JPH0463311B2 - - Google Patents

Info

Publication number
JPH0463311B2
JPH0463311B2 JP63064628A JP6462888A JPH0463311B2 JP H0463311 B2 JPH0463311 B2 JP H0463311B2 JP 63064628 A JP63064628 A JP 63064628A JP 6462888 A JP6462888 A JP 6462888A JP H0463311 B2 JPH0463311 B2 JP H0463311B2
Authority
JP
Japan
Prior art keywords
defrosting
evaporators
defrost
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63064628A
Other languages
Japanese (ja)
Other versions
JPH01239366A (en
Inventor
Toshuki Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP63064628A priority Critical patent/JPH01239366A/en
Priority to MYPI89000329A priority patent/MY103980A/en
Priority to KR1019890003413A priority patent/KR970005538B1/en
Priority to US07/324,707 priority patent/US4959968A/en
Publication of JPH01239366A publication Critical patent/JPH01239366A/en
Priority to US07/485,582 priority patent/US4989413A/en
Publication of JPH0463311B2 publication Critical patent/JPH0463311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0622Air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

PURPOSE:To defrost the frost growth remaining on the evaporators by such a manner that when there are evaporators which are yet to complete the defrosting while other evaporators have completed the defrosting, the cooling medium is not supplied to the unfinished evaporators for a certain time period after the power supply to the defrosting heater is stopped. CONSTITUTION:When defrosting sensors SA, SB detect the completion of the defrosting, the defrosting timer is forcibly returned to the cooling mode, and the power supply to the remaining defrosting heater HC is stopped. Only solenoid valves 10A, 10B that are connected to the evaporators 5A, 5B which have completed the defrosting are opened, and, at the same time, a compressor 8 is started to supply the cooling medium to the evaporators 5A, 5B to cool the interior space of the showcases 1A, 1B. The cooling medium is not supplied to the evaporator 5C for the showcase 1C which has yet to complete the defrosting for a certain time period after the power supply to the defrosting heater HC is stopped. By using such time, the frost remaining on the evaporator HC is melted away by the remaining heat and the atmospheric temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1台の圧縮機で複数のシヨーケース
を冷却する冷凍・冷蔵シヨーケースにおける除霜
制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a defrosting control method in a freezing/refrigerating case that cools a plurality of cases using one compressor.

(従来の技術) 従来、1台の圧縮機で複数のシヨーケースを冷
却するようにした冷凍・冷蔵シヨーケースでは、
複数のシヨーケースに夫々配置した蒸発器を膨張
弁及び凝縮器を介して1台の圧縮機に接続し、該
圧縮機と各蒸発器とを接続する配管経路に電磁弁
を夫々設けるとともに、各シヨーケースに除霜用
のヒータを夫々設け、除霜時には全ての電磁弁を
閉成し、圧縮機の運転を停止して冷却を停止する
とともに、各除霜ヒータに通電して発熱させ蒸発
器に発生した霜を溶解して除去している。
(Conventional technology) Conventionally, in freezing and refrigerating cases where one compressor cools multiple cases,
The evaporators arranged in multiple show cases are connected to one compressor via an expansion valve and a condenser, and a solenoid valve is provided in the piping route connecting the compressor and each evaporator. Defrosting heaters are installed in each of the defrosting heaters, and during defrosting, all solenoid valves are closed, the compressor is stopped, and cooling is stopped, and each defrosting heater is energized to generate heat, which is generated in the evaporator. Removes frost by melting it.

以下にこの従来の除霜制御方法について第2図
のタイムチヤートを参照して詳細に説明する。
This conventional defrosting control method will be explained in detail below with reference to the time chart of FIG.

第2図に示したタイムチヤートは1台の圧縮機
で3台のシヨーケースa,b,cを冷却するよう
にしたもので、各シヨーケースa,b,cの蒸発
器における除霜は、1日を通して例えば約8時間
おきに約20分の除霜が行えるように予め除霜タイ
マにより設定されている。この除霜タイマが除霜
モードになつた際には、まず全ての電磁弁を閉成
し、圧縮機の運転を停止して冷却を停止する。そ
して、各除霜ヒータに通電して発熱させ蒸発器に
発生した霜を溶解して除去する。各除霜ヒータに
は除霜タイマで設定された時間だけ通電が断続し
て行なわれる。この除霜時間は各蒸発器の中で最
も着霜量が多い蒸発器の除霜を行なうに充分な時
間が設定されている。そして、除霜タイマが除霜
モードから冷却モードに復帰した際に、全ての電
磁弁を開成し、圧縮機の運転を開始して冷媒を蒸
発器に供給して各シヨーケース庫内の冷却を行な
つている。
The time chart shown in Figure 2 uses one compressor to cool three cases a, b, and c, and the defrosting in the evaporators of each case a, b, and c takes one day. The defrost timer is set in advance so that defrosting can be performed for about 20 minutes, for example, every 8 hours. When the defrost timer enters the defrost mode, first all solenoid valves are closed, the compressor is stopped, and cooling is stopped. Then, each defrosting heater is energized to generate heat to melt and remove the frost generated on the evaporator. Each defrosting heater is intermittently energized for the time set by the defrosting timer. This defrosting time is set to be enough time to defrost the evaporator with the largest amount of frost among the evaporators. When the defrost timer returns from defrost mode to cooling mode, all solenoid valves are opened, the compressor starts operating, and refrigerant is supplied to the evaporator to cool the interior of each show case. It's summery.

