JPH0463707B2 - - Google Patents

Info

Publication number
JPH0463707B2
JPH0463707B2 JP59110596A JP11059684A JPH0463707B2 JP H0463707 B2 JPH0463707 B2 JP H0463707B2 JP 59110596 A JP59110596 A JP 59110596A JP 11059684 A JP11059684 A JP 11059684A JP H0463707 B2 JPH0463707 B2 JP H0463707B2
Authority
JP
Japan
Prior art keywords
dialysate
blood
flow rate
inert gas
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59110596A
Other languages
Japanese (ja)
Other versions
JPS60253457A (en
Inventor
Shiro Nakatani
Fumitake Yoshida
Yasuo Igai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59110596A priority Critical patent/JPS60253457A/en
Publication of JPS60253457A publication Critical patent/JPS60253457A/en
Publication of JPH0463707B2 publication Critical patent/JPH0463707B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の目的) この発明は、透析液を再生して循環使用する
液々膜型の体外循環型肺補助装置に関するもので
ある。 吸収不全患者に対して、その血液を体外循環さ
せ、その間に血液中の二酸化炭素成分を除く装置
として、血液の損傷の少ない膜型の肺補助装置が
用いられるようなつている。従来この種の装置と
しては、送入ガスと血液をガス透過性の良い高分
子肺を介して流し、その膜を介して血液中の溶存
CO2を除く気液膜型のものが用いられてきた。し
かし除去すべき二酸化炭素成分の大半、溶存CO2
としてよりもHCO- 3(重炭酸イオン)として血液
中に溶解しているので、溶存CO2のみを除去する
従来方式の装置は効率が著しく悪かつた。 そこで最近,人工腎臓用の血液透析器を用いて
その膜の一方に血液を、他方に透析液を流し、血
液中の溶存CO2およびHCO3を透析液へ移動さ
せ、その透析液からこれらCO- 2として系外に拡
散させ透析液を再生して循環使用する特開昭58−
19265「血液透析方式膜型人工肺装置」が提案され
ている。 しかしこの特開昭58−19265の装置には次の未
解決の実用上の問題点がある。すなわち、患者の
血液と透析液間でその圧力差基づいて膜を介して
水分移動が起こり、血液中に水分が入り込み血液
が薄くなると血球の膜が破壊される等の種々の弊
害をもたらすことがある。またCO2除去流量は血
液流量,透析液流量等いくつかの要因に依存する
のでこれらを適切に制御する必要があるが、この
装置ではそれが難しくCO2除去を効率良く行うこ
とができない。さらに、長時間使用の場合透析液
温度を適温に保つことができない上、各動作およ
び運転状態が正常かどうか確認が困難なので操作
者の注意深い監視が必要になるとか、操作者にお
いて適切な運転操作手順を実行しなければならな
い等操作者に著しく負担を強いる。 この発明は、透析液を再生して循環使用する
液々膜型の体外循環型肺補助装置における上記の
問題点を解決することを目的とするものである。 (発明の構成) この発明の構成を図に基づいて以下に説明す
る。 第1図にこの発明による装置の配管系統図の一
例を示す。第1図において、患者の血液は血液ポ
ンプ1によつて透析器2に送られ、ドリツプチヤ
ンバ3部で静脈圧と流量が測定され、静脈圧調整
器4を通つて体外循環される。他方透析液は透析
液ポンプ5によつて、流量計6を通つて透析器2
に導かれ、その出口流路部の透析液圧測定器7で
透析液圧が測定され、液切れ検出器8、ヒータ9
を通つて放散筒10に導かれ、PHおよび透析液温
度測定11を通つて循環される。血液中の
HCO3 -および溶存CO2は透析器2内で膜を介し
て接する透析液に移動し、その透析液が放散筒1
0に運ばれ、HOC3 -が透析液中に含有の炭酸脱
水酵素の触媒作用を受けてCO2に転化されるとと
もに、ここで圧力調整器12、止め弁13、流量
制御弁14、流量計15、逆止弁16を通つて送
入されるO2等の不活性ガス17と気液接触して
CO2として放散される。放散ガス中のCO2濃度は
CO2濃度計18によつて測定される。また放散筒
10には透析液のPH調節用緩衝液19がピンチバ
ルブ20を介して添加できるようになつている。 さて、血液の圧力は静脈圧調整器4によつて制
御され、また血液ポンプ1および透析液ポンプ5
の回転は、その駆動用モータの回転軸に取り付け
る等間隔に穴をあけた円板の回転をフオトセンサ
でモニタすることによつてモニタされ、それぞれ
の流量制御はその駆動用モータへの供給電圧を制
御して行う。透析液温度およびPHはその測定部1
1で測定され、温度はヒータ9で、PHはピンチバ
ルブ20でそれぞれ制御される。添加ガス流量は
例えば熱線式流量計等の流量計15によつてモニ
タされ、その流量制御は流量制御弁14への供給
電圧を制御してその開度を調節して行う。 ところで透析器の膜を介して血液と透析液間で
起こる水分の移動は、血液と透析液の圧力差すわ
ち透析器の過圧に依存する。つり過圧が正の
とき血液中から水分が除去され、逆にこれが負の
ときは血液中に水分が入り込むことになる。した
がつて患者の容態により血液中の水分除去を行う
場合は過圧をある程度高い値にし、逆に水分除
去を行わない場合は過圧を0付近に制御する。 また放散筒10で除去されるCO2の量は、透析
器2および放散筒の容量にもよるが、体外循環血
流量、透析液流量および添加ガス流量に依存す
る。こらの量が、それぞれ多いほどCO2除去流量
が多くなる。そこで患者の状態に応じた最適条件
で効率良くCO2の除去を行い、装置全体を小型化
するために体外循環血流量、透析液流量および不
活性ガス流量を適切に制御するようにしている。 この発明ではこれらの制御をマイクロコンピユ
ータを用いて実現している。 第2図はこの発明の装置における制御系のブロ
ツク図を示す。第2図において、体外循環血流量
21、静脈圧22、透析液流量23、透析液圧2
4、患者温度25、透析液PH26、透析液液切れ
27、不活性ガス流量28、放散ガス中のCO2
度29の各センサからの信号は検出回路30によ
つて後処理可能な信号レベルに調整される。その
後マルチプレクサ31、サンプルホールド回路3
2に送られた後A/D変換器33でデイジタル信
号に変換され、RAM34に格納される。一方操
作部35には装置の動作モードを設定するシーケ
ンススイツチの他、制御すべき物理量を設定する
デイジタルスイツチがある。また各状態量を表示
するため表示回路36およびデイジタル表示部3
7がある。またROM38は全体の制御を受け持
つプログラムが格納されており、それに基づいて
CPU39が各処理を制御する。他方I/O40
ではスイツチデータの入力や制御信号出力等が制
御される。I/Oからの制御出力信号はトランジ
スタ、ソリツド.ステート.リレー等から成るイ
ンターフエース部4に加えられ、血液ポンプ制御
回路42、静脈制御回路43、透析液ポンプ制御
回路44、ヒータ制御回路45、PH制御回路46
および不活性ガス流量制御回路47の各制御回路
を介してそれぞれ血液ポンプ1、静脈圧調整器
4、透析液ポンプ5、ヒータ9、ピンチバルブ2
0および流量制御弁14を駆動して各制御を行
う。 ところで透析器の過圧の制御は静脈圧または
透析液圧のいずれかを制御すれば実現でき、第1
図および第2図においては静脈圧調整器を用いて
静脈圧を制御している。静脈圧調整器としてはク
ランプヘツドにより静脈血液チユーブの圧閉度を
調節する方式を図示しているが、血液チユーブの
外側に管を設けてその外側管内圧を増減させる二
重管方式でもよい。前記の圧閉度の調節はモータ
の正・逆転および停によつてクランプヘツドをそ
れぞれ前進・後進おび停止させて行つている。 第3図に過圧の制御のマイクロコンピユータ
によるアルゴリズムのフローチヤートを示す。す
なわち、ステツプS1で静脈圧データa(mmHg)
を取り込み、ステツプS2で透析液圧データb
(mmHg)を取り込み、ステツプS3でc=a−b
を計算し、ステツプS4でCが負か否かを判断し、
負のときはステツプS5で静脈調整器のクランプヘ
ツドを前進させ静脈血液チユーブの圧閉度を増加
させる前進モードとして静脈圧を上げ、Cが負で
ないときはステツプS6がC{設定値d(mmHg)−
5}より小さいか否かを判断し、「小さい」なら
ば前記のステツプS5に進、「小さくない」ときは
ステツプS7でCがd+5より大きいか否か判断
し、「大きい」ときはステツプS8で静脈圧調整器
のクランプヘツドを後退させ静脈血液チユーブの
圧閉度を減少させる後退モードとして静脈圧を下
げ「大きくない」ときは静脈圧調整器のクランプ
ヘツドを停止させる停止モードとして静脈圧を現
状に保つ。 次に放散筒で除去されるCO2の量は放散筒内の
