するカチオン亀換暹脂ずしおのアンバヌラ
むトIRC−50商品名〔Na+〕、ダり゚ツクス
50W商品名〔Na+〕等に吞着させ、0.5芏定硫
酞で溶出し、化合物〔〕を含む粗溶液を埗る。
この物質をさらに粟補するために、カりンタヌむ
オン剀ずしお−ペンタンスルホン酞ナトリり
ム、−ヘキサンスルホン酞ナトリりム、−ヘ
プタンスルホン酞ナトリりム、−オクタンスル
ホン酞ナトリりム、−ドデカンスルホン酞ナト
リりム、−ドデシルスルホン酞ナトリりム、パ
ラトル゚ンスルホン酞ナトリりム、等の䞭から適
圓なものを遞び、これを加えお溶解せしめ、埐々
に0.5〜芏定皋床の氎酞化ナトリりムを加えお
PHを5.0に調敎した埌、倚孔性ポリマヌ暹脂であ
るアンバヌラむトXAD−商品名、アンバヌ
ラむトXAD−商品名、ダむアむオンHP−20
商品名、ダむアむオンCPH−20P商品名等
に吞着させる。これらを吞着させおから暹脂を良
く氎で掗浄した埌、溶出溶媒のメタヌル濃床を、
より埐々に段階的に、又は濃床募配法によ぀お
それぞれの物質が溶出されおくるたで䞊げおゆ
く。この様にしお溶出された各物質のフラクシペ
ンをそれぞれ集め、0.5芏定皋床の氎酞化ナトリ
りムでPH6.0に䞭和した埌、カチオン亀換暹脂で
あるアンバヌラむトIRC−50商品名〔Na+〕、
CG−50商品名〔Na+〕に吞着させ、よく氎掗
埌、0.5芏定の硫酞で溶出する。このこずによ぀
お䜿甚したカりンタヌむオン剀ずの分離を蚈る。
この溶出液は匏〔〕の物質のほかに倚量の硫酞
ナトリりムを含むため掻性炭に吞着させ氎掗しお
硫酞ナトリりムを掗溶した埌に0.05芏定の硫酞を
含む80のメタノヌルで溶出する。溶出液は硫
酞々性であるので、適圓な濃床に濃瞮した埌、ア
ニオン亀換暹脂であるアンバヌラむトIRA−45
商品名〔OH-〕で䞭和し、別した埌に、ア
ニオン亀換暹脂であるIRA−400商品名
〔SO4 --〕を通過させ、その通過した氎溶液を濃
瞮したのち凍結也燥するこずにより匏〔〕の目
的物質を取埗する。 塩基性である本化合物〔〕は無機酞又は有機
酞、たずえば塩酞、硫酞、リン酞、酢酞ステアリ
ン酞、酒石酞、マレむン酞等ず垞法により反応さ
せるず、無毒の酞付加塩を容易に圢成する。 ぀ぎに実斜䟋により本発明をさらに説明する。 実斜䟋  可溶性殿粉無機塩ISPNo.寒倩培地に週
間培逊しお良く生育させたストレプトマむセス・
テンゞマリ゚ンシスStreptomyces
tenjimariensisSS1507U−41FERM−P7625
を、コヌンミヌル6.0、小麊胚芜2.0、硫酞マ
グネシりム0.05、炭酞カルシりム0.6を含む
液䜓培地PH7.0100mlを500mlフラスコ䞭で滅
菌したものに䞀癜金耳接皮し、27℃で48〜72時間
振盪培逊しお皮母培逊液を埗た。別に500mlフラ
スコに100mlの本培逊培地を調敎し、それに䞊蚘
皮母培逊液mlを怍菌する。この培地の組成は小
麊胚芜6.5、パルミチン酞ナトリりム0.5、硫
酞マグネシりム0.05、炭酞カルシりム0.6、
倧豆油3.5PH7.0であり、120℃17分間滅菌
しお䜿甚する。怍菌埌72時間目にホヌチミシン
塩基を培地ml圓り300mc添加した。この
原料添加埌、168時間27℃で振盪培逊を行぀た。
ちなみに、その時期にバチルス・ズブチルスPCI
−219株を甚いおペヌパヌデむス法で培逊液の抗
菌掻性を枬定するず、盎埄21.9mmの阻止円を䞎え
た。埗られた培逊液のフラスコ22本ぶんを芏定
硫酞でPH2.0に修敎したのちに菌䜓を別し、菌
䜓は曎に氎で掗浄し掗浄液を過しお、前に過
した培逊液ず合せた。この様にしお埗た過培逊
液の4.31を芏定の氎酞化ナトリりムでPH6.0
に戻し、アンバヌラむトIRC−50商品名
〔Na+〕95mlを充填したカラムを通過させ目的化
合物〔〕を吞着させた。カラムを充分に氎掗し
おから0.5芏定の硫酞1.1で溶出し、粗の目的化
合物〔〕を含む溶液を埗た。この溶液にパラト
ル゚ンスルホン酞ナトリりムの3.0を加え、
芏定の氎酞化ナトリりムを埐々に加えおPHを5.0
に調敎した。この溶液をダむアむオンCHP−20P
商品名の75mlカラムを通過させ、目的化合物
を吞着させた。カラムは200mlの塩酞々性氎PH
2.0で掗浄した埌、塩酞々性氎PH2.0を甚い
た〜のメタノヌル氎で濃床募配カラムクロ
マトグラフむヌを行぀た。各フラクシペン各10
mlを高速液䜓クロマトグラフむヌで怜玢し化合
物〔〕を確認した。ちなみに、この時に甚いた
高速液䜓クロマトグラフむヌの操䜜、条件はカラ
ムにデむベロシヌルODS−−20、5Ό
〔商品名〕mmφ×200mmを甚い、溶離液は0.2
モルの硫酞ナトリりムずカりンタヌむオン剀ずし
おの−ペンタンスルホン酞ナトリりムの0.02モ
ルを含む0.1の酢酞溶液にアセトニトリル
を加えた液を分間にmlの割合で液送するもの
である。たた、本物質怜出のためにオルトフタヌ
ルアルデヒド詊薬以䞋OPAず略蚘するをPH
10のホり酞緩衝液に0.6mgmlの割合で溶解した
液を甚いる。詊料を泚入埌カラムから溶出しおき
た溶離液ずOPA溶液ずをミキシングゞペむント
で反応させUV怜出噚で344Όの波長で目的化
合物〔〕を怜出した。この操䜜法によるず目的
化合物〔〕の保持時間は分28秒前出の第
