JPH0463569A - Pretreatment of raw material for brewing containing vegetable protein - Google Patents

Pretreatment of raw material for brewing containing vegetable protein

Info

Publication number
JPH0463569A
JPH0463569A JP2173114A JP17311490A JPH0463569A JP H0463569 A JPH0463569 A JP H0463569A JP 2173114 A JP2173114 A JP 2173114A JP 17311490 A JP17311490 A JP 17311490A JP H0463569 A JPH0463569 A JP H0463569A
Authority
JP
Japan
Prior art keywords
raw material
protein
raw materials
containing vegetable
brewing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2173114A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakagawa
和彦 中川
Kiyohiko Sawa
沢 清彦
Mitsuru Fukuda
満 福田
Taku Kato
卓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2173114A priority Critical patent/JPH0463569A/en
Publication of JPH0463569A publication Critical patent/JPH0463569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soy Sauces And Products Related Thereto (AREA)

Abstract

PURPOSE:To make the title raw material in a short time into an optimum state liable to receive enzymatic action with enzyme preparation, KOJI mold, etc., by feeding a raw material for brewing containing vegetable protein to a kneading extruder and blending and extruding by a specific method. CONSTITUTION:First, a raw material for brewing containing vegetable protein is fed to a kneading extruder and then blended with water. Then the blend is heated to 60-120 deg.C to gelatinize starch. Successively, the raw material is kneaded while pressurizing and heating, bond of protein is partially cleft and then extruded from a die. The heating temperature of cleavage of protein is preferably 100-160 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、味噌や醤油等の醸造食品を製造する際におけ
る原料の前処理方法に関し、特に植物性蛋白質を十分に
含む醸造用原料を、醸造にとって最適な形態とする為の
前処理方法に関するものである。更に詳細には前記前処
理を短時間のうちに遂行できる方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for pre-treating raw materials when producing brewed foods such as miso and soy sauce, and in particular, the present invention relates to a method for pre-treating raw materials for producing brewed foods such as miso and soy sauce. It relates to a pretreatment method to obtain the optimum form for brewing. More specifically, the present invention relates to a method that can perform the preprocessing in a short period of time.

[従来の技術] 味噌や醤油等の醸造品は、食生活に欠くことのできない
調味食品であり、古くから様々なものが製造されている
。これらの醸造品は大豆、小麦、米等からなる原料に、
こうじ菌を作用させて熟成させ、この熟成期間中に蛋白
質をアミノ酸に、でんぷんをグルコースに分解させるも
のである。
[Prior Art] Brewed products such as miso and soy sauce are seasoning foods indispensable to the diet, and various products have been manufactured since ancient times. These brewed products are made from raw materials such as soybeans, wheat, and rice.
It is ripened by the action of Koji mold, and during this ripening period, proteins are broken down into amino acids and starch into glucose.

第2図は醤油の一般的な製造手順を示すフロー図である
。醤油製造の際の主原料は大豆であるが、この大豆は回
転式加圧蒸煮缶で加熱処理され、その後他の原料と共に
種こうじが添加され、こうじ室を経て、熟成室でほぼ1
2力月熟成される。
FIG. 2 is a flow diagram showing a general procedure for manufacturing soy sauce. The main raw material for soy sauce production is soybeans, which are heat-treated in a rotary pressure steamer, then koji seeds are added to them along with other raw materials, passed through a koji chamber, and then heated to almost 100% in a ripening chamber.
Aged for two months.

第3図は味噌の一般的な製造手順を示すクロー図である
。原料である大豆、米、小麦等は、加圧蒸煮機で加熱処
理され、その後種こうじが添加され、こうじ室を経て、
熟成室で熟成される。このと館の熟成期間は味噌の種類
にもよるが、例えば大豆と塩で製造される「ハエみそ」
の場合はほぼ3年程度である。
FIG. 3 is a claw diagram showing a general procedure for producing miso. The raw materials, such as soybeans, rice, and wheat, are heat-treated in a pressure steamer, then koji seeds are added, and they pass through a koji chamber.
Aged in a maturing room. The aging period at Konoto-kan depends on the type of miso, but for example, ``hae miso'' made from soybeans and salt
In this case, it takes approximately 3 years.

上述の如く、fi1m品製造における熟成期間は長いの
が一般的であり、種こうじを添加してから少なくとも1
年、長いときには2〜3年を要するのが一般的である。
As mentioned above, the maturation period in the production of fi1m products is generally long, and at least one period after the addition of seed koji.
In some cases, it usually takes 2 to 3 years.