放散ガス中のCO2濃度と不活性ガス流量の積で求
まるので、この二つの量を検出しマイクロコンピ
ユータで演算処理してCO2除去流量としている。
このCO2除去流量を予め設定した値と比較し、設
定値と異なるときは患者の容態や治療条件に応じ
て体外循環血流量、透析液流量あるいは不活性ガ
ス流量を調節して制御する。例えば、患者の血圧
が低く体外循環血流量を少量しかとれない場合
は、透析液流量を多くして血液からのHCO3 -
よび溶存CO2の移動を促進させるとともに、透析
液のHCO3 -および溶存CO2濃度をより下げるた
めに不活性ガス流量を多くし放散筒内でCO2除去
を活発に行わせてCO2除去の効率を上げる。また
逆に、体外循環血流量を多くすることができる患
者の場合は、CO2除去効率を上げるために透析液
流量および不活性ガス流量を前例の場合のように
多くしなくてもよいので、そのように制御する。 第4図に効率良くCO2除去を行うためのマイク
ロコンピユータによる体外循環血流量、透析液流
量および不活性ガス流量の制御のフローチヤート
を示す。すなわち、ステツプS1で放散筒での放散
ガス中のCO2濃度データXを取り込み、ステツプ
S2で不活性ガス流量データyを取り込み、ステツ
プS3で体外循環血流量データを取り込み、ステツ
プS4で透析液流量データを取り込み、ステツプS5
でCO2除去流量z=x+yの演算を行い、ステツ
プS6でzが設定値uより小さいか否かを判断し、
「小さい」ならばステツプS7で体外循環血流量を
増加できるか否か判断し、「増加可能」のときは
ステツプS8で血液ポンプを制御してその流量を増
加させ、「増加不可能」のときはステツプS9で透
析液ポンプおよび流量制御弁を制御して透析液流
量および不活性ガス流量を増加させる。一方zが
uより「小さくない」ならばステツプS10でzが
uより大きいか否かを判断し「大きい」ときはス
テツプS11で体外循環血流量を減少できるか否か
判断し、「減少可能」ならばステツプS12で血液ポ
ンプを制御してその流量を減少させ、「減少不可
能」ならばステツプS13で透析液ポンプおよび流
量制御を制御して透析液流量および不活性ガス流
量を減少させる。他方ステツプS10で「大きくな
い」ときはステツプS14に進み現状維持とする。 また、放散筒で透析液から二酸化炭素成分を除
去するとそのPHが上昇する。その透析液中には炭
酸からCO2を放出する脱水反応を促進させる触媒
の炭酸脱水酵素(カーボニツク・アンヒドラー
ゼ)を調整してあるので、透析液のPHをこの酵素
の活性領域に制御する必要がある。そこで生体に
おけるPHの最適値7.4に近い値に調節するために
希塩酸溶液等のPH調節用緩衝液の添加量を制御す
る。 第5図に透析液のPH制御のフローチヤートを示
す。すなわち第5図においてステツプS1で透析液
PHデータを取り込み、ステツプS2でそれが設定値
以上か否かを判断し、「以上」のときステツプS3
でピンチバルブを開いてPH調節用緩衝液を添下
し、ステツプS2で「以上でない」ときは逆にステ
ツプS4でピンチバルブを閉じる。 更に、透析液温度の制御も同様に行い、第6図
にそのフローチヤートを示す。すなわち第6図に
おいて、ステツプS1で透析液温度データが取り込
まれ、これがステツプS2で設定値以上か否か判断
され、「以上」ならばステツプS3でヒータを断ち、
ステツプS2で「以上でない」ときはステツプS4
ヒータを入れる。 ところで前述のROMに格納されている制御プ
ログラムは大別してメインルーチンおよび割り込
みルーチンからなり、それぞれ第7図および第8
図にそのフローチヤートを示す。 第7図において、まずステツプS1でRAMのク
リア、I/O出力ポートのクリア等の初期設定を
行つた後、シーケンス設定スイツチの状態をI/
Oから入力し、ステツプS2〜S5で停止、電源投
入、消毒、準備および開始の各モードに判断し、
ステツプS6でS10で、例えば電源投入時にブザー
を作動させるとか、準備モードで透析液ポンプを
定速回転させ流量制御弁の開度を一定にする等の
予め定められた制御等のそれぞれのモードに対応
する処理を行う。また第1表に示すような準備お
よび開始モードにおけるアラーム処理も行う。
(Object of the Invention) The present invention relates to a liquid membrane type extracorporeal circulation type lung assist device that regenerates and circulates dialysate. For patients with malabsorption, membrane-type lung assist devices, which cause less damage to the blood, are being used as devices for extracorporeally circulating the blood of patients and removing carbon dioxide components from the blood during the extracorporeal circulation. Conventionally, in this type of device, the injected gas and blood flow through a polymer lung with good gas permeability, and the dissolved gas in the blood passes through the membrane.
Gas-liquid film types, excluding CO 2 , have been used. However, most of the carbon dioxide component to be removed is dissolved CO 2
Since dissolved CO2 is dissolved in the blood as HCO - 3 (bicarbonate ion) rather than as CO2, conventional devices that only remove dissolved CO2 were extremely inefficient. Therefore, recently, using a hemodialyzer for artificial kidneys, blood is passed through one side of the membrane and dialysate is passed through the other side, and dissolved CO2 and HCO3 in the blood are transferred to the dialysate, and these CO2 are removed from the dialysate. - Unexamined Japanese Patent Application Publication No. 1983-2017 - Regenerating and circulating dialysate by diffusing it out of the system as 2
19265 "Hemodialysis membrane oxygenator" has been proposed. However, the device disclosed in Japanese Patent Application Laid-Open No. 58-19265 has the following unresolved practical problems. In other words, water movement occurs across the membrane between the patient's blood and the dialysate based on the pressure difference, and water enters the blood and the blood becomes thinner, which can lead to various adverse effects such as destruction of blood cell membranes. be. Furthermore, since the CO 2 removal flow rate depends on several factors such as blood flow rate and dialysate flow rate, it is necessary to appropriately control these factors, but this is difficult with this device, and CO 2 removal cannot be performed efficiently. Furthermore, if the dialysate is used for a long period of time, it is not possible to maintain the dialysate temperature at an appropriate temperature, and it is difficult to confirm whether each operation and operating condition is normal, so