JPH0463196A - Fluid treating device - Google Patents

Fluid treating device

Info

Publication number
JPH0463196A
JPH0463196A JP17367890A JP17367890A JPH0463196A JP H0463196 A JPH0463196 A JP H0463196A JP 17367890 A JP17367890 A JP 17367890A JP 17367890 A JP17367890 A JP 17367890A JP H0463196 A JPH0463196 A JP H0463196A
Authority
JP
Japan
Prior art keywords
fluid
passage
magnetic
fluid passage
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17367890A
Other languages
Japanese (ja)
Inventor
Kan Morimoto
森本 冠
Hidenobu Toyotomi
豊臣 英延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo KK
MIC Co Ltd
Original Assignee
Kyodo KK
MIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo KK, MIC Co Ltd filed Critical Kyodo KK
Priority to JP17367890A priority Critical patent/JPH0463196A/en
Publication of JPH0463196A publication Critical patent/JPH0463196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To widely set magnetic treating conditions by making the cross-sectional area of an inner fluid passage different from that of an outer fluid passage and providing the fluid inlet passage and outlet passage on the same end of the fluid treating device. CONSTITUTION:The fluid in a cooling tower 3 is introduced into the inner fluid passage 8 through a fluid inlet passage 13 by a circulating pump 2 and allowed to cross a magnetic field generated by the annular magnets 6, 6,... arranged so that the like poles are opposed to one another through plural annular spacers 7, 7,... In this case, the fluid is placed under the influence of the plural continuous lines of magnetic force by the magnets 6, 6,... and repeatedly magnetically treated. Since the cross-sectional area of the outer fluid passage 9 is made larger than that of the inner fluid passage 8, the flow velocity of the fluid introduced into the outer fluid passage 9 from the inner fluid passage 8 is reduced, hence the fluid is placed in the magnetic field and electric field different from those in the inner fluid passage 8, the fluid is treated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水、空気等の流体処理装置に係り、より詳細
には、磁界、電界を作用させて、配管や熱交換器内等の
錆、スケール、生物スライム等の付着防止・除去、タン
ク、池等の浄化、植物の育成促進するための流体処理装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fluid processing device for water, air, etc., and more specifically, it applies a magnetic field or an electric field to the inside of piping, heat exchangers, etc. The present invention relates to a fluid treatment device for preventing and removing rust, scale, biological slime, etc., purifying tanks, ponds, etc., and promoting the growth of plants.

〔従来の技術〕[Conventional technology]

従来、流体処理装置としては、種々のものがあり、近年
、磁気等を利用した流体処理装置が提案され、この磁気
利用処理装置は、通常、筒内にリング状磁石を重合して
挿入し、該リング状磁石の内部と外部とにそれぞれ流体
通路を形成し、該筒体の一端より他端方向に流体を流し
、該流体を磁界下におくことにより、流体処理を行うよ
うにした構成とされている。
Conventionally, there are various types of fluid processing devices, and in recent years, fluid processing devices that utilize magnetism have been proposed, and these magnetic processing devices usually include a ring-shaped magnet that is superimposed and inserted into a cylinder. Fluid passages are formed inside and outside of the ring-shaped magnet, and fluid is flowed from one end of the cylinder toward the other end, and the fluid is placed under a magnetic field, thereby processing the fluid. has been done.

そして、このような磁気利用処理装置は、流体内の微量
磁性体にリング状磁石の磁界が作用することにより、該
流体中の磁性体を磁極分化させて流体処理できるという
利点を有する。
Such a processing device using magnetism has the advantage that the magnetic field of the ring-shaped magnet acts on a small amount of magnetic material in the fluid, thereby separating the magnetic material in the fluid into magnetic poles and processing the fluid.

ところで、磁界による流体処理は、■磁石の磁気強度、
■流体の流速、■磁界中を通過する流体の通過角度、の
三要素を考慮し、これらの要素がすべて効率的に作用す
ることにより、この流体処理が行えることが知られてい
る。
By the way, fluid treatment using a magnetic field depends on ■ the magnetic strength of the magnet,
It is known that this fluid treatment can be carried out by considering three factors: (1) the flow rate of the fluid, and (2) the passage angle of the fluid passing through the magnetic field, and when all of these factors work efficiently.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述したような従来の磁気利用処理装置の場合
、次のような問題がある。すなわち、■ 流体が一方向
にのみ流れるように構成されているため、その装置が大
型化する。
However, in the case of the conventional magnetic processing apparatus as described above, there are the following problems. That is, (1) the device is large because it is configured so that the fluid flows only in one direction;

■ 流体流路の断面積、磁石の磁力が一定であるので、
流体処理は流体の流速によって決定される。従って、流
速を変化させる必要があり、その構成が複雑化する。
■ Since the cross-sectional area of the fluid flow path and the magnetic force of the magnet are constant,
Fluid handling is determined by fluid flow rate. Therefore, it is necessary to change the flow velocity, which complicates the configuration.