そこで熟成期間をできるだけ短縮するという観点から、
こうじ菌の他に酵素製剤を使用する技術も提案されてい
る。即ち、酵素製剤を用いて蛋白質やでんぷんを分解し
、これまでの熟成期間の大半(7〜8割程度)を数時間
乃至1日程度で完了し、残りの熟成期間をこうじ菌によ
って十分に熟成させ全体として熟成期間の短縮化を図る
ものである。
Therefore, from the perspective of shortening the ripening period as much as possible,
Techniques using enzyme preparations in addition to Koji molds have also been proposed. In other words, enzyme preparations are used to decompose proteins and starches, and most of the conventional ripening period (about 70 to 80%) is completed in a few hours to a day, and the remaining ripening period is fully ripened using Koji bacteria. This aims to shorten the aging period as a whole.

[発明が解決しようとする課題] しかしながら酵素製剤を用いて熟成期間の短縮化を図る
にしても、該酵素製剤が醸造用原料に有効に作用する為
には、該醸造用原料が酵素製剤の作用を受は易い状態に
されていることが必要である。
[Problem to be solved by the invention] However, even if an enzyme preparation is used to shorten the ripening period, in order for the enzyme preparation to act effectively on the brewing raw material, it is necessary for the brewing raw material to contain the enzyme preparation. It is necessary to be in a state where it is easy to receive the action.

こうした観点から本発明者らは、熟成工程に至るまでの
前処理による醸造用原料の状態について検討したところ
、これまでの粉砕・加圧蒸煮による前処理では醸造用原
料はこうじ菌または酵素製剤の酵素作用を受は易い状態
までに至っていないことが分かった。例えばでんぷんは
前処理によって均一にα化させ、アミラーゼ作用を受け
やすい状態にする必要があるが、これまでの前処理では
でんぷんの表面のみがα化するに止まり、中心部までは
水分が通らずα化していない部分が残っていた。一方正
白質では、立体構造を形成している一H−〇−結合や−
5−S−結合を前処理によって切断し酵素作用を受けや
すい状態(通常−成度性と呼ばれる)にまでほぐしてや
る必要があるが、これまでの粉砕・加圧蒸煮による前処
理では酵素を作用させても分解率は50%程度と低く、
前処理によるほぐし効果が不十分であったと思われる。
From this perspective, the present inventors investigated the condition of brewing raw materials through pre-treatment up to the ripening process, and found that in the conventional pre-treatments by crushing and pressure steaming, brewing raw materials were treated with Koji bacteria or enzyme preparations. It was found that the cells had not reached a state where they were easily susceptible to enzyme action. For example, starch needs to be uniformly gelatinized through pretreatment to make it susceptible to amylase action, but with conventional pretreatments, only the surface of the starch is gelatinized, and water cannot penetrate to the center. There remained a portion that had not been αized. On the other hand, in the normal white matter, the -H-〇- bonds and -
It is necessary to cleave the 5-S-bond through pretreatment to loosen it to a state where it is susceptible to enzyme action (usually referred to as adult), but conventional pretreatments such as crushing and pressure steaming have not been able to remove the enzyme. Even when activated, the decomposition rate is low at around 50%.
It seems that the loosening effect of the pretreatment was insufficient.

こうしたことがら蒸煮条件(温度や時間)を過酷にして
原料を処理することも考えられるが、でんぷんや蛋白質
の褐変等が生じ、かえって酵素作用を受けにくい形態に
してしまうという不都合を伴う。
For these reasons, it is conceivable to process the raw materials by making the steaming conditions (temperature and time) harsher, but this has the disadvantage of causing browning of starch and proteins, making them less susceptible to enzyme action.

本発明はこうした状況のもとになされたものであって、
その目的は、味噌や醤油等の原料となる、例えば大豆の
様な植物性蛋白質含有物質をこうじ菌や酵素製剤等によ
る酵素作用を受けやすし)最適な形態にする為の前処理
方法を提供することにある。
The present invention was made under these circumstances, and
The purpose is to provide a pretreatment method for making vegetable protein-containing substances such as soybeans, which are raw materials for miso and soy sauce, into an optimal form (which is susceptible to enzyme action by Koji molds and enzyme preparations). There is a particular thing.