(発明が解決しようとする課題) しかしながら、従来の除霜制御方法では、各蒸
発器における除霜ヒータの通電時間が、最も除霜
に時間のかかる蒸発器に合わせて設定されている
ため、第2図に示す温度グラフのように最も除霜
に時間のかかるシヨーケースcの庫内温度に比
べ、除霜が早くに終了したシヨーケースa,bの
庫内温度が除霜終了温度よりも大幅に上昇し、庫
内に収容してある冷凍・冷蔵商品が不要に暖めら
れてその品質が低下するという問題点があつた。
また、庫内の温度上昇によつて冷却負荷が増大
し、冷却を再開した際における冷却効率が著しく
低下するという問題があつた。これら問題を解消
するためには除霜時間を短くすればよいと考えら
れるが、逆に蒸発器に霜が残留して冷却作用が妨
げられ、庫内に収容された商品を充分に冷却する
ことができなくなる。
(Problem to be Solved by the Invention) However, in the conventional defrosting control method, the energization time of the defrosting heater in each evaporator is set according to the evaporator that takes the longest time to defrost. As shown in the temperature graph shown in Figure 2, compared to the internal temperature of case c, which takes the longest time to defrost, the internal temperature of cases a and b, where defrosting is completed earlier, is significantly higher than the defrosting end temperature. However, there was a problem in that the frozen and refrigerated products stored in the refrigerator were unnecessarily heated and their quality deteriorated.
Additionally, there was a problem in that the cooling load increased due to the rise in temperature inside the refrigerator, and the cooling efficiency decreased significantly when cooling was restarted. In order to solve these problems, it may be possible to shorten the defrosting time, but conversely, frost remains in the evaporator and prevents the cooling effect, making it difficult to sufficiently cool the products stored in the warehouse. become unable to do so.

本発明は前記問題点に鑑みてなされたものであ
り、除霜時における庫内温度の上昇を防止し、且
つ各蒸発器に発生した霜を効率良く除去すること
ができる冷凍・冷蔵シヨーケースの除霜制御方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and is a method for removing freezing and refrigerating cases that prevents the temperature inside the refrigerator from rising during defrosting and efficiently removes frost generated in each evaporator. The purpose is to provide a frost control method.

(課題を解決するための手段) 本発明は前記目的を達成するために、複数のシ
ヨーケースに夫々配置した蒸発器を膨張弁及び凝
縮器を介して1台の圧縮機に接続し、該圧縮機と
各蒸発器とを接続する配管経路に電磁弁を夫々設
け、除霜タイマが除霜モードになつた際に全ての
電磁弁を閉成し、圧縮器の運転を停止するととも
に、各シヨーケースに夫々設けられた除霜ヒータ
に通電して蒸発器に発生した霜を除去するように
した冷凍・冷蔵シヨーケースの除霜制御方法にお
いて、各シヨーケースに蒸発器の除霜終了を検出
する除霜センサを設け、各除霜センサが蒸発器の
除霜終了を検出した段階で該蒸発器に対応した除
霜ヒータの通電を停止し、蒸発器全数のうち所定
数の蒸発器の除霜が終了した時に除霜タイマを強
制的に冷却モードに復帰させ、全ての除霜ヒータ
の通電を停止し、除霜が終了した蒸発器に接続さ
れた電磁弁のみを開成し、圧縮機の運転を開始す
るとともに、そして除霜が開始されてから所定時
間経過後に残りの電磁弁を開成するようにしたこ
とを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention connects evaporators respectively arranged in a plurality of show cases to one compressor via an expansion valve and a condenser. A solenoid valve is installed in each piping route connecting the and each evaporator, and when the defrost timer enters the defrost mode, all the solenoid valves are closed, the compressor operation is stopped, and a In a defrosting control method for freezing and refrigerating cases in which defrost heaters installed in each case are energized to remove frost generated on the evaporator, each case is equipped with a defrost sensor that detects the completion of defrosting the evaporator. When each defrost sensor detects the end of defrosting of an evaporator, the power supply to the defrost heater corresponding to the evaporator is stopped, and when defrosting of a predetermined number of evaporators among the total number of evaporators is completed, The defrost timer is forcibly returned to cooling mode, all defrost heaters are de-energized, only the solenoid valve connected to the evaporator that has finished defrosting is opened, and the compressor starts operating. , and the remaining solenoid valves are opened after a predetermined period of time has elapsed since defrosting was started.

(作用) 本発明によれば、除霜時期及び時間は除霜タイ
マにより予め設定されており、各蒸発器における
除霜は該除霜タイマが除霜モードになつた際に行
なわれる。除霜タイマが除霜モードになつた際に
は、まず全ての電磁弁が閉成されるとともに、圧
縮機の運転が停止される冷媒の流れが制御され
る。そして、各除霜ヒータに通電がなされる。
(Operation) According to the present invention, the defrosting time and time are preset by a defrosting timer, and defrosting in each evaporator is performed when the defrosting timer enters the defrosting mode. When the defrost timer enters the defrost mode, first all the solenoid valves are closed, and the flow of refrigerant is controlled so that the operation of the compressor is stopped. Then, each defrosting heater is energized.