careful monitoring by the operator is required, and the operator must perform appropriate operation. This imposes a significant burden on the operator, such as having to carry out procedures. The object of the present invention is to solve the above-mentioned problems in a liquid membrane type extracorporeal circulation type lung assist device that regenerates and circulates dialysate. (Structure of the Invention) The structure of the invention will be explained below based on the drawings. FIG. 1 shows an example of a piping system diagram of an apparatus according to the present invention. In FIG. 1, a patient's blood is sent to a dialyzer 2 by a blood pump 1, venous pressure and flow rate are measured at a drip chamber 3, and the blood is extracorporeally circulated through a venous pressure regulator 4. On the other hand, the dialysate is passed through a flow meter 6 to the dialyzer 2 by a dialysate pump 5.
The dialysate pressure is measured by the dialysate pressure measuring device 7 in the outlet flow path, and the dialysate pressure is measured by the dialysate pressure measuring device 7 at the outlet flow path, and the dialysate pressure is measured by the dialysate pressure measuring device 7 at the outlet flow path.
through which it is introduced into the dissipation tube 10 and circulated through the PH and dialysate temperature measurement 11. in the blood
HCO 3 - and dissolved CO 2 move to the dialysate in contact with the dialyzer 2 through the membrane, and the dialysate flows into the diffusion column 1.
0, HOC 3 - is converted to CO 2 by the catalytic action of carbonic anhydrase contained in the dialysate, and the pressure regulator 12, stop valve 13, flow control valve 14, and flow meter 15. Gas-liquid contact with inert gas 17 such as O 2 sent through check valve 16
Dissipated as CO2 . The CO 2 concentration in the emitted gas is
It is measured by a CO 2 concentration meter 18. Further, a buffer solution 19 for adjusting the pH of the dialysate can be added to the diffusion tube 10 via a pinch valve 20. Now, the blood pressure is controlled by the venous pressure regulator 4, and the blood pump 1 and the dialysate pump 5.
The rotation of the drive motor is monitored by monitoring the rotation of a disk with equally spaced holes attached to the rotating shaft of the drive motor using a photo sensor, and each flow rate control is controlled by changing the supply voltage to the drive motor. Do it under control. Dialysate temperature and PH are measured in the measurement section 1.
1, the temperature is controlled by a heater 9, and the pH is controlled by a pinch valve 20. The flow rate of the additive gas is monitored by a flow meter 15 such as a hot wire flow meter, and the flow rate is controlled by controlling the voltage supplied to the flow control valve 14 and adjusting its opening degree. The movement of water between the blood and the dialysate through the membrane of the dialyzer depends on the pressure difference between the blood and the dialysate, that is, the overpressure of the dialyzer. When the overpressure is positive, water is removed from the blood, and when it is negative, water enters the blood. Therefore, if water is to be removed from the blood depending on the patient's condition, the overpressure is set to a certain high value, and on the other hand, if water is not to be removed, the overpressure is controlled to around 0. Further, the amount of CO 2 removed by the diffusion tube 10 depends on the capacity of the dialyzer 2 and the diffusion tube, but also on the extracorporeal circulation blood flow rate, the dialysate flow rate, and the added gas flow rate. The larger each of these amounts is, the larger the CO 2 removal flow rate becomes. Therefore, in order to efficiently remove CO 2 under optimal conditions according to the patient's condition and to downsize the entire device, the extracorporeal circulation blood flow, dialysate flow rate, and inert gas flow rate are appropriately controlled. In this invention, these controls are realized using a microcomputer. FIG. 2 shows a block diagram of the control system in the apparatus of the present invention. In FIG. 2, extracorporeal circulation blood flow 21, venous pressure 22, dialysate flow rate 23, dialysate pressure 2