[課題を解決するための手段] 上記目的を達成し得た本発明とは、植物性蛋白質を含む
醸造用原料な混練押出機に投入し、下言己(I)〜(I
II )の工程を含んで混練押出しする点に要旨を有す
る、植物性蛋白質を含む醸造用原料の前処理方法である
[Means for Solving the Problems] The present invention, which has achieved the above object, is based on the present invention, in which a brewing raw material containing vegetable protein is put into a kneading extruder, and the following words (I) to (I)
This is a method for pre-treating brewing raw materials containing vegetable protein, which is characterized in that it includes the step II) and is kneaded and extruded.

(1)醸造用原料に水を添加する工程、(II)60〜
120℃に加熱してでん諸−んをα化する工程、 (III )加圧・加熱下で混練して蛋白質の結合を部
分的に切断する工程。
(1) Step of adding water to brewing raw materials, (II) 60~
(III) a step of kneading under pressure and heat to partially cleave protein bonds;

[作用] 本発明は上述の如く構成されるが、要するにでんぷんの
α化および蛋白質の一次変性の夫々に応じて最適な条件
(温度、圧力、水分等)を設定してやり、押出機によっ
て適度な剪断力を与えつつ混練してやれば、醸造品の前
処理物として最適な形態にすることができ、熟成工程の
効率化が達成されることを見出し、本発明を完成した。
[Function] The present invention is constructed as described above, but in short, optimal conditions (temperature, pressure, moisture, etc.) are set depending on the gelatinization of starch and the primary denaturation of proteins, and moderate shear is applied by an extruder. The present invention was completed based on the discovery that by kneading the product while applying force, it can be made into an optimal form as a pre-treated product for brewed products, and the aging process can be made more efficient.

以下各工程に沿いつつ本発明の作用効果について説明す
る。
The effects of the present invention will be explained below along with each step.

まず醸造用原料には、押出機による混練を容易にする為
の水を添加してやる必要がある。このと咎の水添加量は
、あまり多量となると押出機による混練効果が低減する
ことから、できるだけ少量にしてやる必要があり、例え
ば原料10に対して水2程度である。またこのときの水
の添加時期については特に限定するものではないが、予
め水を添加した原料をフィーダー(後記第1図参照)か
ら押出機に投入してもよいし、原料を押出機に投入して
から次の工程に至るまでの適当な時期に添加してもよい
。一方目的とする醸造品によっては多量の水を添加して
前処理物とする必要がある。
First, it is necessary to add water to the brewing raw materials to facilitate kneading using an extruder. The amount of water added to the mixture needs to be as small as possible, for example, about 2 parts of water per 10 parts of the raw material, since the kneading effect by the extruder will be reduced if the amount is too large. The timing of adding water at this time is not particularly limited, but the raw material to which water has been added may be fed into the extruder from a feeder (see Figure 1 below), or the raw material may be fed into the extruder. It may be added at an appropriate time after this step and before the next step. On the other hand, depending on the desired brewed product, it is necessary to add a large amount of water to the pretreated product.

例えば醤油製造原料の前処理物も調製する場合には、比
較約5fU(例えば原料10に対して水90)の水添加
を必要とするが、この場合には原料の混練がほぼ完了す
る後半に水を添加し、水と原料を適度に混練してから前
処理物とする様にすればよい。尚味噌を製造するための
原料を前処理する場合は、最初に添加する少量の水だけ
で十分であり、この場合は混練後半に水を添加する必要
はない。
For example, when preparing a pretreated raw material for soy sauce production, it is necessary to add approximately 5 fU of water (for example, 90 parts water to 10 parts raw material), but in this case, in the second half when the raw materials are almost kneaded, Water may be added and the water and raw materials may be kneaded appropriately to form a pretreated product. When pretreating raw materials for producing miso, it is sufficient to add only a small amount of water at the beginning, and in this case, there is no need to add water in the latter half of kneading.

押出機に投入された原料は適度な混練作用を受けた後、
でんぷんをα化する工程に入る。この工程では、押出機
のスクリューによって原料が適度な大きさまで粉砕され
ながら、60〜120℃程度に加熱されてでんぷんのα
化がほぼ完了し、アミラーゼの作用を受は易い状態とな
る。尚このときの温度が60℃未満では、α化が不十分
となり、また120℃を超えるとでんぷんの褐変が生じ
る。
After the raw materials put into the extruder undergo moderate kneading action,
The process begins to alphanize the starch. In this process, the raw material is pulverized to an appropriate size by the extruder screw, and heated to about 60 to 120 degrees Celsius to form starch.
oxidation is almost complete, and it is now in a state where it is easily susceptible to the action of amylase. Note that if the temperature at this time is less than 60°C, gelatinization will be insufficient, and if it exceeds 120°C, browning of the starch will occur.