各除霜センサが蒸発器の除霜終了を検出した段
階で該蒸発器に対応した除霜ヒータの通電が停止
される。そして、蒸発器全体のうち所定数の蒸発
器の除霜が終了した時に、除霜タイマが強制的に
冷却モードに復帰され、全ての除霜ヒータの通電
が停止され、先に除霜が終了した所定数の蒸発器
に接続された電磁弁のみが開成されるとともに、
圧縮機の運転が開始され該蒸発器に冷媒が供給そ
れてシヨーケース庫内の冷却が行なわれる。
At the stage when each defrosting sensor detects the end of defrosting of the evaporator, power supply to the defrosting heater corresponding to the evaporator is stopped. Then, when the defrosting of a predetermined number of evaporators among all the evaporators is completed, the defrost timer is forcibly returned to the cooling mode, the power supply to all the defrosting heaters is stopped, and the defrosting is completed first. Only the solenoid valves connected to a predetermined number of evaporators are opened, and
The operation of the compressor is started and refrigerant is supplied to the evaporator to cool the interior of the show case.

そして除霜が開始されたから所定時間経過後に
は残りの除霜ヒータの通電が停止されるととも
に、残りの電磁弁が開成され蒸発器に冷媒が供給
されて残りのシヨーケース庫内の冷却が行なわれ
る。
After a predetermined period of time has elapsed since defrosting has started, the remaining defrost heaters are de-energized, the remaining solenoid valves are opened, and refrigerant is supplied to the evaporator to cool the remaining interior of the show case. .

即ち、所定数の蒸発器の除霜が終了した段階で
除霜が終了していない残りの蒸発器には除霜ヒー
タの通電が停止された後も所定の時間が経過する
までしばらくの間は冷媒が供給されないので、こ
の時間を利用して該蒸発器に残留している霜を余
熱及び大気温度で溶解して除去することが可能と
なる。
In other words, when the defrosting of a predetermined number of evaporators is completed, the remaining evaporators that have not been defrosted will continue to be operated for a while until the predetermined time elapses even after the defrost heater is de-energized. Since no refrigerant is supplied, it is possible to use this time to melt and remove the frost remaining in the evaporator using residual heat and atmospheric temperature.

(実施例) 第1図aは本発明に係る冷凍・冷蔵シヨーケー
スの冷却回路図であり、同図において、1A,1
B,1Cは内箱2A,2B,2Cと外箱3A,3
B,3Cとからなるシヨーケースであり、各シヨ
ーケース1A,1B,1Cの通風路4A,4B,
4C内には蒸発器5A,5B,5Cと送風機6
A,6B,6Cが夫々設けられている。また、各
蒸発器5A,5B,5Cの入口側には膨脹弁7
A,7B,7Cが夫々接続されている。
(Example) Fig. 1a is a cooling circuit diagram of a freezing/refrigerating case according to the present invention, in which 1A, 1
B, 1C are inner boxes 2A, 2B, 2C and outer boxes 3A, 3
B, 3C, each of the case 1A, 1B, 1C has ventilation passages 4A, 4B,
Inside 4C are evaporators 5A, 5B, 5C and blower 6.
A, 6B, and 6C are provided, respectively. In addition, an expansion valve 7 is provided on the inlet side of each evaporator 5A, 5B, and 5C.
A, 7B, and 7C are connected respectively.

圧縮機8の吐出側には凝縮器9が接続されてお
り、該凝縮器9の出口側には電磁弁10A,10
B,10Cを夫々介在して前記膨脹弁7A,7
B,7Cの入口側が夫々接続されている。また、
前記蒸発器5A,5B,5Cの出口側には圧縮機
8の吸入側が夫々接続されている。
A condenser 9 is connected to the discharge side of the compressor 8, and solenoid valves 10A and 10 are connected to the outlet side of the condenser 9.
The expansion valves 7A and 7 are inserted through the expansion valves B and 10C, respectively.
The inlet sides of B and 7C are connected to each other. Also,
The suction side of the compressor 8 is connected to the outlet side of the evaporators 5A, 5B, and 5C, respectively.

また、各蒸発器5A,5B,5Cの前面側には
通電により発熱する除霜用のヒータHA,HB,
HCが設けられており、また前記各通風路4A,
4B,4C内には各蒸発器5A,5B,5Cの除
霜終了を検出する、サーモスタツトからなる除霜
センサSA、SB、SCが設けられている。
In addition, on the front side of each evaporator 5A, 5B, 5C, there are defrosting heaters HA, HB, which generate heat when energized.
HC is provided, and each of the ventilation passages 4A,
Defrost sensors SA, SB, and SC, which are thermostats, are provided in the evaporators 4B and 4C to detect the completion of defrosting of each evaporator 5A, 5B, and 5C.

即ち、前記冷凍・冷蔵シヨーケースでは、1台
の圧縮器8によつて3台のシヨーケース1A,1
B,1Cを冷却することができ、また凝縮器9と
各蒸発器5A,5B,5Cの間に介在された電磁
弁10A,10B,10Cの開閉により各シヨー
ケース1A,1B,1Cの冷却を制御することが
できる。
That is, in the freezing/refrigerating case, one compressor 8 is used to compress three cases 1A, 1.
B, 1C can be cooled, and the cooling of each case 1A, 1B, 1C can be controlled by opening and closing electromagnetic valves 10A, 10B, 10C interposed between the condenser 9 and each evaporator 5A, 5B, 5C. can do.