■ 流体流入路と流体流出路とが、装置の両端部に位置
するので、設置場所が限定される。
(2) Since the fluid inflow path and fluid outflow path are located at both ends of the device, installation locations are limited.

等の問題がある。There are other problems.

本発明は、上述した点に対処して創案したちのであって
、その目的とする処は、従来の磁気処理装置と同様な大
きさであって、その磁気接触時間を長くでき、かつ該装
置内での流体の流速を変化できるようにした磁気処理装
置を提供することにある。
The present invention has been devised in response to the above-mentioned problems, and its purpose is to provide a magnetic processing device of similar size to a conventional magnetic processing device, which can extend its magnetic contact time, and which An object of the present invention is to provide a magnetic processing device in which the flow rate of fluid within the device can be changed.

〔課題を解決するための手段〕[Means to solve the problem]

そして、上記目的を達成するための手段としての本発明
の磁気処理装置は、非磁性内筒と磁性外筒とを有し、該
両筒の両端を閉鎖端とし、該閉鎖端の一端側に流体流入
路と流体流出路を設け、該非磁性内筒内に複数個のリン
グ状磁石を同極同士がリング状スペーサーを介して対面
するように重合して配し、該リング状磁石とリング状ス
ペーサーとによって内部流体通路を形成し、また、上記
非磁性内筒と磁性外筒との間に外部流体ill路を形成
し、上記閉鎖端の他端側で該内部流体通路と外部流体通
路とを流体接続通路によって接続し、また、該内部流体
通路を上記流体流入路と接続すると共に該外部流体通路
と上記流体流出路を接続し、かつ、上記内部流体通路と
外部流体通路の流体111i1J断面積を変え、処理し
ようとする流体を内部流体通路より接続通路を介して外
部流体通路に迂回流通させて流体処理するようにした構
成よりなる。
The magnetic processing device of the present invention as a means for achieving the above object has a non-magnetic inner cylinder and a magnetic outer cylinder, both ends of which are closed ends, and one end side of the closed ends is A fluid inflow path and a fluid outflow path are provided, and a plurality of ring-shaped magnets are placed in the non-magnetic inner cylinder so that the same polarities face each other with a ring-shaped spacer interposed therebetween, and the ring-shaped magnets and the ring-shaped an internal fluid passage is formed by the spacer, and an external fluid passage is formed between the non-magnetic inner cylinder and the magnetic outer cylinder, and the internal fluid passage and the external fluid passage are connected at the other end of the closed end. are connected by a fluid connection passage, and the internal fluid passage is connected to the fluid inflow passage, and the external fluid passage and the fluid outflow passage are connected, and the internal fluid passage and the external fluid passage are disconnected from each other by a fluid 111i1J. It has a structure in which the area is changed and the fluid to be treated is detoured from the internal fluid passageway to the external fluid passageway via the connection passageway for fluid treatment.

また、本発明は、上記構成において、通常、内部流体i
!l路を螺旋通路としている。
Further, in the above configuration, the present invention usually provides an internal fluid i.
! The L path is a spiral path.

〔作用〕[Effect]

本発明の磁気処理装置は、流体流入路に循環ポンプを接
続し、流体流出路と該循環ポンプとを流体処理する流体
タンク等に接続し、該流体タンク内の流体を該循環ポン
プによって本装置と該流体タンクとを循環させるように
して用いる。
In the magnetic processing device of the present invention, a circulation pump is connected to a fluid inflow path, a fluid outflow path and the circulation pump are connected to a fluid tank, etc. for fluid processing, and the fluid in the fluid tank is transferred to the device by the circulation pump. It is used by circulating the fluid tank and the fluid tank.