次に、加圧・加熱下に混練して蛋白質の結合を部分的に
切断する工程に入る。この工程によって、−5−S−結
合や−H−0−結合等の蛋白質の立体構造を形成する結
合が切断され、この切断によって三次元的な糸玉状態が
ほぐされると共に、更にペプチド結合の一部が切断され
る。この様な状態になった蛋白質は化学的にはオリゴペ
プチドであり、且つ三次元的な複雑構造を呈していない
ので、プロテアーゼの作用を受は易くなり、例えば2時
間程度で酵素によってペプチド結合の80%以上が分解
されるまでに至る。この工程においては、少なくとも大
気圧以上に加圧する必要があるが、その手段としては例
えば押出機のシリンダー中に逆送り部(逆スクリューに
よって達成される)を設けることによって達成される(
後記実施例参照)。またこのときの加熱は押出機のシリ
ンダーを外部から加熱する構成を作用すればよいが、こ
のときの温度は蛋白質の二次変性が生じない温度以下と
する必要があり、好ましくは100〜160℃程度であ
る。尚でんぷんはこれまでの工程で十分α化されており
、上記程度の温度であってもでんぷんの褐変は生じない
Next, the mixture is kneaded under pressure and heat to partially cleave protein bonds. Through this step, the bonds that form the three-dimensional structure of the protein, such as -5-S- bonds and -H-0- bonds, are cleaved, and this cleavage loosens the three-dimensional string ball state and further cleaves peptide bonds. Some parts are cut off. Proteins in this state are chemically oligopeptides and do not have a three-dimensional complex structure, so they are easily susceptible to the action of proteases, and the peptide bonds can be broken down by enzymes within about 2 hours, for example. It reaches the point where more than 80% is decomposed. In this process, it is necessary to pressurize at least atmospheric pressure or higher, which can be achieved, for example, by providing a reverse feed section (achieved by a reverse screw) in the cylinder of the extruder.
(See Examples below). The heating at this time can be done by heating the cylinder of the extruder from the outside, but the temperature at this time needs to be below the temperature at which secondary denaturation of the protein does not occur, preferably 100 to 160°C. That's about it. Note that the starch has been sufficiently pregelatinized in the previous steps, and browning of the starch does not occur even at the above-mentioned temperature.

尚本発明で用いる混練押出機は、シャフトが1軸または
2軸更に必要であれば3軸のいずれでも採用できるが、
粉砕、混練効率等を考慮すると2軸であるのが好ましい
。またこの混練押出機のタイプは、連続式またはバッチ
式を問わない。
The kneading extruder used in the present invention may have one or two shafts, or if necessary, three shafts.
In consideration of pulverization, kneading efficiency, etc., it is preferable to use two screws. Further, the type of this kneading extruder does not matter whether it is a continuous type or a batch type.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples are not intended to limit the present invention.
Any design changes for the purposes described below are included within the technical scope of the present invention.

[実施例] 第1図は本発明を実施する為に構成される押出機の一例
を示す概略説明図であり、図中1はモータ、2は減速機
、3は駆動歯車箱、4はフィーダ、5は投入口、6はシ
ャフト、7はシリンダ。
[Example] Fig. 1 is a schematic explanatory diagram showing an example of an extruder configured to carry out the present invention, in which 1 is a motor, 2 is a speed reducer, 3 is a drive gear box, and 4 is a feeder. , 5 is the input port, 6 is the shaft, and 7 is the cylinder.

8はスクリュー、9はダイを夫々示す。尚第1図には表
われていないが、図に示した押出機はシャフト6が2太
平行に配置された2軸型押出機であり、夫々のシャフト
6.6には各種のスクリュー8が嵌着されている。また
シリンダ7は4個のバレル10a〜10dからなり、ス
クリュー8の組合せによって各バレル内で作用の異なる
4つの領域HC,C+〜C3を形成する。HCの領域は
、■原料の投入、■水の添加、および■原料を大まかに
砕く、等の機能を行なう領域である。C,領域はでんぷ
んのα化を行なう領域であり、C2゜C3領域は蛋白質
の一次変性(場合によって必要に応じて水の補給)を行
なう領域である。
8 represents a screw, and 9 represents a die. Although not shown in FIG. 1, the extruder shown in the figure is a twin-screw extruder in which two shafts 6 are arranged parallel to each other, and each shaft 6.6 is equipped with various screws 8. It is fitted. Further, the cylinder 7 is composed of four barrels 10a to 10d, and the combination of the screws 8 forms four regions HC, C+ to C3 having different effects within each barrel. The HC area is an area for performing functions such as (1) charging raw materials, (2) adding water, and (2) roughly crushing raw materials. The C and C regions are regions for gelatinization of starch, and the C2 and C3 regions are for primary denaturation of proteins (supplementation of water as needed).

