JPH0463803B2 - - Google Patents

Info

Publication number
JPH0463803B2
JPH0463803B2 JP16719285A JP16719285A JPH0463803B2 JP H0463803 B2 JPH0463803 B2 JP H0463803B2 JP 16719285 A JP16719285 A JP 16719285A JP 16719285 A JP16719285 A JP 16719285A JP H0463803 B2 JPH0463803 B2 JP H0463803B2
Authority
JP
Japan
Prior art keywords
titanium
reaction
ammonium
ammonium halide
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16719285A
Other languages
Japanese (ja)
Other versions
JPS6227312A (en
Inventor
Makoto Hatsutori
Shoji Yamanaka
Masao Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP16719285A priority Critical patent/JPS6227312A/en
Publication of JPS6227312A publication Critical patent/JPS6227312A/en
Publication of JPH0463803B2 publication Critical patent/JPH0463803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は窒化チタンの製造方法に関するもので
あり、特に常圧下で且つ比較的低温で良質の窒化
チタンを高収率で製造する方法に関するものであ
る。 窒化チタンはその高融点、高耐熱性、高耐食
性、高硬度高導電性等の優れた性質によつて超硬
材料、耐熱材料、装飾材料として各種用途への開
発が進められている。 (従来技術) 窒化チタン(TiN)の主たる製造法としては
従来次のものが公知である: (1) 金属チタン粉末を窒素またはアンモニア雰囲
気中で800〜1400℃に加熱する。 (2) 水素化チタン(TiH2)を窒素またはアンモ
ニア雰囲気中で1000℃以上に加熱する。 (3) 酸化チタン(TiO2)を炭素の存在下で1000
〜1500℃で窒素と反応させる。 (4) ハロゲン化チタン(TiCl4)をアンモニアと
を高圧下に反応させる。 しかし、(1)の方法は高温度を必要とし、得られ
る窒化チタン粒子が大きく、(2)の方法は反応制御
が難しく、(3)の方法は工業的には有利であるが、
高純度の窒化チタンは得にくく、(4)の方法は収率
が悪い。 (発明の目的) 従つて、本発明の目的は、比較的低い温度で且
つ実質的に常圧で反応が行えると同時に、粒径が
極めて小さく且つ純度が高い窒化チタンを高収率
で製造する方法を提供することにある。 (発明の構成) 本発明の窒化チタンの製造法は金属チタンまた
は水素化チタンをハロゲン化アンモニウムと加熱
下に反応させることを特徴としている。 上記金属チタンおよび水素化チタンは粉末やス
ポンジであるのが好ましいが場合によつてはチタ
ンの板状体、粒状体等でもよい。また、上記ハロ
ゲン化アンモニウムとしては塩化アンモニウム
(NH4Cl)や臭化アンモニウム(NH4Br)が一般
に用いられる。これらのハロゲン化アンモニウム
は一般的には加熱により気化し、アンモニア、チ
ツソ、その他のキヤリヤーガスを用いて上記金属
チタンや水素化チタンと反応させるのが好ましい
が、金属チタンあるいは水素化チタンとの反応時
にハロゲン化アンモニウムの形態になるような例
えば水素化ハロゲンとアンモニアとの混合ガス等
の形であつてもよい。 上記の反応は400℃〜700℃で行うのが好まし
い。反応温度が400℃未満では生成物中にハロゲ
ン化アンモニウムが残留し、また700℃を超える
とTiCl3等の不純物が生成し、いずれの場合でも
生成物の純度が低下する。 上記反応は実質的に常圧下で行うことができ
る。実験室規模では、金属チタンまたは水素化チ
タン粉末ボート上でを上記温度に加熱した後、ハ
ロゲン化アンモニウムガスをキヤリヤーガスを用
いて上記粉末と接触させればよい。このキヤリヤ
ーガスとしてはアンモニア、チツソ等を用いるこ
とができる。工業的には金属チタンあるいは水素
化チタン粉末とハロゲン化アンモニウムとの混合
物を上記温度の反応帯域中を通加させる方法、金
属チタンあるいは水素化チタン粉末とハロゲン化
アンモニウムガスとを流動床、並流接触器、向流
接触器等を用いて反応させる方法が考えられる。 以下、実施例を用いて本発明を説明する。 実施例 1 −水素化チタン− 第1図に示す反応管1中に水素化チタン
(TiH2)粉末Bを約1g入れたボート5と塩化ア
ンモニウムAを約4g入れたボート4とをセツト
し、系内をN2ガスで置換後、供給管2からキヤ
リヤーガスとしてNH3を50ml/分で流しながら
先ず電気炉3″、次いで3′に通電し、600℃で20
分間反応を行つた。 ボート4内に得られた粉末状反応生成物の元素
分析結果は以下の通りであつた: T i 69.9wt% N 18.6 O 6.53 C l 1.2 また、このX線回析図は図2に示してあり、こ
れは反応生成物がTiNであることを示している。
またチツソ吸着法で測つて反応生成物の比表面積
は85m2/gであり、これと電顕写真による粒径測
定データーから反応生成物の粒径は90Åであるこ
とがわかる。 実施例 2、3 実施例1と同じ操作によつたが、反応温度を
500℃および700℃に変えて行つた。結果は表1に
示してある。 比較例 1、2 実施例1と同じ操作によつたが反応温度を450
℃および800℃にした。結果は表1に示してある。 実施例 4、5、6 −金属チタン− 実施例1と同じ操作を行つたが、ボート5には
金属チタン(Ti)粉末を入れた。反応温度を500
℃、600℃および700℃にした場合の結果を表2に
示した。 比較例 3、4 実施例4と同じ操作を行つたが、反応温度を
450℃および800℃に変えた。結果は表2に示して
ある。