第1図bは本発明に係る除霜制御装置の構成図
であり、同図において、11はマイクロプロセツ
サ、メモリ等からなる制御部、12は電源部であ
る。制御部11は前記除霜センサSA,SB,SC
からの入力信号及びメモリに格納されたプログラ
ムに基づき電源部12に制御信号を送出する。電
源部12はこの制御信号に基づいて電源部12に
接続された圧縮機8、電磁弁10A,10B,1
0C及び除霜ヒータHA,HB,HCに夫々駆動電
力を供給する。13はシヨーケースが販売状態か
販売停止状態かを検出する販売検出手段であり、
該販売検出手段13はシヨーケースの照明の
ON/OFFを検出するセンサや人為的に操作可能
なスイツチ等からなり、販売時と販売停止時とで
異なる信号を前記制御部11に送出する。
FIG. 1b is a block diagram of a defrosting control device according to the present invention, in which numeral 11 denotes a control section consisting of a microprocessor, memory, etc., and numeral 12 denotes a power supply section. The control unit 11 controls the defrosting sensors SA, SB, SC.
A control signal is sent to the power supply unit 12 based on an input signal from the power supply unit 12 and a program stored in the memory. The power supply section 12 operates the compressor 8 and the solenoid valves 10A, 10B, 1 connected to the power supply section 12 based on this control signal.
Supply driving power to 0C and defrosting heaters HA, HB, and HC, respectively. 13 is a sales detection means for detecting whether the show case is in a sales state or a sales suspension state;
The sales detection means 13 detects the illumination of the show case.
It consists of a sensor that detects ON/OFF, a switch that can be manually operated, etc., and sends different signals to the control section 11 when sales are on sale and when sales are stopped.

以下に、第1図cのフローチヤート及び第1d
のタイムチヤートを参照して、第1図aに示した
冷凍・冷蔵シヨーケースにおける除霜制御方法に
ついて説明する。尚、図示した実施例は販売時と
販売停止時とで異なる除霜方法を用いた例であ
り、特に本発明を販売時の除霜に採用したものを
示してある。
Below, the flowchart of Figure 1c and Figure 1d
A defrosting control method in the freezing/refrigerating case shown in FIG. 1a will be explained with reference to the time chart of FIG. The illustrated embodiment is an example in which different defrosting methods are used at the time of sale and at the time of suspension of sale, and particularly shows an example in which the present invention is adopted for defrosting at the time of sale.

除霜時期及び時間は除霜タイマT1により予め
設定されており、各蒸発器における除霜は該除霜
タイマT1が除霜モードになつた際に行なわれ
る。
The defrosting time and time are set in advance by the defrosting timer T1, and defrosting in each evaporator is performed when the defrosting timer T1 enters the defrosting mode.

まず、冷却運転が行なわれている状態で、除霜
タイマT1が除霜モードになつたか否かを判別し
(ステツプ1)、除霜モードである場合にはシヨー
ケースが販売時であるか否かを判別する(ステツ
プ2)。
First, while the cooling operation is being performed, it is determined whether the defrost timer T1 has entered the defrost mode (step 1), and if it is in the defrost mode, it is determined whether the show case is ready for sale or not. (Step 2).

ステツプ2で販売時であると判別された場合
は、除霜時間監視用のタイマT2及び除霜終了台
数係数用のカウンタをリセツトするとともに、各
電磁弁10A,10B,10Cを夫々閉成して冷
媒の流れを抑制し、圧縮機8の運転を停止する。
また、これと同時に各除霜ヒータHA,HB,HC
に夫々通電し、そしてタイマT2をスタートする
(ステツプ3)。
If it is determined in step 2 that it is time to sell, the timer T2 for monitoring the defrosting time and the counter for the defrosting end number coefficient are reset, and each solenoid valve 10A, 10B, 10C is closed. The flow of refrigerant is suppressed and the operation of the compressor 8 is stopped.
At the same time, each defrost heater HA, HB, HC
are energized, respectively, and timer T2 is started (step 3).

次に、まず除霜センサSAが除霜終了を検出し
たか否かを判別し(ステツプ4)、除霜終了を検
出した場合には除霜ヒータHAの通電を停止する
とともに(ステツプ5)、カウンタに1を加算し
(ステツプ6)、カウンタの値が2になつたか否か
を判別する(ステツプ7)。除霜センサSAが除霜
終了を検出していない場合には、現在のモードが
冷却モードが否かを判別する(ステツプ8)。
Next, first, it is determined whether or not the defrost sensor SA detects the end of defrosting (step 4), and if it detects the end of defrosting, it stops energizing the defrost heater HA (step 5), 1 is added to the counter (step 6), and it is determined whether the counter value has reached 2 (step 7). If the defrosting sensor SA does not detect the end of defrosting, it is determined whether the current mode is the cooling mode or not (step 8).

次いで、除霜センサSBが除霜終了を検出した
か否かを判別し(ステツプ9)、除霜終了を検出
した場合には除霜ヒータHBの通電を停止すると
ともに(ステツプ10)、カウンタに1を加算し
(ステツプ11)、カウンタの値が2になつたか否か
を判別する(ステツプ12)。除霜センサSBが除霜
終了を検出していない場合には、現在のモードが
冷却モードか否かを判別する(ステツプ13)。
Next, it is determined whether the defrost sensor SB has detected the end of defrosting (step 9), and if it has detected the end of defrosting, it stops energizing the defrost heater HB (step 10), and the counter 1 is added (step 11), and it is determined whether the counter value has reached 2 (step 12). If the defrosting sensor SB does not detect the end of defrosting, it is determined whether the current mode is the cooling mode (step 13).