衚であ぀た。この様にしお怜玢した化合物
〔〕はフラクシペン224から242に分画されおい
たので、これを集め玄40mlに濃瞮した埌に0.4芏
定の可性゜ヌダヌ溶液を甚いおPHを6.0に調敎し
た。この目的化合物〔〕の画分をアンバヌラむ
トIRC−50商品名〔Na+〕のmlカラムを通過
せしめ目的化合物〔〕を吞着させた。次いでよ
く氎掗した埌に0.5芏定硫酞氎で溶出しmlづ぀
分画した。目的化合物〔〕はバチルス・ズブチ
リスPC219を詊隓菌ずしたプレヌトでペヌパヌデ
むスク法で怜定した。ペヌパヌデむスクは怜定前
にアンモニアガスで䞭和した。又ニンヒドリン陜
性をテストするこずによりフラクシペンから
に分画されおいるこずを確認した䞊で、このフラ
クシペンを集め、0.4芏定の氎酞化ナトリりム溶
液でPHを6.02に調敎した。この様にしお埗られた
目的化合物〔〕の画分を25mlの掻性炭を充填し
たカラムに吞着させ、100mlの氎でよく氎掗した
埌に0.05芏定の硫酞を含む50メタノヌル氎で溶
出した。各フラクシペン各mlはペヌパヌデ
むスク法を甚いバチルス・ズブチリスPCI219の
平板培地で怜定した。このずきペヌパヌデむスク
は怜定前にアンモニアガスで䞭和した。この結
果、目的化合物〔〕はフラクシペンから40た
で溶出しおきたので、これを集め濃瞮し、メタノ
ヌルを陀いた埌にアンバヌラむトIRA−45商品
名〔OH-〕を甚いお䞭和し過した埌、玄ml
たでさらに濃瞮した。この濃瞮液はアンバヌラむ
トIRA−400商品名〔SO4 --〕の10mlカラムに
チダヌゞし、氎で溶出しお各mlのフラクシペン
ずしお分画した。この各フラクシペンはバチル
ス・ズブチルスPCI219を甚いたペヌパヌデむス
ク法で怜定し、たたニンヒドリン陜性をテストす
るこずによ぀お、目的化合物がフラクシペンか
らに含たれるこずを確認した埌に、このフラク
シペンを集め0.5mlに濃瞮し、凍結也燥しお18.1
mgの目的化合物〔〕の癜色粉末を埗た。 この物質は、これの理化孊的性質、特にマスス
ペクトル、栞磁気共鳎スペクトルおよび赀倖線吞
収スペクトルの枬定結果ならびにホヌチミシン
から誘導されたこずに基いお調べるず、前蚘の匏
〔−〕で瀺される−゚ピ−2″−ホルムむミ
ドむルホヌチミシンすなわち−゚ピ−ダクチ
ミシンであるず同定された。
[Table] As is clear from the above table, the compound of the present invention of formula [] exhibits a wide range of strong antibacterial activity against various Gram-positive and Gram-negative bacteria, and especially compared to the starting material Hotimicin B, The antibacterial activity is enhanced by a factor of two to several tens of times, and it has a stronger antibacterial activity that is comparable to Hotimicin A and Dactimicin. Examples of acid addition salts of compounds of the invention include pharmaceutically acceptable inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, or organic acids such as acetic acid,
There are salts with propionic acid, citric acid, metal sulfonic acid, etc. According to the second aspect of the present invention, Hotimicin B includes one of Hotimicin B that belongs to the genus Streptomyces.
A method for producing 1-epidactymicin of the above formula [] or an acid addition salt thereof, which comprises using a bacterium capable of epitomizing the amino group at the position and introducing a formimidoylglycyl group into the methylamino group at the 4-position. is provided. According to the method of the present invention, the compound [] is produced by contacting Hotimicin B with a bacterial bead belonging to the genus