(Industrial Application Field) The present invention relates to a method for producing titanium nitride, and particularly to a method for producing high-quality titanium nitride at a high yield under normal pressure and at a relatively low temperature. Due to its excellent properties such as high melting point, high heat resistance, high corrosion resistance, high hardness, and high conductivity, titanium nitride is being developed for various uses as a superhard material, heat resistant material, and decorative material. (Prior Art) The following are conventionally known main methods for producing titanium nitride (TiN): (1) Metallic titanium powder is heated to 800 to 1400°C in a nitrogen or ammonia atmosphere. (2) Titanium hydride (TiH 2 ) is heated to 1000°C or higher in a nitrogen or ammonia atmosphere. (3) Titanium oxide (TiO 2 ) was heated to 1000% in the presence of carbon.
React with nitrogen at ~1500°C. (4) React titanium halide (TiCl 4 ) with ammonia under high pressure. However, method (1) requires high temperatures and the resulting titanium nitride particles are large, method (2) is difficult to control the reaction, and method (3) is industrially advantageous, but
High purity titanium nitride is difficult to obtain, and method (4) has a poor yield. (Object of the Invention) Therefore, the object of the present invention is to produce titanium nitride with extremely small particle size and high purity in a high yield while allowing the reaction to take place at a relatively low temperature and under substantially normal pressure. The purpose is to provide a method. (Structure of the Invention) The method for producing titanium nitride of the present invention is characterized by reacting metallic titanium or titanium hydride with ammonium halide under heating. The above-mentioned titanium metal and titanium hydride are preferably in the form of powder or sponge, but in some cases, titanium plates, granules, etc. may also be used. Further, as the ammonium halide, ammonium chloride (NH 4 Cl) and ammonium bromide (NH 4 Br) are generally used. These ammonium halides are generally vaporized by heating and preferably reacted with the above-mentioned titanium metal or titanium hydride using ammonia, nitrogen, or other carrier gas. It may be in the form of ammonium halide, such as a mixed gas of hydrogenated halogen and ammonia. The above reaction is preferably carried out at 400°C to 700°C. If the reaction temperature is less than 400°C, ammonium halide will remain in the product, and if it exceeds 700°C, impurities such as TiCl 3 will be produced, and in either case, the purity of the product will decrease. The above reaction can be carried out under substantially normal pressure. On a laboratory scale, titanium metal or titanium hydride powder may be heated on a boat to