そして、循環ポンプの作動で、流体タンク内の流体が流
体流入路を介して内部流体通路に流入することより、リ
ング状磁石による磁界中を切るようにして流れると共に
、該流体が磁界の方向と直角に交わることよりファラデ
ーの法則が示すように電界が発生し、該磁界と電界によ
って流体中の分子結合等に変化を付与させられる0次に
、該処理のされた流体は、内部流体通路より接続通路を
介して外側流体通路に迂回・流入する。ここで、該外側
流体通路は、内部流体i!!路と、その通路断面積が異
なることより、該内部流体ill路より外側流体通路に
流入した流体は、その流速が変えられ内部流体通路にお
けるのとは異なる状態での磁界、電界中に置かれ、流体
処理されるように作用する。そして、流体流出路を介し
て流体タンクに移送するようにされる。
When the circulation pump is activated, the fluid in the fluid tank flows into the internal fluid passage through the fluid inflow path, so that it flows through the magnetic field created by the ring-shaped magnet, and the fluid changes in the direction of the magnetic field. When they intersect at right angles, an electric field is generated as indicated by Faraday's law, and the magnetic and electric fields cause changes in the molecular bonds in the fluid. It bypasses and flows into the outer fluid passage via the connecting passage. Here, the outer fluid passage has an inner fluid i! ! Because the channels and their cross-sectional areas are different, the fluid flowing into the outer fluid passage from the inner fluid passage has its flow velocity changed and is placed in a magnetic field and an electric field in a different state from that in the inner fluid passage. , acting as a fluid treatment. The fluid is then transferred to a fluid tank via a fluid outflow path.

従って、処理しようとする流体は、長時間にわたって磁
気接触させられ、かつ、その通路断面積の変化による磁
気処理条件の変化によって、磁気処理を効率的に行える
ように作用する。
Therefore, the fluid to be treated is kept in magnetic contact for a long period of time, and the magnetic treatment conditions change due to the change in the cross-sectional area of the passage, so that the magnetic treatment can be carried out efficiently.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明を具体化した実施例
について説明する。
Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.

ここに、第1.2図は、本発明の一実施例を示し、第1
図は流体処理システムの構成図、第2図は磁気処理装置
の断面図である。
Here, FIG. 1.2 shows one embodiment of the present invention, and FIG.
The figure is a configuration diagram of the fluid treatment system, and FIG. 2 is a sectional view of the magnetic treatment device.

本実施例の流体処理システムは、概略すると、冷却塔内
の流体処理システムであって、流体処理部lに循環ポン
プ2によって冷却塔3内の流体を循環させ、該流体を流
体処理部1で磁気処理できるようにした構成よりなる。
Briefly, the fluid treatment system of this embodiment is a fluid treatment system in a cooling tower, in which fluid in the cooling tower 3 is circulated through a fluid treatment section 1 by a circulation pump 2, and the fluid is passed through the fluid treatment section 1. It has a structure that allows magnetic processing.

流体処理部1は、非磁性内筒4と磁性外筒5とより構成
されている。非磁性内筒4は、磁性外筒5に同心円状に
挿入配置され、非磁性内筒4の内部には、複数個のリン
グ状磁石(永久磁石)6.6・・・が内挿されている。
The fluid processing section 1 is composed of a non-magnetic inner cylinder 4 and a magnetic outer cylinder 5. The non-magnetic inner cylinder 4 is inserted into the magnetic outer cylinder 5 in a concentric manner, and a plurality of ring-shaped magnets (permanent magnets) 6,6... are inserted inside the non-magnetic inner cylinder 4. There is.

リング状磁石6.6・・・は、同極同士(N極同士、S
極同士)が、対面するようにして、リング状スペーサー
7.7・・・を介して、流体の流れ方向に重合配列され
ている。
The ring-shaped magnets 6.6... have the same polarity (N-pole to N-pole, S-pole to
(poles) are arranged so as to face each other and overlap in the fluid flow direction via ring-shaped spacers 7, 7, . . . .