4. Signals from each sensor for patient temperature 25, dialysate pH 26, dialysate out 27, inert gas flow rate 28, and CO 2 concentration in the diffused gas 29 are brought to a signal level that can be post-processed by the detection circuit 30. be adjusted. After that, multiplexer 31, sample hold circuit 3
2, it is converted into a digital signal by the A/D converter 33 and stored in the RAM 34. On the other hand, the operation section 35 includes a sequence switch for setting the operating mode of the apparatus as well as a digital switch for setting the physical quantity to be controlled. In addition, a display circuit 36 and a digital display section 3 are used to display each state quantity.
There are 7. In addition, the ROM38 stores a program that is in charge of overall control, and based on this program,
A CPU 39 controls each process. The other I/O40
Input of switch data, output of control signals, etc. are controlled. The control output signal from the I/O is a transistor, solid. State. In addition to the interface section 4 consisting of relays, etc., there are a blood pump control circuit 42, a vein control circuit 43, a dialysate pump control circuit 44, a heater control circuit 45, and a PH control circuit 46.
and an inert gas flow rate control circuit 47 through the blood pump 1, venous pressure regulator 4, dialysate pump 5, heater 9, and pinch valve 2, respectively.
0 and the flow rate control valve 14 to perform each control. By the way, control of overpressure in a dialyzer can be achieved by controlling either venous pressure or dialysate pressure.
In this figure and FIG. 2, a venous pressure regulator is used to control venous pressure. As the venous pressure regulator, a method is shown in which the degree of pressure closure of the venous blood tube is adjusted using a clamp head, but a double-pipe method in which a tube is provided outside the blood tube to increase or decrease the pressure inside the tube may also be used. The above-mentioned adjustment of the degree of closure is carried out by moving the clamp head forward, backward, and stopping, respectively, by rotating the motor forward, reverse, and stopping. FIG. 3 shows a flowchart of an algorithm for controlling overpressure using a microcomputer. That is, in step S1 , venous pressure data a (mmHg)
Import the dialysate pressure data b in step S2 .
(mmHg) and step S3 c=a-b
is calculated, and in step S4 it is determined whether C is negative or not.
If it is negative, step S5 advances the clamp head of the venous regulator to increase the degree of pressure closure of the venous blood tube, increasing the venous pressure. (mmHg)−
5}, and if it is "small", proceed to step S5 , and if "not small", go to step S7 to judge whether C is larger than d+5, and if "large", proceed to step S5. In step S8 , the clamp head of the venous pressure regulator is retracted to reduce the degree of pressure occlusion of the venous blood tube as a retreat mode, which lowers the venous pressure, and when the venous pressure is not high, the stop mode stops the clamp head of the venous pressure regulator. Keep venous pressure current. Next, the amount of CO 2 removed by the diffusion tube is determined by the product of the CO 2 concentration in the diffused gas in the diffusion tube and the inert gas flow rate, so these two amounts are detected and processed by a microcomputer to eliminate CO 2. 2 removal flow rate.
This CO 2 removal flow rate is compared with a preset value, and if it differs from the set value, the extracorporeal circulation blood flow, dialysate flow rate, or inert gas flow rate is adjusted and controlled according to the patient's condition and treatment conditions. For example, if the patient's blood pressure is low and only a small amount of extracorporeal blood flow can be obtained, the dialysate flow rate is increased to promote the movement of HCO 3 - and dissolved CO 2 from the blood, and at the same time, the dialysate's HCO 3 - and In order to further reduce the dissolved CO 2 concentration, the inert gas flow rate is increased and CO 2 removal is actively carried out within the diffusion cylinder, thereby increasing the efficiency of CO 2 removal. Conversely, in the case of patients who can increase the extracorporeal circulation blood flow, the dialysate flow rate and inert gas flow rate do not need to be increased as in the previous case in order to increase the CO 2 removal efficiency. Control it like that. FIG. 4 shows a flowchart for controlling the extracorporeal circulation blood flow, dialysate flow rate, and inert gas flow rate using a microcomputer to efficiently remove CO 2 . That is, in step S1 , the CO 2 concentration data