Streptomyces and having the above-mentioned conversion ability or a mutant strain thereof. There are no particular limitations on the strain used in the method of the present invention, as long as it can epiform the amide group at position 1 of the fotamin moiety and formimidoylglysylate the methylamino group at position 4. Examples of fungal beads that can be used in the method of the present invention include:
Streptomyces tenzimariensis, known as istamycin-producing bacterium
tenjimariensis) SS-939 strain (FERM-P4932)
(Refer to Japanese Patent Application Laid-Open No. 55-145697), and Streptomyces tenzimariensis SS1507
can be given. This strain SS-1507 has been deposited with the National Institute of Microbiology, Agency of Industrial Science and Technology, and its accession number is FERM-P. Mutant strains can be obtained from istamycin-producing strains belonging to the genus Streptomyces by using, for example, ultraviolet irradiation, cobalt-60 irradiation, X-ray irradiation, or mutagenic agents such as nitroso compounds, acridine dye compounds, and nucleobase analogues. There are things that can be obtained through artificial mutation. Suitable mutant strains for use in this method include those that do not have the ability to produce istamycin or have an extremely reduced ability to produce istamycin.
Moreover, it has the property of being capable of epitomizing the amino group at the 1-position of Hotimicin B and converting the methylamino group at the 4-position to formimidoylglucylation. A representative example of these mutant strains that can be used in the method of the present invention is Streptomyces tenjimariensis SS-1507U-, which the present inventors derived from Streptomyces tenjimariensis SS-1507. 41
can be given. This strain has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology, and its accession number is FERM-P7625. These Streptomyces tenjimariensis SS-1507 and Streptomyces tenjimariensis SS-1507U-41
The mycological properties of both are exactly the same and are as shown below. (A) Morphology Streptomyces tenzimariensis growing well on agar medium
strain SS-1507 and Streptomyces tenjimariensis SS-1507U-
Strain 41 has simple branching and extends straight or slightly curved aerial hyphae from well-elongated basal hyphae.