the above temperature and then ammonium halide gas contacted with the powder using a carrier gas. Ammonia, nitrogen, etc. can be used as the carrier gas. Industrially, a mixture of titanium metal or titanium hydride powder and ammonium halide is passed through a reaction zone at the above temperature, and titanium metal or titanium hydride powder and ammonium halide gas are mixed in a fluidized bed or in parallel flow. A method of reacting using a contactor, countercurrent contactor, etc. can be considered. The present invention will be explained below using Examples. Example 1 - Titanium hydride - A boat 5 containing about 1 g of titanium hydride (TiH 2 ) powder B and a boat 4 containing about 4 g of ammonium chloride A were set in the reaction tube 1 shown in FIG. After replacing the inside of the system with N 2 gas, while flowing NH 3 as a carrier gas from the supply pipe 2 at a rate of 50 ml/min, electricity was first applied to the electric furnace 3'' and then 3', and the temperature was 20 at 600℃.
The reaction was carried out for minutes. The elemental analysis results of the powdered reaction product obtained in boat 4 were as follows: T i 69.9wt% N 18.6 O 6.53 C l 1.2 The X-ray diffraction diagram is shown in FIG. , indicating that the reaction product is TiN.
Further, the specific surface area of the reaction product measured by the Tituso adsorption method was 85 m 2 /g, and from this and particle size measurement data by electron microphotography, it was found that the particle size of the reaction product was 90 Å. Examples 2 and 3 The same procedure as in Example 1 was followed, but the reaction temperature was changed.
The temperature was changed to 500℃ and 700℃. The results are shown in Table 1. Comparative Examples 1 and 2 The same procedure as in Example 1 was carried out, but the reaction temperature was changed to 450℃.
℃ and 800℃. The results are shown in Table 1. Examples 4, 5, 6 - Titanium Metal - The same operation as in Example 1 was performed, but the boat 5 was filled with titanium metal (Ti) powder. Reaction temperature 500
℃, 600℃ and 700℃ are shown in Table 2. Comparative Examples 3 and 4 The same operation as in Example 4 was carried out, but the reaction temperature was changed.
The temperature was changed to 450℃ and 800℃. The results are shown in Table 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1で用いた反応装置の
概念的断面図。第2図は実施例1で得られた反応
生成物のX線回析図。 (図中符号)、1:反応管、2:ガス供給管、
3′,3″:電気炉、4,5:ボート、A:Ti、
TiH2、B:NH4Cl。
FIG. 1 is a conceptual cross-sectional view of a reaction apparatus used in Example 1 of the present invention. FIG. 2 is an X-ray diffraction diagram of the reaction product obtained in Example 1. (Symbols in the figure), 1: reaction tube, 2: gas supply tube,
3', 3'': electric furnace, 4, 5: boat, A: Ti,
TiH2 , B: NH4Cl .