次いで、除霜センサSCが除霜終了を検出した
か否かを判別し(ステツプ14)、除霜終了を検出
した場合には除霜ヒータHCの通電を停止すると
ともに(ステツプ15)、カウンタに1を加算し
(ステツプ16)、カウンタの値が2になつたか否か
を判別する(ステツプ17)。除霜センサSCが除霜
終了を検出していない場合には、現在のモードが
冷却モードが否かを判別する(ステツプ18)。
Next, it is determined whether the defrost sensor SC detects the end of defrosting (step 14), and if it detects the end of defrosting, it stops energizing the defrost heater HC (step 15), and sets the counter to 1 is added (step 16), and it is determined whether the counter value has reached 2 (step 17). If the defrosting sensor SC does not detect the end of defrosting, it is determined whether the current mode is the cooling mode or not (step 18).

ステツプ17でカウンタの値が2にならない場合
にはステツプ4に戻り、各除霜センサの検出状態
を再度確認する。また、ステツプ8、13、18で冷
却モードでないと判別した場合には、夫々ステツ
プ9、14、4に入り、また冷却モードであると判
別した場合には後述するステツプ35に入る。
If the counter value does not become 2 in step 17, the process returns to step 4 and the detection status of each defrosting sensor is checked again. If it is determined in steps 8, 13, and 18 that the mode is not in the cooling mode, steps 9, 14, and 4 are entered, respectively, and if it is determined that the mode is in the cooling mode, the mode is entered in step 35, which will be described later.

そして、カウンタの値が2になつた場合、図示
例えば除霜センサSA,SBが除霜終了を検出した
場合に除霜タイマT1を強制的に冷却モードに復
帰し(ステツプ19)、残りの除霜ヒータHCの通
電を停止し、除霜が終了した蒸発器5A,5Bに
接続された電磁弁10A,10Bのみを開成する
とともに、圧縮機8の運転を開始し該蒸発器5
A,5Bに冷媒を供給してシヨーケース1A,1
Bの庫内の冷却を行なう(ステツプ20)。
When the counter value reaches 2, for example, when the defrost sensors SA and SB detect the end of defrosting, the defrost timer T1 is forcibly returned to the cooling mode (step 19), and the remaining defrost time is The frost heater HC is de-energized, only the solenoid valves 10A and 10B connected to the evaporators 5A and 5B that have been defrosted are opened, and the compressor 8 is started to operate.
Supply refrigerant to A and 5B and switch cases 1A and 1.
The inside of refrigerator B is cooled (step 20).

次に、残りの除霜センサSCが除霜終了を検出
したか否かを判別し(ステツプ21)、除霜終了を
検出した場合には残りの電磁弁10Cを開成し蒸
発器5Cに冷媒を供給して残りのシヨーケース1
Cの庫内の冷却を行ない(ステツプ22)、ステツ
プ1に戻る。
Next, it is determined whether the remaining defrost sensor SC detects the end of defrosting (step 21), and if it detects the end of defrosting, the remaining solenoid valve 10C is opened to supply refrigerant to the evaporator 5C. Supply remaining case 1
The inside of the refrigerator C is cooled (step 22), and the process returns to step 1.

残りの除霜センサSCが除霜終了が検出してい
ない場合でも、除霜が開始されてから所定時間が
経過したか否か、即ちタイマT2がタイムアツプ
したか否かを判別し(ステツプ23)、所定時間が
経過している場合にはステツプ22で残りの電磁弁
10Cを開成し蒸発器5Cに冷媒を供給して残り
のシヨーケース1Cの庫内の冷却を行ない、ステ
ツプ1に戻る。除霜が開始されてから所定時間が
経過していない場合にはステツプ21に戻る。
Even if the remaining defrosting sensors SC do not detect the end of defrosting, it is determined whether a predetermined time has elapsed since defrosting started, that is, whether timer T2 has timed up (step 23). If the predetermined time has elapsed, the remaining solenoid valves 10C are opened in step 22 to supply refrigerant to the evaporator 5C to cool the interior of the remaining case 1C, and the process returns to step 1. If the predetermined time has not elapsed since defrosting was started, the process returns to step 21.

以上のようにして販売時、例えば昼間における
除霜が行なわれる。即ち、実施例では3台のうち
2台の蒸発器5A,5Bの除霜が終了した段階で
全ての除霜ヒータHA,HB,HCの通電を停止
し、先に除霜が終了した2台の蒸発器5A,5B
に冷媒を供給してシヨーケース1A,1Bの冷却
を行なうとともに、除霜が終了していないシヨー
ケース1Cの蒸発器5Cには除霜ヒータHCの通
電が停止された後も所定の時間が経過するまでし
ばらくの間は冷媒を供給せず、この時間を利用し
て該蒸発器HCに残留している霜を余熱及び大気
温度で溶解し除去するようにしている。
As described above, defrosting is carried out at the time of sale, for example during the day. That is, in the embodiment, when the defrosting of two of the three evaporators 5A and 5B is completed, the power supply to all the defrosting heaters HA, HB, and HC is stopped, and the two evaporators that finished defrosting first are turned off. evaporators 5A, 5B
At the same time, the evaporator 5C of the case 1C, which has not yet been defrosted, is supplied with refrigerant to cool the cases 1A and 1B until a predetermined period of time has passed even after the defrost heater HC is de-energized. Refrigerant is not supplied for a while, and this time is used to melt and remove frost remaining in the evaporator HC using residual heat and atmospheric temperature.