When mature, it forms a chain of 10 to 50 long cylindrical (1 micron wide, 4 to 5 micron long) spores at the tip. No spirals or axle branches are shown. Under an electron microscope, the spore surface is smooth and does not have any spine-like or hair-like structures. It is a typical Streptomyces without flagella or sporangia. (B) Characteristics on various media Seuucrose/nitrate agar medium (cultured at 27°C); white aerial hyphae appear on weak colorless growth, gradually turning blue-green to gray (17ec,
aqua blue, according to the Color Harmony Manual; the same applies hereafter). It does not produce significant diffusible pigments in the medium. Glycerin-asparagine agar medium (27℃
culture); however, aerial mycelia are difficult to attach to. It is almost the same as starch agar medium (cultured at 27℃); however, aerial mycelium grows on it, and the starch around the bacterial growth becomes transparent. The findings are almost the same as those on tyrosine agar medium (cultured at 27°C); melanin-like pigments are produced. Nutrient agar medium (cultured at 27°C): White aerial mycelium grows on colorless growth, and the medium becomes brownish. Yeast/malt agar medium (cultured at 27°C): White aerial mycelium grows on colorless growth, gradually turning blue-greenish gray (19bc aqua gray). The medium appears brownish in color. Oatmeal agar medium (cultured at 27℃); colorless growth with white to blue-gray color (17ec, aqua
Aerial mycelia with a blue color are attached. (C) Physiological properties Can grow at 20-41℃. Hydrolyze the starch on starch agar. Hardly any coagulation or peptonization of skim milk is observed. Melanin-like pigments are produced on tyrosine agar and peptone yeast iron agar. (D) Assimilation of carbon sources (on Prittham-Gotzlieb agar medium) Only glucose and inositol are assimilated, and arabinose, D-xylose, sucrose, rhamnose, raffinose, and D-mannite are not assimilated. Assimilation of D-fructose is questionable. The above properties have already been reported by the present inventors, and istamycin-producing bacterial beads, Streptomyces tenzimariensis SS-939 strain (Japanese Unexamined Patent Application Publication No. 1989-1982)
145697), the ability to form aerial mycelia, the production of melanin-like pigments, the color tone of aerial mycelium, and the assimilation of carbon sources are exactly the same, but Streptomyces tenzimariensis SS-1507U-41 strain It is unique in that it has almost no ability to produce mycin, and is convenient for use in the method of the present invention. To carry out the method of the present invention, in order to convert Ho Chi Minh B into the compound [], Ho Chi Minh B
Generally, the above-mentioned strains of Streptomyces tenzimariensis, which can be used in the method of the present invention, may be cultured in a medium containing . That is, the above-mentioned method is made to work by allowing Hotimicin B to exist in the culture solution in which the bacteria are being cultured. In culturing bacteria in the method of the present invention, conventional culture methods for producing antibiotics are used. Various nutrient sources can be used for culture. Glucose as a carbon source,
Starch dextrin, sucrose, molasses, etc. can be used alone or in combination, and depending on the assimilation ability of the bacteria, hydrocarbons, alcohols, organic acids, animal oils, vegetable oils, etc. can also be used. Inorganic nitrogen sources and organic nitrogen sources include ammonium chloride, ammonium nitrate, sodium nitrate, soybean flour, defatted soybean flour, cottonseed meal, gluten meal, cornmeal, wheat germ, peptones, meat extract, yeast extract, and drying. Yeast, corn steep liquor, etc. may be used alone or in combination. In addition, amino acids, nucleic acids, vitamins, sodium chloride,
Calcium carbonate, phosphate, magnesium nitrate,
Inorganic salts such as cobalt chloride can also be added. As a culture method, a liquid culture method, particularly a method using a deep stirring method, is suitable. Culture temperature is 20℃~41℃
℃, preferably 25℃ to 32℃, and the pH is preferably around neutral. It goes without saying that culture conditions such as medium composition, liquid properties of the medium, amount of additives, temperature, number of stirrings, amount of aeration, etc. are appropriately selected depending on the bacterial beads used. In order to obtain the compound [], the raw material Hotimicin B may be added at the start of the culture or after the bacteria have grown, but it is preferable to add it within about 96 hours after the start of the culture. The amount of raw materials to be added is approximately 0.1 to 10 g per 1 g of the medium, which may be added all at once, or may be added in portions. Further, Hotimicin B to be added may be in the form of a free base, but may also be in the form of a salt, such as a sulfate or a hydrochloride. The action time of the bacteria and hotimicin B is selected so that the compound [] is accumulated in the largest amount after the addition of the raw materials.