Claims (1)

【特許請求の範囲】 1 金属チタンまたは水素化チタンをハロゲン化
アンモニウムと加熱下に反応させて窒化チタンを
製造する方法。 2 上記ハロゲン化アンモニウムが塩化アンモニ
ウムまたは臭化アンモニウムであることを特徴と
する特許請求の範囲第1項に記載の方法。 3 上記ハロゲン化アンモニウムがアンモニアお
よび/またはチツソのキヤリヤーガスによつて供
給されることを特徴とする特許請求の範囲第1項
または第2項に記載の方法。 4 上記反応が400〜700℃で行われることを特徴
とする特許請求の範囲第1項記載の方法。 5 上記反応が実質的に常圧で行われることを特
徴とする特許請求の範囲第1項記載の方法。
[Claims] 1. A method for producing titanium nitride by reacting metallic titanium or titanium hydride with ammonium halide under heating. 2. The method according to claim 1, wherein the ammonium halide is ammonium chloride or ammonium bromide. 3. Process according to claim 1 or 2, characterized in that the ammonium halide is supplied by a carrier gas of ammonia and/or titanium. 4. The method according to claim 1, wherein the reaction is carried out at 400 to 700°C. 5. The method according to claim 1, wherein the reaction is carried out at substantially normal pressure.
JP16719285A 1985-07-29 1985-07-29 Production of titanium nitride Granted JPS6227312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16719285A JPS6227312A (en) 1985-07-29 1985-07-29 Production of titanium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16719285A JPS6227312A (en) 1985-07-29 1985-07-29 Production of titanium nitride

Publications (2)

Publication Number Publication Date
JPS6227312A JPS6227312A (en) 1987-02-05
JPH0463803B2 true JPH0463803B2 (en) 1992-10-13

Family

ID=15845135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16719285A Granted JPS6227312A (en) 1985-07-29 1985-07-29 Production of titanium nitride

Country Status (1)

Country Link
JP (1) JPS6227312A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513469B2 (en) * 1986-06-30 1996-07-03 新技術事業団 Method for producing zirconium nitride fine powder by high-pressure ammonia method
US5665326A (en) * 1995-11-13 1997-09-09 Advanced Refractory Technologies, Inc. Method for synthesizing titanium nitride whiskers
WO2006135524A2 (en) 2005-05-18 2006-12-21 Corning Cable Systems Llc High density optical fiber distribution enclosure
US7519258B2 (en) 2006-12-21 2009-04-14 Corning Cable Systems Llc Preconnectorized fiber optic local convergence points
US7349616B1 (en) 2007-01-12 2008-03-25 Corning Cable Systems Llc Fiber optic local convergence points for multiple dwelling units
US7499622B2 (en) 2007-02-28 2009-03-03 Corning Cable Systems Llc Fiber optic drop terminals for multiple dwelling units
US7409138B1 (en) 2007-03-12 2008-08-05 Corning Cable Systems Llc Fiber optic local convergence points for multiple dwelling units
US7664360B2 (en) 2007-04-17 2010-02-16 Corning Cable Systems Llc Fiber optic drop terminal mounting plate
CN108557783B (en) * 2018-06-26 2022-02-11 重庆大学 Preparation method of high-purity nano titanium nitride powder

Also Published As

Publication number Publication date
JPS6227312A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
JPH0463803B2 (en)
CN110227826A (en) A method of preparing high-purity nm molybdenum powder
JPS6112844B2 (en)
US2842468A (en) Vapor deposition of single crystals
US2854353A (en) Method of coating refractory metals with silicon and boron
JPS6191335A (en) Method for recovering platinum group metal
US2837420A (en) Method of producing chromium
JPS6324998B2 (en)
US3407031A (en) Process for the manufacture of inorganic chlorides
US2760857A (en) Production and purification of titanium
JPS61500661A (en) Aluminum chloride purification method
US4704264A (en) Process for production of silane
US2487474A (en) Preparation of magnesium nitride
US3955961A (en) Carboxylate metals process
US3804664A (en) Process for chemical vapor deposition of zirconium carbide
JPS6117764B2 (en)
JP3676515B2 (en) Method for producing silicon trichloride
US2680670A (en) Production of zirconium iodide
JPH01252519A (en) Bulk body consisting of boron, carbon and nitrogen and production thereof
US3839538A (en) Process for the manufacture of boron halides
Biswas et al. Preparation of single-phase Cr7C3 by aluminothermic reduction
JPS6177603A (en) Production of iodide
JPH0657610B2 (en) How to recover Ru
JPH07187619A (en) Nitride containing isotopic nitrogen and its production
JPS616113A (en) Manufacture of metallic silicon