Inert gas flow rate data y is acquired in S2 , extracorporeal circulation blood flow data is acquired in step S3 , dialysate flow rate data is acquired in step S4 , and dialysate flow rate data is acquired in step S5.
Calculate the CO 2 removal flow rate z = x + y in step S 6 , and determine whether z is smaller than the set value u.
If it is "small", it is determined in step S7 whether or not the extracorporeal circulation blood flow can be increased, and if it is "increasable", the blood pump is controlled to increase the flow rate in step S8 , and if it is determined that "increase is not possible". At step S9 , the dialysate pump and flow control valve are controlled to increase the dialysate flow rate and inert gas flow rate. On the other hand, if z is "not smaller" than u, it is determined in step S10 whether z is larger than u, and if it is "larger", it is determined in step S11 whether or not the extracorporeal circulation blood flow can be reduced, If possible, the blood pump is controlled to reduce its flow rate in step S12 ; if not, the dialysate pump and flow control are controlled to reduce the dialysate flow rate and inert gas flow rate in step S13 . reduce On the other hand, if it is determined in step S10 that it is not large, the process advances to step S14 and the current state is maintained. Additionally, when carbon dioxide components are removed from the dialysate using a diffusion cylinder, its pH increases. Carbonic anhydrase, a catalyst that promotes the dehydration reaction that releases CO 2 from carbonic acid, is contained in the dialysate, so it is necessary to control the pH of the dialysate to the active range of this enzyme. be. Therefore, in order to adjust the pH to a value close to the optimal value of 7.4 in living organisms, the amount of a pH adjustment buffer solution such as dilute hydrochloric acid solution added is controlled. FIG. 5 shows a flowchart of dialysate pH control. In other words, in step S1 in Fig. 5, the dialysate
Take in the PH data, determine whether it is greater than the set value in step S2 , and if it is "greater than", proceed to step S3.
Open the pinch valve and add the buffer solution for pH adjustment, and if it is "not above" in step S2 , close the pinch valve in step S4 . Furthermore, the dialysate temperature is controlled in the same manner, and a flow chart thereof is shown in FIG. In other words, in FIG. 6, dialysate temperature data is taken in in step S1 , and it is determined in step S2 whether or not it is greater than or equal to the set value, and if it is, the heater is turned off in step S3 .
If step S2 shows "not above", turn on the heater in step S4 . By the way, the control program stored in the ROM mentioned above consists of a main routine and an interrupt routine, which are shown in Figures 7 and 8, respectively.
The flowchart is shown in the figure. In Fig. 7, first, in step S1 , initial settings such as clearing the RAM and clearing the I/O output port are performed, and then the state of the sequence setting switch is changed to the I/O output port.
Input from O, and in steps S 2 to S 5 determine the mode of stop, power on, disinfection, preparation, and start.
In step S6 and step S10 , each predetermined control such as activating a buzzer when the power is turned on, rotating the dialysate pump at a constant speed in the preparation mode, and keeping the opening degree of the flow control valve constant, etc. Perform processing corresponding to the mode. It also performs alarm processing in the preparation and start modes as shown in Table 1.