This is for example Bacillus subtilis.
subtilis) PCI219 as a test strain, the amount of the compound [ ] in the culture solution can be monitored using the paper desk method, but it usually takes 3 to 9 days. The method for collecting the compound [], including its isolation and purification from the culture solution, is the method normally used for collecting aminoglycoside antibiotics. Namely, adsorption and desorption methods using cation and anion exchange resins, adsorption and desorption methods using porous polymer resins using counter ions, adsorption and desorption methods using activated carbon,
Methods such as silica gel column chromatography can be used in appropriate combination. Specifically, in order to collect the compound [] from the culture solution, for example, the pH of the culture solution is adjusted to 2 to 3, the bacterial cells are removed by sieving, and the PH is adjusted to 5 to 6 again. Carboxylic acid groups, sulfonic acid groups suitable for adsorption and elution of substances with this chemical structure,
Amberlite IRC-50 (trade name) [Na + ] as a cation exchange resin with etc., Dowex
Adsorb with 50W (trade name) [Na + ], etc., and elute with 0.5N sulfuric acid to obtain a crude solution containing compound [T].
In order to further purify this substance, we used sodium 1-pentanesulfonate, sodium 1-hexanesulfonate, sodium 1-heptanesulfonate, sodium 1-octanesulfonate, sodium 1-dodecanesulfonate, and sodium 1-dodecanesulfonate as counterion agents. Select an appropriate one from sodium dodecylsulfonate, sodium paratoluenesulfonate, etc., add it and dissolve it, and gradually add about 0.5 to 1N of sodium hydroxide.
After adjusting the pH to 5.0, porous polymer resins Amberlite XAD-2 (trade name), Amberlite XAD-4 (trade name), Diaion HP-20
(product name), Diaion CPH-20P (product name), etc. After adsorbing these and washing the resin thoroughly with water, the metal concentration of the elution solvent was adjusted to
The concentration is gradually increased from 0 stepwise or by concentration gradient method until each substance is eluted. The fractions of each substance eluted in this way were collected and neutralized to pH 6.0 with approximately 0.5N sodium hydroxide, and then mixed with cation exchange resin Amberlite IRC-50 (trade name) [Na + ]. ,
Adsorb to CG-50 (trade name) [Na + ], wash well with water, and elute with 0.5N sulfuric acid. This measures the separation from the counter ion agent used.
This eluate contains a large amount of sodium sulfate in addition to the substance of formula [], so it is adsorbed on activated carbon and washed with water to wash away the sodium sulfate, and then eluted with 80% methanol containing 0.05N sulfuric acid. Since the eluate is sulfuric acid, after concentrating it to an appropriate concentration, it is mixed with Amberlite IRA-45, an anion exchange resin.
(Product name) After neutralizing with [OH - ] and separating, anion exchange resin IRA-400 (Product name)
The target substance of the formula [] is obtained by passing [SO 4 -- ] through it, concentrating the aqueous solution that has passed through it, and then freeze-drying it. This basic compound [] readily forms non-toxic acid addition salts when reacted with inorganic or organic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid stearic acid, tartaric acid, maleic acid, etc. in a conventional manner. . Next, the present invention will be further explained with reference to Examples. Example 1 Streptomyces grown well by culturing on soluble starch inorganic salt (ISP No. 4) agar medium for 2 weeks.
Streptomyces
tenjimariensis) SS1507U−41 (FERM−P7625)
was inoculated into a sterilized 500 ml flask with 100 ml of a liquid medium (PH 7.0) containing 6.0% cornmeal, 2.0% wheat germ, 0.05% magnesium sulfate, and 0.6% calcium carbonate, and incubated at 27°C for 48 hours. A seed culture solution was obtained by shaking culture for ~72 hours. Separately, prepare 100 ml of main culture medium in a 500 ml flask, and inoculate it with 1 ml of the above seed culture medium. The composition of this medium is 6.5% wheat germ, 0.5% sodium palmitate, 0.05% magnesium sulfate, 0.6% calcium carbonate,
It contains 3.5% soybean oil (PH7.0) and is used after being sterilized at 120°C for 17 minutes. Hochi Sewing Machine B 72 hours after inoculation
(base) was added at 300 mcg per ml of medium. After adding this raw material, shaking culture was performed at 27°C for 168 hours.
By the way, at that time Bacillus subtilis PCI
When the antibacterial activity of the culture solution was measured using the -219 strain by the paper dice method, an inhibition circle of 21.9 mm in diameter was obtained. After adjusting the pH of 22 flasks of the obtained culture solution to 2.0 with 6N sulfuric acid, the bacterial cells were separated, and the bacterial cells were further washed with water, the washing solution was filtered, and the culture solution was mixed with the previously filtered culture solution. Combined. 4.31 of the superculture solution obtained in this way was added to 4N sodium hydroxide to pH 6.0.