前記ステツプ2で販売停止時である判別された
場合には、各電磁弁10A,10B,10Cを
夫々閉成し冷媒の流れを抑制し、圧縮機8の運転
を停止するとともに、各除霜ヒータHA,HB,
HCに夫々通電する(ステツプ24)。
If it is determined in step 2 that it is time to stop selling, each solenoid valve 10A, 10B, 10C is closed to suppress the flow of refrigerant, the operation of the compressor 8 is stopped, and each defrosting heater is closed. HA, HB,
Power is applied to each HC (step 24).

次に、除霜モードか否かを判別し(ステツプ
25)、除霜モードである場合には除霜センサSAが
除霜終了を検出したか否かを判別し(ステツプ
26)、除霜終了を検出した場合には除霜ヒータ
HAの通電を停止する(ステツプ27)。
Next, determine whether or not the defrost mode is on (step
25) If the defrost mode is selected, it is determined whether the defrost sensor SA has detected the end of defrosting (step
26) When the end of defrosting is detected, the defrost heater is activated.
Stop powering the HA (step 27).

次いで、除霜センサSBが除霜終了を検出した
か否かを判別し(ステツプ28)、除霜終了を検出
した場合には除霜ヒータHBの通電を停止する
(ステツプ29)。
Next, it is determined whether or not the defrost sensor SB has detected the end of defrosting (step 28), and if it has detected the end of defrosting, the energization of the defrost heater HB is stopped (step 29).

次いで、除霜センサSCが除霜終了が検出した
か否かを判別し(ステツプ30)、除霜終了を検出
した場合には除霜ヒータHCの通電を停止する
(ステツプ31)。
Next, the defrost sensor SC determines whether or not the end of defrosting has been detected (step 30), and if it has detected the end of defrosting, the defrost heater HC is de-energized (step 31).

ステツプ26、28、30で各除霜センサが除霜終了
を検出していない場合にはステツプ32、33、34で
夫々除霜モードか否かを判別する。
If each defrosting sensor does not detect the end of defrosting in steps 26, 28, and 30, it is determined in steps 32, 33, and 34 whether or not the defrosting mode is active.

ステツプ25、32、33、34で除霜モードではなく
冷却モードであると判別された場合には、全ての
除霜ヒータHA,HB,HCの通電を停止する(図
示例では冷却モードになる前に全ての除霜ヒータ
の通電が停止されている)とともに、全ての電磁
弁10A,10B,10Cを開成し、圧縮機8の
運転を開始して蒸発器5A,5B,5Cに冷媒を
供給してシヨーケース1A,1B,1Cの庫内の
冷却を行ない(ステツプ35)、ステツプ1に戻る。
If it is determined in steps 25, 32, 33, and 34 that the mode is not defrost mode but cooling mode, power to all defrost heaters HA, HB, and HC is stopped (in the illustrated example, the power supply to all defrost heaters HA, HB, and HC is stopped before entering cooling mode). At the same time, all the solenoid valves 10A, 10B, and 10C are opened, and the compressor 8 is started to supply refrigerant to the evaporators 5A, 5B, and 5C. Then, the interiors of the show cases 1A, 1B, and 1C are cooled down (step 35), and the process returns to step 1.

以上のようにして販売停止時、例えば夜間にお
ける除霜が行なわれる。この販売停止時における
除霜は先に述べた販売時の除霜と異なり、3台の
蒸発器5A,5B,5Cに着霜した霜が完全に除
去されるまで除霜が行なわれるようになつてい
る。
As described above, defrosting is performed when sales are stopped, for example at night. This defrosting at the time of suspension of sales is different from the defrosting at the time of sales mentioned above, and defrosting is carried out until the frost that has formed on the three evaporators 5A, 5B, and 5C is completely removed. ing.