本発明者らは、第1図に示した2軸押用機を使用し、醤
油製造用原料としての脱脂大豆粉を用いて前処理を行な
った。このときの条件は下記第1表に示す通りであり、
またシリンダ径:50mmφ、膨化ダイホルダの径: 
7.5 a++oφ(2枚使用)とした、また押出機に
おけるスクリュー8の組合せ構成は、第4図(a)に示
す各種タイプのスクリューを用い、第4図(b)に示す
組合せを採用し、同方向回転とした。尚第1表中、実験
No、 6のものは、原料大豆を水に30分間浸漬し、
該原料を押出機の投入口に手投入したものである。
The present inventors used the twin-screw press shown in FIG. 1 to perform pretreatment using defatted soybean flour as a raw material for soy sauce production. The conditions at this time are as shown in Table 1 below,
Also, cylinder diameter: 50mmφ, expansion die holder diameter:
7.5 a++oφ (two screws are used), and the combination configuration of the screw 8 in the extruder uses various types of screws shown in FIG. 4(a) and adopts the combination shown in FIG. 4(b). , rotation in the same direction. In Table 1, in experiment No. 6, raw soybeans were soaked in water for 30 minutes.
The raw material was manually charged into the input port of the extruder.

第4図(b)に示したスクリュー組合せであれば、C2
ゾーンにおける台形リバーススクリュー(R12,5−
50)の上流側で圧力がかかり、蛋白質は加熱・圧力下
で混練されることになる。また該台形リバーススクリュ
ーには、第4図(a) に示した様に溝20が形成され
ており、原料はこの溝に沿って徐々に出口側(ダイ側)
に送られることになる。
If the screw combination shown in Fig. 4(b) is used, C2
Trapezoidal reverse screw in zone (R12,5-
Pressure is applied on the upstream side of 50), and the protein is kneaded under heat and pressure. In addition, a groove 20 is formed in the trapezoidal reverse screw as shown in Fig. 4(a), and the raw material gradually moves toward the exit side (die side) along this groove.
will be sent to.

第1表に示した条件で処理した原料を、プロテアーゼで
分解し、蛋白質の分解状況の経時変化を調査した。尚蛋
白質の分解状況は、遊離してくるチロシンを測定する^
n5onの方法を改良した下記の簡易分析法によった。
The raw materials treated under the conditions shown in Table 1 were degraded with protease, and changes over time in the state of protein degradation were investigated. The state of protein decomposition can be determined by measuring the released tyrosine.
The following simple analysis method was used, which is an improved version of the n5on method.

腹入光豆迭 (8)試料5飄lに酵素25tag(0,5%)を加え
、50℃で酵素反応を進行させた。
25 tags of enzyme (0.5%) were added to 5 liters of the sample (8) and the enzyme reaction was allowed to proceed at 50°C.

(b)トリクロロ酢酸を加え(最終濃度5%)、反応を
停止させると共に、未反応蛋白質を変性、沈殿させた。
(b) Trichloroacetic acid was added (final concentration 5%) to stop the reaction and to denature and precipitate unreacted proteins.

(c)変性した蛋白質を遠心分離によって取り除き、上
清を得た。
(c) Denatured proteins were removed by centrifugation to obtain a supernatant.

(d)上清について、280nmの吸光度(遊離したチ
ロシン、トリプトファンおよびフェニルアラニンによる
)を測定し、この値から全遊離アミノ酸量を推定した。
(d) The absorbance at 280 nm (due to free tyrosine, tryptophan, and phenylalanine) was measured for the supernatant, and the total amount of free amino acids was estimated from this value.