Return to Amberlight IRC-50 (product name)
The target compound [ ] was adsorbed by passing through a column packed with 95 ml of [Na + ]. The column was thoroughly washed with water and eluted with 0.5N sulfuric acid 1.1 to obtain a solution containing the crude target compound [ ]. Add 3.0g of sodium paratoluenesulfonate to this solution and
Gradually add the specified sodium hydroxide to bring the pH to 5.0.
Adjusted to. Add this solution to Diaion CHP-20P.
(trade name) 75 ml column to adsorb the target compound. The column was filled with 200 ml of hydrochloric acid water (PH
After washing with 2.0), concentration gradient column chromatography was performed with 0 to 8% methanol water using hydrochloric and acidic water (PH2.0). Each fraction (10 each
ml) was searched for using high performance liquid chromatography and the compound [] was confirmed. By the way, the operation and conditions of high performance liquid chromatography used at this time were Deveroseal ODS-5 (C-20%, 5Ό) on the column.
[Product name] (6mmφ×200mm) was used, and the eluent was 0.2
A solution prepared by adding 4% acetonitrile to a 0.1% acetic acid solution containing 0.02 mol of sodium sulfate and 0.02 mol of sodium 1-pentanesulfonate as a counterion agent is fed at a rate of 1 ml per minute. In addition, ortho-phthalaldehyde reagent (hereinafter abbreviated as OPA) was used to detect this substance.
A solution of 0.6 mg/ml dissolved in 10 boric acid buffer is used. After the sample was injected, the eluent eluted from the column was reacted with the OPA solution in a mixing joint, and the target compound was detected with a UV detector at a wavelength of 344 mΌ. According to this operating method, the retention time of the target compound [] is 7 minutes 28 seconds (the first
Table). The compound [] searched in this way was fractionated into fractions 224 to 242, so these were collected and concentrated to about 40 ml, and the pH was adjusted to 6.0 using a 0.4N sodium chloride solution. This fraction of the target compound [] was passed through a 3 ml column of Amberlite IRC-50 (trade name) [Na + ] to adsorb the target compound []. After thoroughly washing with water, the mixture was eluted with 0.5N sulfuric acid and fractionated into 5ml portions. The target compound [] was assayed by the paper disk method on a plate using Bacillus subtilis PC219 as the test bacterium. Paper disks were neutralized with ammonia gas before assay. Fractions 1 to 8 can also be determined by testing positive for ninhydrin.
After confirming that it was fractionated, the fractions were collected and the pH was adjusted to 6.02 with 0.4N sodium hydroxide solution. The thus obtained fraction of the target compound [] was adsorbed on a column packed with 25 ml of activated carbon, thoroughly washed with 100 ml of water, and then eluted with 50% aqueous methanol containing 0.05N sulfuric acid. Each fraction (5 ml each) was assayed on a Bacillus subtilis PCI219 plate medium using the paper disc method. At this time, the paper disk was neutralized with ammonia gas before the assay. As a result, the target compound [] was eluted from fractions 3 to 40, so it was collected, concentrated, methanol was removed, and then neutralized using Amberlite IRA-45 (trade name) [OH - ]. After that, about 1ml
It was further concentrated to This concentrated solution was charged to a 10 ml column of Amberlite IRA-400 (trade name) [SO 4 -- ], eluted with water, and fractionated into 5 ml fractions each. Each fraction was assayed by the paper disc method using Bacillus subtilis PCI219, and after confirming that the target compound was contained in fractions 1 to 5 by testing positive for ninhydrin, the fractions were collected and 0.5 Concentrate to 18.1 ml and lyophilize to 18.1 ml.
mg of the target compound [ ] as a white powder was obtained. The physical and chemical properties of this substance, especially the measurement results of mass spectra, nuclear magnetic resonance spectra, and infrared absorption spectra, as well as Ho Chi Micin B
Based on the fact that it was derived from the formula [-1], it was identified as 1-epi-2''-formimidoylhotimicin A, ie, 1-epi-dactymicin, represented by the above formula [-1].