このように、前記実施例によれば、販売時の除
霜では、3台のうち2台の蒸発器5A,5Bの除
霜が終了した段階で全ての除霜ヒータHA,HB,
HCの通電を停止し、先に除霜が終了した2台の
蒸発器5A,5Bに冷媒を供給してシヨーケース
1A,1Bの冷却を開始するとともに、除霜が終
了していないシヨーケース1Cの蒸発器5Cには
除霜ヒータHCの通電が停止された後も所定の時
間が経過するまでしばらくの間は冷媒を供給せ
ず、この時間を利用して該蒸発器5Cに残留して
いる霜を余熱及び大気温度で溶解除去するように
しているので、蒸発器5A,5Bに着霜した霜を
庫内温度の上昇を招くことなく完全に除去できる
ことに加え、最も除霜に時間のかかる蒸発器5C
に着霜した霜をも庫内温度の上昇を招くことなく
余熱及び大気温度で溶解し効率良く除去すること
ができる。したがつて、第1図dに示す温度グラ
フのように、最も除霜に時間のかかるシヨーケー
ス1C及び除霜が早くに終了したシヨーケース1
A,1Bの庫内温度でを除霜終了温度付近で平均
化することができるので、除霜時において特定の
シヨーケースの庫内温度が他のシヨーケースの庫
内温度に比べて上昇し、その庫内に収容された冷
凍・冷蔵商品が不要に暖められることがなく、ま
た庫内の温度上昇によつて冷却負荷が増大し冷却
が再開された際の冷却効率が低下することもな
い。
In this way, according to the embodiment, in defrosting at the time of sale, all the defrosting heaters HA, HB,
The power supply to the HC is stopped, and refrigerant is supplied to the two evaporators 5A and 5B that have finished defrosting first to start cooling the case 1A and 1B, and the evaporation of the case 1C that has not yet been defrosted is started. Refrigerant is not supplied to the evaporator 5C for a while until a predetermined period of time has passed even after the defrosting heater HC is de-energized, and this time is used to remove the frost remaining in the evaporator 5C. Since it is melted and removed using residual heat and atmospheric temperature, the frost that has formed on the evaporators 5A and 5B can be completely removed without causing a rise in the temperature inside the refrigerator. 5C
Even frost that has formed on the refrigerator can be efficiently removed by melting it with residual heat and atmospheric temperature without causing an increase in the temperature inside the refrigerator. Therefore, as shown in the temperature graph shown in FIG.
Since the internal temperatures of A and 1B can be averaged around the defrosting end temperature, the internal temperature of a specific case will rise compared to the other cases during defrosting, and The frozen/refrigerated products stored in the refrigerator are not heated unnecessarily, and the cooling load is not increased due to a rise in the temperature inside the refrigerator and the cooling efficiency is not decreased when cooling is restarted.

尚、前記実施例では1台の圧縮機で3台のシヨ
ーケースを冷却するようにしたものを示したが、
シヨーケースの台数は適宜増減してもよいこと勿
論である。また、販売時と販売停止時とで異なる
除霜方法を用いたものを示したが、1日を通して
本発明を採用した販売時と同じ除霜方法で除霜を
行なうようにしてもよい。
In addition, in the above embodiment, three cases were cooled by one compressor, but
Of course, the number of show cases may be increased or decreased as appropriate. Further, although different defrosting methods are used at the time of sale and at the time of suspension of sale, defrosting may be carried out throughout the day using the same defrosting method as at the time of sale employing the present invention.

(発明の効果) 以上説明したように、本発明によれば、蒸発器
全数のうち所定数の蒸発器の除霜が終了した段階
で除霜が終了していないシヨーケースの蒸発器に
は除霜ヒータの通電が停止された後も所定の時間
が経過するまでしばらくの間は冷媒を供給せず、
この時間を利用して該蒸発器に残留している霜を
余熱及び大気温度で溶解し除去するようにしてい
るので、除霜に時間のかからない蒸発器に着霜し
た霜を庫内温度の上昇を招くことなく完全に除去
できることに加え、最も除霜に時間のかかる蒸発
器に着霜した霜をも庫内温度の上昇を招くことな
く余熱及び大気温度で溶解し効率良く除去するこ
とができる。したがつて、最も除霜に時間のかか
るシヨーケース及び除霜が早くに終了したシヨー
ケースの庫内温度を除霜終了温度付近で平均化す
ることができるので、除霜時において特定のシヨ
ーケースの庫内温度が他のシヨーケースの庫内温
度に比べて上昇し、その庫内に収容された冷凍・
冷蔵商品が不要に暖められることがなく、また庫
内の温度上昇によつて冷却負荷が増大し冷却が再
開された際の冷却効率が低下することもない。
(Effects of the Invention) As explained above, according to the present invention, when the defrosting of a predetermined number of evaporators among the total number of evaporators is completed, the evaporators of the show case that have not been defrosted are defrosted. Refrigerant is not supplied for a while until a predetermined period of time has passed even after the heater has been de-energized.
Using this time, the frost remaining on the evaporator is melted and removed by residual heat and atmospheric temperature, so the frost that has formed on the evaporator, which does not take much time to defrost, is removed by raising the temperature inside the refrigerator. In addition to being able to completely remove frost that has formed on the evaporator, which takes the longest time to defrost, it can be efficiently removed by melting it with residual heat and atmospheric temperature without causing a rise in internal temperature. . Therefore, the internal temperature of the case where defrosting takes the longest time and the case where defrosting ends quickly can be averaged around the defrosting end temperature. The temperature rises compared to the internal temperature of other storage cases, and the frozen and
The refrigerated product is not heated unnecessarily, and the cooling load is not increased due to a rise in the temperature inside the warehouse and the cooling efficiency is not reduced when cooling is restarted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至第1図dは本発明の実施例を示す
もので、第1図aは冷凍・冷蔵シヨーケースの冷
却回路図、第1図bは除霜制御装置の構成図、第
1図cは除霜制御のフローチヤート、第1図dは
除霜制御のタイムチヤート、第2図は従来の除霜
制御の示すタイムチヤートである。 1A,1B,1C……シヨーケース、5A,5
B,5C……蒸発器、8……圧縮機、10A,1
0B,10C……電磁弁、HA,HB,HC……除
霜ヒータ、SA,SB,SC……除霜センサ。
1a to 1d show embodiments of the present invention, in which FIG. 1a is a cooling circuit diagram of a freezing/refrigerating case, FIG. 1b is a configuration diagram of a defrosting control device, and FIG. FIG. 1c is a flowchart of defrosting control, FIG. 1d is a time chart of defrosting control, and FIG. 2 is a time chart of conventional defrosting control. 1A, 1B, 1C... Showcase, 5A, 5
B, 5C... Evaporator, 8... Compressor, 10A, 1
0B, 10C...Solenoid valve, HA, HB, HC...Defrost heater, SA, SB, SC...Defrost sensor.