尚全遊離アミノ酸の求め方は下記の通りである。即ち、
大豆蛋白質中のチロシン、トリプトファン、フェニルア
ラニンの3アミノ酸の存在比は11.9%であることか
ら、市販のチロシンによって作成した検量線(相関係数
0.9998)に基づき遊離アミノ酸量を求め、この遊
離アミノ酸量を下記式に適用して全遊離アミノ酸とする
The method for determining the total free amino acids is as follows. That is,
Since the abundance ratio of the three amino acids tyrosine, tryptophan, and phenylalanine in soybean protein is 11.9%, the amount of free amino acids was determined based on a calibration curve (correlation coefficient 0.9998) prepared using commercially available tyrosine. The amount of free amino acids is applied to the formula below to obtain the total free amino acids.

全遊離アミノ酸量(mg/ml) 測定結果を、第2表および第5図に示すが、分解反応は
ほぼ2時間で平衡に達しているのがよく分かる。
The measurement results for total free amino acid content (mg/ml) are shown in Table 2 and Figure 5, and it is clearly seen that the decomposition reaction reached equilibrium in approximately 2 hours.

NT:分析者路 次に、前処理物に対して加熱処理を施したときに分解状
況がどの様に変化するかについて調査した。即ち、各試
料について100℃で加熱処理(5,10,20,30
分)を行ない、これにプロテアーゼを作用させ、前記と
同様にして遊離アミノ酸量を測定した。その結果を第3
表に示した。尚実験No、1.6および7によって得ら
れた原料は第2表に示した4時間後の遊離アミノ酸量が
他のサンプルに比べて少なかったので実験を行なわなか
った。
NT: Analyst Richiji investigated how the decomposition state changes when heat treatment is applied to the pretreated material. That is, each sample was heat treated at 100°C (5, 10, 20, 30
(min.), treated with protease, and measured the amount of free amino acids in the same manner as above. The result is the third
Shown in the table. It should be noted that the raw materials obtained in Experiment Nos. 1.6 and 7 had a lower amount of free amino acids after 4 hours shown in Table 2 than the other samples, so no experiments were conducted.

第3表から明らかな様に、前処理物を加熱処理した後の
蛋白質分解率はその処理をしない場合と比べてほとんど
増加は認められなかった。このことは、第1表に示した
程度の熱処理が行なわれていれば、前処理物として十分
であることを示している。
As is clear from Table 3, there was almost no increase in the protein decomposition rate after heat treatment of the pretreated product compared to when no treatment was performed. This indicates that heat treatment to the extent shown in Table 1 is sufficient as a pretreated product.

次に、第1表に示した条件で遊離アミノ酸量が最も多い
実験N092のものについて、窒素分析法による蛋白質
分解率の測定を行なった。この測定に当たっては、前記
簡易分析法と同様に反応させ、遠心残漬および上清につ
いて窒素分析を行ない、遊離アミノ酸量および残存蛋白
質量を下記式により算出した。
Next, for experiment No. 092, which had the highest amount of free amino acids under the conditions shown in Table 1, the protein degradation rate was measured by nitrogen analysis. In this measurement, the reaction was carried out in the same manner as in the above-mentioned simple analysis method, the centrifuged residue and the supernatant were subjected to nitrogen analysis, and the amount of free amino acids and the amount of remaining protein were calculated using the following formula.

窒素含量X6.25=蛋白質量(アミノ酸量)尚窒素分
析はSUMIGRAPHNC−800型NC分析計(住
友化学社製)を用いて行なった。また窒素分析において
は、トリクロロ酢酸が検出されることから、反応停止お
よび蛋白質の変性や沈殿は、加熱(100℃、25分間
)によって行なった。
Nitrogen content x 6.25 = protein amount (amino acid amount) Nitrogen analysis was performed using a SUMIGRAPH NC-800 type NC analyzer (manufactured by Sumitomo Chemical Co., Ltd.). Since trichloroacetic acid was detected in nitrogen analysis, reaction termination and protein denaturation and precipitation were performed by heating (100° C., 25 minutes).

その結果を第4表に示すが、反応時間2時間において約
80%もの高い蛋白質分解率を示していた。尚比較の為
、第2図に示した回転式加熱蒸煮缶によって前処理を行
なった原料について、プロテアーゼによる蛋白質分解率
を測定したところ、反応時間2時間で約11%程度の分
解率しか得られなかった。
The results are shown in Table 4, and the protein degradation rate was as high as about 80% at a reaction time of 2 hours. For comparison, when we measured the protein decomposition rate by protease for the raw material that had been pretreated using the rotary heating steamer shown in Figure 2, we found that only about 11% of the protein decomposition rate was obtained after a reaction time of 2 hours. There wasn't.