【表】【table】

【表】 また第8図に示す割り込みルーチンでは、まず
ステツプS1でメインルーチンの割り込が生ずる直
前のCPUのレジスタの状態を退避保持した後、
ステツプS2で他の割り込み発生を禁止する。次に
ステツプS3で各設定スイツチのデータを取り込ん
だ後、ステツプS4で各センサ、検出回路からのア
ナログ信号をA/D変換する。この後ステツプS5
〜S8で各モードを判別し、ステツプS9〜S11でそ
れぞれのモードにおける処理を行う。すなわちス
テツプS9の開始モードでは各表示を行い、警報の
有無をチエツクし、静脈圧調整器、血液および透
析液ポンプ、ヒータ、ピンチバルブ、および流量
制御弁の制御を行う。同様にステツプS10の停止
モードでは各表示を行い、ステツプS11の準備モ
ードで各表示を行い警報の有無をチエツクし、静
脈圧調整器およびヒータの制御を行う。これらの
処理を行つた後、ステツプS12で先に退避した
CPUのレジスタの内容を復帰させ、ステツプS13
で割り込み禁止を解除した後メインルーチンの割
り込みの発生した次の命令の番地へ戻る。この割
り込みルーチンはタイマの役割も担うため0.5秒
とか1秒毎等定期的に発生する様になつており、
先に第3図〜第6図に示し述べた各制御ルーチン
はこの割り込みルーチンに含まれる。 以上詳述した各モードにおける入出力状態を第
2表に示す。
[Table] In the interrupt routine shown in Figure 8, first, in step S1 , the state of the CPU registers immediately before the main routine interrupt is saved and held, and then
In step S2 , other interrupt generation is prohibited. Next, in step S3 , data of each setting switch is taken in, and in step S4 , analog signals from each sensor and detection circuit are A/D converted. After this step S 5
Each mode is determined in steps S9 to S8 , and processing in each mode is performed in steps S9 to S11 . That is, in the start mode of step S9 , various displays are performed, the presence or absence of an alarm is checked, and the venous pressure regulator, blood and dialysate pump, heater, pinch valve, and flow control valve are controlled. Similarly, each display is performed in the stop mode of step S10 , and each display is performed in the preparation mode of step S11 , the presence or absence of an alarm is checked, and the venous pressure regulator and heater are controlled. After performing these steps, proceed to step S12 .
Restore the contents of the CPU register and proceed to step S13
After disabling interrupts with , return to the address of the next instruction where the main routine interrupt occurred. This interrupt routine also plays the role of a timer, so it occurs periodically, such as every 0.5 seconds or every 1 second.
Each of the control routines shown and described above in FIGS. 3 to 6 is included in this interrupt routine. Table 2 shows the input/output status in each mode detailed above.

【表】【table】

【表】 (実験例) 第1図に示す装置で透析器には膜面積2.5m2
セルロースホローフアイバで成るものを用い、放
散筒には一辺13cm、高さ20cmの気筒方式のものを
用いて実験を行つた。代用血液として一般の透析
液に炭酸水素イオンを加えた重炭酸イオンの豊富
な液を用い、一方透析液には一般の透析液1.6
に炭酸脱水酵素(カーボニツク・アンヒドラー
ゼ)を16mg添加したものを用いた。また、PH調節
用緩衝液には0.5規定の塩酸溶液を用い、不活性
ガスは100%O2を用いた。過圧、CO2除去流量
および透析液PHをそれぞれ0mmHg、50ml/min
および7.4に設定した。 このとき、体外循環血流量、透析液流量および
不活性ガス流量は大約それぞれ200ml/min、500
ml/minおよび20/minであり、過圧、CO2
除去流量および透析液PHはそれぞれ0〜
5mmHg、30〜70ml/minおよび7.2〜7.5の範囲に
制御された。 この実験おける透析器の入口および出口部での
血液および透析液のCO2分圧とHCO3 -濃度なら
びに放散筒からのCO2除去流量のデータを第3表
に例示する。
[Table] (Experiment example) In the apparatus shown in Figure 1, the dialyzer was made of cellulose hollow fiber with a membrane area of 2.5 m2 , and the dissipation cylinder was a cylinder type with a side of 13 cm and a height of 20 cm. I conducted an experiment. As a blood substitute, a bicarbonate ion-rich solution obtained by adding bicarbonate ions to a general dialysate was used, while the dialysate was a standard dialysate with 1.6
was added with 16 mg of carbonic anhydrase. Furthermore, a 0.5N hydrochloric acid solution was used as the pH adjustment buffer, and 100% O 2 was used as the inert gas. Overpressure, CO 2 removal flow rate and dialysate PH were 0 mmHg and 50 ml/min, respectively.
and set it to 7.4. At this time, the extracorporeal circulation blood flow, dialysate flow rate, and inert gas flow rate are approximately 200 ml/min and 500 ml/min, respectively.
ml/min and 20/min, overpressure, CO 2
Removal flow rate and dialysate pH are each 0~
It was controlled within the range of 5mmHg, 30-70ml/min and 7.2-7.5. Table 3 illustrates data on the CO 2 partial pressure and HCO 3 - concentration of the blood and dialysate at the inlet and outlet of the dialyzer in this experiment, as well as the CO 2 removal flow rate from the diffusion cylinder.