ここで、リング状磁石6.6・・・は、処理する流体に
よって異なるが、通常、フェライト系、合金系で、その
磁気強度が、1500〜10000ガウスのものを用い
ている。また、リング状スペーサー7.7・・・は、磁
性体で形成され、ここでは、磁性を有するステンレス鋼
板を用いている。そして、リング状磁石6.6・・・、
リング状スペーサー7.7・・・との中空部に内部流体
通路8が形成され、非磁性内筒4と磁性外筒5との間に
外部流体通路9が形成され、内部流体通路8、外部流体
通路9は、非磁性内筒4、磁性外筒5の両端を閉鎖端と
する左右の蓋体1O111によって閉塞されている。こ
こで、内部流体通路8と外部流体通路9とは、その通路
断面積を相違させ、外部流体通路9の通路断面積を内部
流体通路8の通路断面積より大きくし、その磁気接触状
態に変化をもたせている。なお、内部流体通路8と外部
流体通路9の断面積は、逆の構成としてもよい、また、
内部流体通路8は、通常、後述する変形例で示すような
螺旋通路を形成するようにしている。該螺旋通路は、正
弦波形、余弦波形等、流体に応じて適宜、使用すること
ができる。
Here, the ring-shaped magnets 6, 6, . . . are usually made of ferrite or alloy, and have a magnetic strength of 1,500 to 10,000 Gauss, although they vary depending on the fluid to be treated. Further, the ring-shaped spacers 7, 7, . . . are formed of a magnetic material, and here, magnetic stainless steel plates are used. And ring-shaped magnet 6.6...
An internal fluid passage 8 is formed in the hollow portion between the ring-shaped spacers 7, 7, . . . , and an external fluid passage 9 is formed between the non-magnetic inner cylinder 4 and the magnetic outer cylinder 5. The fluid passage 9 is closed by left and right lids 1O111 having both ends of the non-magnetic inner tube 4 and the magnetic outer tube 5 as closed ends. Here, the internal fluid passage 8 and the external fluid passage 9 have different passage cross-sectional areas, and the passage cross-sectional area of the external fluid passage 9 is made larger than the passage cross-sectional area of the internal fluid passage 8, and the state of magnetic contact is changed. It has a meaning. Note that the cross-sectional areas of the internal fluid passage 8 and the external fluid passage 9 may be configured to be opposite, or
The internal fluid passage 8 usually forms a spiral passage as shown in a modification described below. The spiral passage may have a sine waveform, a cosine waveform, or the like, depending on the fluid.

そして、一方の蓋体10には、内部流体通路8と外部流
体通路9とを連結する接続通路12が穿設され、また、
他方の蓋体11には、流体流入路13と流体流出路14
が穿設され、流体流入路13は、循環ポンプ2と接続さ
れ、また、流体流出路14は、冷却塔3と接続されてい
る。なお、蓋体10.11は、非磁性内筒4、磁性外筒
5より分離でき、内部のリング状磁石6.6・・・を磁
気強度の異なるものと交換したり、リング状スペーサー
7.7・・・を交換できる構成とされている。
A connecting passage 12 connecting the internal fluid passage 8 and the external fluid passage 9 is bored in one lid 10, and
The other lid 11 has a fluid inflow path 13 and a fluid outflow path 14.
The fluid inflow path 13 is connected to the circulation pump 2, and the fluid outflow path 14 is connected to the cooling tower 3. The lid body 10.11 can be separated from the non-magnetic inner cylinder 4 and the magnetic outer cylinder 5, and the ring-shaped magnets 6, 6, . 7... can be replaced.

循環ポンプ2は、冷却塔3内の流体を流体流入路13を
介して流体処理部1に流入させ、かつ流体流出路14を
介して冷却塔3に戻すためのポンプであって、流体流入
管15によって冷却塔3と流体流入路13とを接続して
いる。また、冷却塔3と流体流出路14とは流体流出管
16によって接続されている。ここで、循環ポンプ2は
、予め、磁気処理部1と一体構造とする場合もある。
The circulation pump 2 is a pump for causing the fluid in the cooling tower 3 to flow into the fluid processing section 1 via the fluid inflow path 13 and return to the cooling tower 3 via the fluid outflow path 14, and is a pump for causing the fluid in the cooling tower 3 to flow into the fluid processing section 1 through the fluid inflow path 13 and return to the cooling tower 3 through the fluid outflow path 14. 15 connects the cooling tower 3 and the fluid inflow path 13. Further, the cooling tower 3 and the fluid outflow path 14 are connected by a fluid outflow pipe 16. Here, the circulation pump 2 may have an integral structure with the magnetic processing section 1 in advance.