第4表 窒素分析法による蛋白質分解率 *乾燥重量および総アミノ態窒素は反応液10g当たり
の値で示している。
Table 4 Protein degradation rate determined by nitrogen analysis *Dry weight and total amino nitrogen are shown as values per 10 g of reaction solution.

[発明の効果] 本発明は以上の様に構成されており、味噌や醤油等の原
料となる植物性蛋白質を、こうじ菌や酵素製剤による酵
素作用を受けやすい最適な形態にすることができ、しか
もこれを短時間のうちに遂行できるから醸造品製造にお
ける全製造期間の大幅な短縮化が期待できる。
[Effects of the Invention] The present invention is configured as described above, and it is possible to make vegetable proteins, which are raw materials for miso, soy sauce, etc., into an optimal form that is susceptible to enzyme action by Koji molds and enzyme preparations. Furthermore, since this can be accomplished in a short period of time, it is expected that the total production period for brewed products will be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する為に構成される押出機の一例
を示す概略説明図、第2図は醤油の製造手順を示すフロ
ー図、第3図は味噌の一般的な製造手順を示すフロー図
、第4図(a)はスクリュー8の各タイプを示す説明図
、第4図(b)はスクリュー8の組合せ例を示す図、第
5図は前処理物のプロテアーゼによる反応時間と遊離ア
ミノ酸量の関係を示すグラフである。 1・・・モータ    4・・・フィーダ5・・・投入
口    6・・・シャフト7・・・シリンダ   8
・・・スクリュー9・・・ダイ (a)
Figure 1 is a schematic explanatory diagram showing an example of an extruder configured to carry out the present invention, Figure 2 is a flow diagram showing the procedure for manufacturing soy sauce, and Figure 3 is a general procedure for manufacturing miso. Flow diagram, Figure 4 (a) is an explanatory diagram showing each type of screw 8, Figure 4 (b) is a diagram showing examples of combinations of screws 8, Figure 5 is reaction time and release of pretreated product by protease. It is a graph showing the relationship between amino acid amounts. 1...Motor 4...Feeder 5...Inlet 6...Shaft 7...Cylinder 8
...Screw 9...Die (a)

Claims (1)

【特許請求の範囲】 植物性蛋白質を含む醸造用原料を混練押出機に投入し、
下記( I )〜(III)の工程を含んで混練押出しするこ
とを特徴とする植物性蛋白質を含む醸造用原料の前処理
方法。 ( I )醸造用原料に水を添加する工程、 (II)60〜120℃に加熱してでんぷんをα化する工
程、 (III)加圧・加熱下で混練して蛋白質の結合を部分的
に切断する工程。
[Claims] A brewing raw material containing vegetable protein is put into a kneading extruder,
1. A method for pre-treating brewing raw materials containing vegetable proteins, which comprises the following steps (I) to (III) and kneading and extrusion. (I) Adding water to brewing raw materials; (II) heating to 60-120°C to gelatinize starch; (III) kneading under pressure and heat to partially break down protein bonds. The process of cutting.
JP2173114A 1990-06-30 1990-06-30 Pretreatment of raw material for brewing containing vegetable protein Pending JPH0463569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2173114A JPH0463569A (en) 1990-06-30 1990-06-30 Pretreatment of raw material for brewing containing vegetable protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2173114A JPH0463569A (en) 1990-06-30 1990-06-30 Pretreatment of raw material for brewing containing vegetable protein

Publications (1)

Publication Number Publication Date
JPH0463569A true JPH0463569A (en) 1992-02-28

Family

ID=15954410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2173114A Pending JPH0463569A (en) 1990-06-30 1990-06-30 Pretreatment of raw material for brewing containing vegetable protein

Country Status (1)