Claims (1)

【特許請求の範囲】 1 複数のシヨーケースに夫々配置した蒸発器を
膨張弁及び凝縮器を介して1台の圧縮機に接続
し、該圧縮機と各蒸発器とを接続する配管経路に
電磁弁を夫々設け、除霜タイマが除霜モードにな
つた際に全ての電磁弁を閉成し、圧縮機の運転を
停止するとともに、各シヨーケースに夫々設けら
れた除霜ヒータに通電して蒸発器に発生した霜を
除去するようにした冷凍・冷蔵シヨーケースの除
霜制御方法において、 各シヨーケースに蒸発器の除霜終了を検出する
除霜センサを設け、 各除霜センサが蒸発器の除霜終了を検出した段
階で該蒸発器に対応した除霜ヒータの通電を停止
し、 蒸発器全数のうち所定数の蒸発器の除霜が終了
した時に除霜タイマを強制的に冷却モードに復帰
させ、全ての除霜ヒータの通電を停止し、除霜が
終了した蒸発器に接続された電磁弁のみを開成す
るとともに、圧縮機運転を開始し、 そして除霜が開始されてから所定時間経過後に
残りの電磁弁を開成するようにした ことを特徴とする冷凍・冷蔵シヨーケースの除霜
制御方法。
[Claims] 1. Evaporators arranged in a plurality of show cases are connected to one compressor via an expansion valve and a condenser, and a solenoid valve is installed in a piping route connecting the compressor and each evaporator. When the defrost timer enters the defrost mode, all solenoid valves are closed, the compressor is stopped, and the defrost heater installed in each case is energized to restart the evaporator. In the defrosting control method for freezing and refrigerating case cases, each case is equipped with a defrost sensor that detects the completion of defrosting of the evaporator. When this is detected, the defrost heater corresponding to the evaporator is de-energized, and when a predetermined number of the evaporators out of all the evaporators have been defrosted, the defrost timer is forcibly returned to the cooling mode. All defrosting heaters are de-energized, only the solenoid valves connected to the evaporators that have been defrosted are opened, compressor operation is started, and the remaining A defrosting control method for a freezing/refrigerating case, characterized in that a solenoid valve is opened.
JP63064628A 1988-03-17 1988-03-17 Defrosting control method for freezing and refrigerating showcase Granted JPH01239366A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63064628A JPH01239366A (en) 1988-03-17 1988-03-17 Defrosting control method for freezing and refrigerating showcase
MYPI89000329A MY103980A (en) 1988-03-17 1989-03-16 Method for controlling the defrosting of refrigerator- freezer units of varying degrees of frost accumulation.
KR1019890003413A KR970005538B1 (en) 1988-03-17 1989-03-17 Method for controlling the defrosting of a refrigerator freezer unit
US07/324,707 US4959968A (en) 1988-03-17 1989-03-17 Method for controlling the defrosting of refrigerator-freezer units of varying degrees of frost accumulation
US07/485,582 US4989413A (en) 1988-03-17 1990-02-27 Method for controlling the defrosting of refrigerator-freezer units of varying degrees of frost accumulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064628A JPH01239366A (en) 1988-03-17 1988-03-17 Defrosting control method for freezing and refrigerating showcase

Publications (2)

Publication Number Publication Date
JPH01239366A JPH01239366A (en) 1989-09-25
JPH0463311B2 true JPH0463311B2 (en) 1992-10-09

Family

ID=13263712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064628A Granted JPH01239366A (en) 1988-03-17 1988-03-17 Defrosting control method for freezing and refrigerating showcase

Country Status (1)

Country Link
JP (1) JPH01239366A (en)

Also Published As

Publication number Publication date
JPH01239366A (en) 1989-09-25

Similar Documents

Publication Publication Date Title
KR100350419B1 (en) Kimchi Refrigerator And Control Method Thereof
JP4068390B2 (en) Defrosting operation method of refrigerator equipped with two evaporators
JP2008075964A (en) Defrosting device of cooling device
US4989413A (en) Method for controlling the defrosting of refrigerator-freezer units of varying degrees of frost accumulation
JP2009036483A (en) Refrigerator and its defrosting method
JPH10111064A (en) Control method for cooling fan of refrigerator
JP2641480B2 (en) Defrosting control method for frozen and refrigerated showcases
JPH0463311B2 (en)
JPH0461273B2 (en)
JPH05215460A (en) Method and apparatus for deforsting evaporator
JPH0463312B2 (en)
JP2641481B2 (en) Defrosting control method for frozen and refrigerated showcases
JPH0463313B2 (en)
JP3313452B2 (en) Showcase defrost controller
JP2639975B2 (en) Refrigeration, refrigerator cooling operation method
JP3611961B2 (en) refrigerator
JPH07190582A (en) Method for operating low temperature type open show case
JPS6138065Y2 (en)
JPS6029570A (en) Refrigerator
JPS611973A (en) Control system of operation of refrigerated counter
JP2812343B2 (en) Defrosting heater control method for refrigeration vending machine
JPH04184063A (en) Refrigerator
JPH04110372U (en) Freezer/refrigerator defrosting control device
JP3297384B2 (en) vending machine
JPH07236462A (en) Thawing device