【表】 (臨床例) 臨床は前例と同じ装置で行つた。患者の臨床前
の血液のCO2分圧は66.8mmHg、HCO3 -濃度は
39.1mEq/で、PHは7.390と算出された。透析
液には一般の透析液1.6に炭酸脱水酵素(カー
ボニツク・アンヒドラーゼ)20mgを添加したもの
を、PH調節用緩衝液には0.5規定塩酸溶液を、不
活性ガスには100%O2をそれぞれ用いた。そして
過圧、CO2除去流量および透析液PHをそれぞれ
0mmHg、20ml/minおよび7.4に設定した。 このとき、体外循環血流量は開始時30ml/
min、最大80ml/min、平均で約50ml/minで、
透析液流量および不活性ガス流量は大約それぞれ
500ml/minおよび25/minであつた。そして
過圧および透析液PHはそれぞれ0〜5mmHgお
よび7.2〜7.6に制御され、CO2除去流量は最大
24.3ml/minであつた。 1時間の臨床治療で患者の血液のCO2分圧おび
HCO3 -濃度はそれぞれ43.6mmHgおよび
26.0mEq/に減少した。そしてこのときの血液
のPHは7.398と算出され理想値に極めて近い値に
なつた。 (発明の効果) 以上詳述したように、この発明によれば、透析
液を再生して循環使用する液々膜型の体外循環型
肺補助装置おいて、静脈圧ならびに体外循環血流
量、透析液流量および不活性ガス流量を患者等の
状態に応じた最適状態に制御することにより過
圧ならびにCO2除去流量を制御できるとともに、
透析液温度・PHも精度良く制御することができ、
安全かつ効率的装置の運転操作管理を極めて容易
にし、病院における操作者ならびに患者の負担を
著しく軽減することができる。
[Table] (Clinical example) The clinical trial was conducted using the same equipment as in the previous example. The patient's preclinical blood CO2 partial pressure was 66.8 mmHg, and the HCO3 - concentration was
PH was calculated to be 7.390 at 39.1 mEq/. The dialysate used was a standard dialysate 1.6 with 20mg of carbonic anhydrase added, the pH adjustment buffer was a 0.5N hydrochloric acid solution, and the inert gas was 100% O2. there was. and overpressure, CO2 removal flow rate and dialysate PH, respectively.
It was set at 0mmHg, 20ml/min and 7.4. At this time, the extracorporeal circulation blood flow is 30ml/
min, maximum 80ml/min, average approximately 50ml/min,
Dialysate flow rate and inert gas flow rate are approximately
They were 500ml/min and 25/min. And the overpressure and dialysate PH are controlled to 0-5mmHg and 7.2-7.6, respectively, and the CO2 removal flow rate is maximum
It was 24.3ml/min. After one hour of clinical treatment, the partial pressure of CO2 in the patient's blood and
HCO 3 - concentration is 43.6 mmHg and
It decreased to 26.0mEq/. The blood pH at this time was calculated to be 7.398, which was extremely close to the ideal value. (Effects of the Invention) As described in detail above, according to the present invention, in a liquid membrane type extracorporeal circulation pulmonary assist device that regenerates and circulates dialysate, venous pressure, extracorporeal circulation blood flow, By controlling the liquid flow rate and inert gas flow rate to the optimal state according to the condition of the patient, etc., it is possible to control overpressure and CO 2 removal flow rate.
Dialysate temperature and PH can also be controlled with precision.
Safe and efficient operation and management of the device can be extremely facilitated, and the burden on operators and patients in hospitals can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による装置の配管系統図、第
2図はその制御系のブロツク図、第3図は過圧
の制御のフローチヤート、第4図はCO2除去流量
の設定値に呼応した体外循環血流量、透析液流量
および不活性ガス流量の制御のフローチヤート、
第5図おび第6図はそれぞれ透析液PHおよび温度
の制御のフローチヤート、第7図および第8図は
それぞれ制御プログラムのメインルーチンおよび
割り込みルーチンのフローチヤートである。 1……血液ポンプ、2……透析器、3……ドリ
ツプチヤンバ、4……静脈圧調整器、5……透析
液ポンプ、6……流量計(透析液)、10……放
散筒、14……流量制御弁、15……流量計(不
活性ガス)、17……不活性ガス、18……CO2
濃度計、34……RAM、38……ROM、39
……CPU、40……I/O、41……インター
フエース部、42……血液ポンプ制御回路、43
……静脈圧制御回路、44……透析液ポンプ制御
回路、47……不活性ガス流量制御回路。
Fig. 1 is a piping system diagram of the device according to the present invention, Fig. 2 is a block diagram of its control system, Fig. 3 is a flowchart of overpressure control, and Fig. 4 corresponds to the set value of the CO 2 removal flow rate. Flow chart for controlling extracorporeal circulation blood flow, dialysate flow rate and inert gas flow rate,
5 and 6 are flowcharts for controlling the dialysate PH and temperature, respectively, and FIGS. 7 and 8 are flowcharts for the main routine and interrupt routine of the control program, respectively. 1... Blood pump, 2... Dialyzer, 3... Drip chamber, 4... Venous pressure regulator, 5... Dialysate pump, 6... Flowmeter (dialysate), 10... Diffusion barrel, 14... ...Flow rate control valve, 15...Flow meter (inert gas), 17...Inert gas, 18...CO 2
Densitometer, 34...RAM, 38...ROM, 39
... CPU, 40 ... I/O, 41 ... Interface section, 42 ... Blood pump control circuit, 43
... venous pressure control circuit, 44 ... dialysate pump control circuit, 47 ... inert gas flow rate control circuit.