Country Link
JP (1) JPH0463569A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993172A (en) * 1996-01-23 1999-11-30 Flow International Corporation Method and apparatus for pressure processing a pumpable substance
US5996478A (en) * 1996-01-23 1999-12-07 Flow International Corporation Apparatus for pressure processing a pumpable food substance
US6158981A (en) * 1998-06-18 2000-12-12 Flow International Corporation Method and apparatus for aseptic pressure-processing of pumpable substances
US6164930A (en) * 1998-06-18 2000-12-26 Flow International Corporation Apparatus for regulating flow of a pumped substance
US6804459B2 (en) 2001-06-15 2004-10-12 Flow International Corporation Method and apparatus for changing the temperature of a pressurized fluid
US7220381B2 (en) 2001-06-15 2007-05-22 Avure Technologies Incorporated Method for high pressure treatment of substances under controlled temperature conditions
JP5622915B1 (en) * 2013-10-28 2014-11-12 たかい食品株式会社 Miso manufacturing method
JP6117390B1 (en) * 2016-02-03 2017-04-19 たかい食品株式会社 Decomposition-processed food material and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134898A (en) * 1973-05-09 1974-12-25
JPS61192260A (en) * 1985-02-20 1986-08-26 Nisshin Oil Mills Ltd:The Production of fermented bean paste
JPS61285961A (en) * 1985-06-12 1986-12-16 Mitsubishi Kakoki Kaisha Ltd Method for pretreating raw material for brewing
JPS644743A (en) * 1987-06-29 1989-01-09 Konishiroku Photo Ind Silver halide color photographic sensitive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134898A (en) * 1973-05-09 1974-12-25
JPS61192260A (en) * 1985-02-20 1986-08-26 Nisshin Oil Mills Ltd:The Production of fermented bean paste
JPS61285961A (en) * 1985-06-12 1986-12-16 Mitsubishi Kakoki Kaisha Ltd Method for pretreating raw material for brewing
JPS644743A (en) * 1987-06-29 1989-01-09 Konishiroku Photo Ind Silver halide color photographic sensitive material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993172A (en) * 1996-01-23 1999-11-30 Flow International Corporation Method and apparatus for pressure processing a pumpable substance
US5996478A (en) * 1996-01-23 1999-12-07 Flow International Corporation Apparatus for pressure processing a pumpable food substance
US6158981A (en) * 1998-06-18 2000-12-12 Flow International Corporation Method and apparatus for aseptic pressure-processing of pumpable substances
US6164930A (en) * 1998-06-18 2000-12-26 Flow International Corporation Apparatus for regulating flow of a pumped substance
US6804459B2 (en) 2001-06-15 2004-10-12 Flow International Corporation Method and apparatus for changing the temperature of a pressurized fluid
US7220381B2 (en) 2001-06-15 2007-05-22 Avure Technologies Incorporated Method for high pressure treatment of substances under controlled temperature conditions
JP5622915B1 (en) * 2013-10-28 2014-11-12 たかい食品株式会社 Miso manufacturing method
JP6117390B1 (en) * 2016-02-03 2017-04-19 たかい食品株式会社 Decomposition-processed food material and method for producing the same
JP2017136007A (en) * 2016-02-03 2017-08-10 たかい食品株式会社 Decomposition treated food material and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US11950607B2 (en) Myceliated vegetable protein and food compositions comprising same
Cheftel Nutritional effects of extrusion-cooking
CN112515034B (en) Process for processing vegetable chicken fiber food by using soybean protein isolate
WO2020092306A1 (en) Myceliated vegetable protein and food compositions comprising same
US20180360088A1 (en) Method for improving the quality of high-moisture texturized peanut protein by tg enzyme
EP2491794A1 (en) Corn protein concentrates
US10375981B2 (en) High-moisture texturized peanut protein and a preparation method thereof
EP2172114B1 (en) Dispersion improver for gluten and method of producing active gluten
JPH0463569A (en) Pretreatment of raw material for brewing containing vegetable protein
JP2022513756A (en) Hyponatremia protein isolate
TWI388285B (en) Quick corn nixtamalization process
US5352464A (en) Process for the manufacture of salt-free, condensed seasoning powder
AU2008301212B2 (en) Wheat gluten modified for food application
CN1047921C (en) Cereal product
CN103260426A (en) Freeze-dried snack product comprising hydrolyzed whole grain
US4181746A (en) Process for preparing steam-kneaded vermicelli products
EP0758851B1 (en) A process for the production of a seasoning sauce
CN85101461A (en) The method of the production of bread dough
WO2022218863A1 (en) Method for producing a meat analogue product
KR20060037153A (en) A preparation method of enzyme-resistant starch using extrusion process
JP2570554B2 (en) Manufacturing method and manufacturing apparatus for koji-making raw materials
CN114868829B (en) Low-sensitization bean curd sheet and preparation method thereof
RU2248709C2 (en) Method for producing of "lingering" cookie
JP6899027B1 (en) Method for producing solubilized product
RU2612153C1 (en) Method of intensifying mass exchange processes