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明による−゚ピダクチミシンの
赀倖線吞収スペクトルKBr錠であり、第
図は−゚ピダクチミシンの栞磁気共鳎スペクト
ルである。
Figure 1 shows the infrared absorption spectrum of 1-epidactymicin (KBr tablet) according to the present invention;
The figure is a nuclear magnetic resonance spectrum of 1-epidactymicin.

Claims (1)

【特蚱請求の範囲】  次の立䜓構造匏 で瀺される−゚ピダクチミシン又はその酞付加
塩。  ホヌチミシンに、ストレプトマむセス属に
属しおホヌチミシンの䜍アミノ基を゚ピ化し
䞔぀䜍メチルアミノ基にホルムむミドむルグリ
シル基を導入する胜力を有する菌を䜜甚させるこ
ずを特城ずする次の立䜓構造匏 で瀺される−゚ピダクチミシンの補造方法。  ホヌチミシンにストレプトマむセス・テン
ゞマリ゚ンシスStreptomyces tenjimariensis
SS−1507 −41埮工研菌寄第7625号を䜜甚
させる特蚱請求の範囲第項蚘茉の方法。  ストレプトマむセス・テンゞマリ゚ンシスを
培逊䞭の培逊液内にホヌチミシンを存圚させお
䜜甚させる特蚱請求の範囲第項の方法。
[Claims] First-order three-dimensional structural formula 1-epidactymicin or an acid addition salt thereof. 2. The following, characterized in that a bacterium belonging to the genus Streptomyces and having the ability to epitomize the amino group at the 1-position of Hotimicin B and introduce a formimidoylglycyl group into the methylamino group at the 4-position is allowed to act on Hotimicin B. 3D structural formula of A method for producing 1-epidactymicin. 3 Streptomyces tenjimariensis in Hochimishin B
The method according to claim 2, in which SS-1507 U-41 (Feikoken Bibori No. 7625) is applied. 4. The method according to claim 2, wherein Hotimicin B is present in the culture medium during which Streptomyces tenzimariensis is being cultured.
JP11304384A 1984-06-04 1984-06-04 Novel dactimicin derivative and its preparation Granted JPS60258196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11304384A JPS60258196A (en) 1984-06-04 1984-06-04 Novel dactimicin derivative and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11304384A JPS60258196A (en) 1984-06-04 1984-06-04 Novel dactimicin derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS60258196A JPS60258196A (en) 1985-12-20
JPH0463874B2 true JPH0463874B2 (en) 1992-10-13

Family

ID=14602035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11304384A Granted JPS60258196A (en) 1984-06-04 1984-06-04 Novel dactimicin derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS60258196A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743694A (en) * 1980-08-26 1982-03-11 Meiji Seika Kaisha Ltd Preparation of antibiotic dactimicin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743694A (en) * 1980-08-26 1982-03-11 Meiji Seika Kaisha Ltd Preparation of antibiotic dactimicin

Also Published As

Publication number Publication date
JPS60258196A (en) 1985-12-20

Similar Documents

Publication Publication Date Title
JPS6316120B2 (en)
KR100230961B1 (en) Novel amimooligosaccharide derivative and process for preparing the same
JPS6040840B2 (en) Microbiological production of antibiotics
US6287827B1 (en) Halo- or hydroxy-substituted nocathiacin antibiotics
JPS6261037B2 (en)
JPH0463874B2 (en)
US5378463A (en) Antitumor antibiotic
JPH022589B2 (en)
JPS5934355B2 (en) Fermentation method
JPH0341477B2 (en)
EP0808843B1 (en) Novel macrolide compound 0406
JPH0321158B2 (en)
JPH0429356B2 (en)
JPS5920359B2 (en) Production method of polylysine
JP2858939B2 (en) Antibiotics AB3217A, AB3217B and AB3217C and their production
EP1324980B1 (en) Citrullimycines, a process for their production and their use as pharmaceuticals
JP2854671B2 (en) New substance UCF1
JP2766351B2 (en) New substance DC114-C
JP2795489B2 (en) New substance DC115A compound
JPH06340685A (en) Antiobiotic and its production
JP3109923B2 (en) Manufacturing method of new trehazolin derivatives
JPS6253518B2 (en)
JPS6261317B2 (en)
EP0195872A2 (en) Novel cell-cidal antibiotic 82-85-8A and its production
JPH0565251A (en) New trehazolin derivative and its production