Claims (1)

【特許請求の範囲】 1 患者の体外循環血液と透析液を透析器内で膜
を介して接触させ、血液中の二酸化炭素成分を透
析液中に移動させ、これを放散筒内で不活性ガス
と気液接触させてCO2として放散させて除去し、
透析液を再生して循環使用する肺補助装置におい
て、 透析器のろ過圧を制御する手段と、 前記手段によりろ過圧を制御した状態で、患者
の血液から移動したCO2成分を放散筒内で除去す
る際のCO2除去流量を制御する手段と、 を備えたことを特徴とする体外循環型肺補助装
置。
[Claims] 1. The patient's extracorporeally circulating blood and dialysate are brought into contact with each other through a membrane in the dialyzer, and the carbon dioxide component in the blood is moved into the dialysate, and this is transferred to the dialysate using an inert gas in a diffusion tube. It is removed by bringing it into gas-liquid contact with and dissipating it as CO 2 .
A pulmonary auxiliary device that regenerates and circulates dialysate includes a means for controlling the filtration pressure of the dialyzer, and a means for controlling the filtration pressure by the means, and for removing CO 2 components transferred from the patient's blood in a diffusion cylinder. An extracorporeal circulation type lung support device, comprising: means for controlling the flow rate of CO 2 removal during removal;
JP59110596A 1984-05-28 1984-05-28 External recirculation type lung auxiliary apparatus Granted JPS60253457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110596A JPS60253457A (en) 1984-05-28 1984-05-28 External recirculation type lung auxiliary apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110596A JPS60253457A (en) 1984-05-28 1984-05-28 External recirculation type lung auxiliary apparatus

Publications (2)

Publication Number Publication Date
JPS60253457A JPS60253457A (en) 1985-12-14
JPH0463707B2 true JPH0463707B2 (en) 1992-10-12

Family

ID=14539860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110596A Granted JPS60253457A (en) 1984-05-28 1984-05-28 External recirculation type lung auxiliary apparatus

Country Status (1)

Country Link
JP (1) JPS60253457A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443233Y2 (en) * 1987-12-18 1992-10-13
WO2014049643A1 (en) * 2012-09-26 2014-04-03 テルモ株式会社 Controller for life support device and method for controlling same
WO2020223587A1 (en) * 2019-05-02 2020-11-05 Transonic Systems, Inc. Calculating cardiac output of a patient undergoing veno-venous extracorporeal blood oxygenation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867423A (en) * 1971-12-14 1973-09-14
JPS5532384A (en) * 1978-08-30 1980-03-07 Nippon Electric Co Temperature control circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867423A (en) * 1971-12-14 1973-09-14
JPS5532384A (en) * 1978-08-30 1980-03-07 Nippon Electric Co Temperature control circuit

Also Published As

Publication number Publication date
JPS60253457A (en) 1985-12-14

Similar Documents

Publication Publication Date Title
JP5587891B2 (en) Device for blood treatment outside the body and method for managing said device
FI60502C (en) EXHAUST CONTAINER AND EXHAUST
US7540851B2 (en) Method to control blood and filtrate flowing through an extracorporeal device
CA1042747A (en) Cardiopulmonary bypass system
US6537240B2 (en) Method for determining the recirculation of blood in a vascular access and a system for implementing same
US6284141B1 (en) Method and system for preventing intradialytic symptomatology
US8328749B2 (en) Blood purification apparatus and method for calculating a recirculation rate for the blood purification apparatus
JP4225197B2 (en) Hemodialysis machine
JP2000107284A (en) Dialysis apparatus and washing priming method
EP1471957B1 (en) Apparatus and its software for determining blood-flow during dialysis
JP2001087379A (en) Safety device for blood treatment apparatus and method of enhancement of safety of blood treatment apparatus
JP4225196B2 (en) Hemodialysis machine with simple control means
JPH0463707B2 (en)
JP4158334B2 (en) Blood purification equipment
CA2456091A1 (en) Blood purification apparatus for elevating purification efficiency
JPH06114102A (en) Blood dialysis and filtration device
JPH0686810A (en) Hemocatharsis device
JP3994436B2 (en) Dialysis machine
JPH0628131Y2 (en) Extracorporeal circulation type lung assist device
JPH05204Y2 (en)
JP2001000541A (en) Improved blood purifying apparatus of precipitation control accuracy
JPH052188Y2 (en)
JP2002165876A (en) Hemocatharsis apparatus
JPH06233813A (en) Hemocatharsis system
JPH0443233Y2 (en)