そして、本実施例の流体処理システムは、循環ポンプ2
を駆動させることにより、冷却塔3内の流体を磁気処理
できるように作用する。すなわち、循環ポンプ2の作動
で、冷却塔3内の流体が、流体流入路13を介して内部
流体通路8に流入することより、複数個のリング状スペ
ーサー7.7・・・を介して同極同士が対向するように
配列されているリング状磁石6.6・・・による磁界中
を切るようにして流れる。ここで、流体は、複数個のリ
ング状磁石6.6・・・によって、複数の連続する磁力
線下におかれ、繰り返し磁気処理される。また、該流体
は、磁界の方向と直角に交わることよりファラデーの法
則が示すように電界が発生し、該磁界と電界によって流
体中の分子結合等に変化を付与させられるように作用す
る。ここで、螺旋通路の場合は、−層、通路内で旋回ミ
キシングされるように作用する。
The fluid treatment system of this embodiment has a circulation pump 2.
By driving the cooling tower 3, the fluid in the cooling tower 3 can be magnetically treated. That is, when the circulation pump 2 is operated, the fluid in the cooling tower 3 flows into the internal fluid passage 8 through the fluid inflow path 13, and the fluid flows through the plurality of ring-shaped spacers 7, 7, and so on. It flows in a magnetic field created by ring-shaped magnets 6,6, whose poles are arranged to face each other. Here, the fluid is placed under a plurality of continuous lines of magnetic force by a plurality of ring-shaped magnets 6, 6, and subjected to repeated magnetic treatment. Further, since the fluid crosses the direction of the magnetic field at right angles, an electric field is generated as indicated by Faraday's law, and the magnetic field and the electric field act to change the molecular bonds in the fluid. Here, in the case of a spiral passage, the layer acts as if swirling mixing occurs within the passage.

次に、該処理された流体は、内部流体通路8より接続通
路12を介して外部流体通路9に迂回・流入、すなわち
、内部流体通路8の流体の通過方向と逆方向に流れる。
Next, the treated fluid detours and flows into the external fluid passage 9 from the internal fluid passage 8 via the connecting passage 12, that is, flows in a direction opposite to the direction in which the fluid passes through the internal fluid passage 8.

ここで、外部流体通路9は、内部流体通路8より、その
通路断面積が大きく形成されていることより、内部流体
通路8より外部流体通路9に流入した流体は、その流速
が低速度とされ、内部流体通路8におけるのとは異なる
状態での磁界、電界中に置かれ、流体処理されるように
作用する。そして、流体は、流体流出路14を介して冷
却塔3に移送・循環される。従って、処理しようとする
流体は、長時間にわたって磁気接触させられ、かつ、そ
の通路断面積の変化による磁気処理条件の変化によって
、磁気処理を効率的に行えるように作用する。
Here, since the external fluid passage 9 is formed to have a larger passage cross-sectional area than the internal fluid passage 8, the fluid flowing into the external fluid passage 9 from the internal fluid passage 8 has a low flow velocity. , placed in a magnetic field, electric field in a different state than in the internal fluid passageway 8 and acting to treat the fluid. The fluid is then transferred and circulated to the cooling tower 3 via the fluid outflow path 14. Therefore, the fluid to be treated is kept in magnetic contact for a long period of time, and the magnetic treatment conditions change due to the change in the cross-sectional area of the passage, so that the magnetic treatment can be carried out efficiently.

なお、本発明は、上述した実施例に限定されるものでな
く、本発明の要旨を変更しない範囲内で変形実施できる
ものを含む。因みに、第3図に示すように、前述した実
施例における磁気処理部を左右方向に併置するようにし
た構成としてもよいことは当然である。また、必要に応
じて、リング状磁石の形状(内部中空部の大きさ)を変
え、内部流体通路、外部流体通路の断面積を変えるよう
にしてもよい、また、内部流体通路を螺旋通路として形
成するようにしてもよい、この場合、前述した実施例と
は別構成とし、内部流体通路と外部流体通路とを平行し
て流体が通過するようにして、両道路の出口で、両道路
を通った流体を混合させるようにした構成とすることが
好ましい(第4図参照)、そして、この場合は、内径断
面が、1536−1外径断面が、2.5cdとし、例え
ば、100017分の流量の場合、その流速を、41.
3m/秒となる。そして、流体が振動して、その磁気作
用を一層良好とする。
It should be noted that the present invention is not limited to the above-described embodiments, but includes modifications that can be made without departing from the gist of the present invention. Incidentally, as shown in FIG. 3, it goes without saying that the magnetic processing sections in the above-described embodiments may be arranged side by side in the left-right direction. Furthermore, if necessary, the shape of the ring-shaped magnet (the size of the internal hollow part) may be changed to change the cross-sectional area of the internal fluid passage and the external fluid passage, or the internal fluid passage may be changed to a spiral passage. In this case, the structure may be different from the above-described embodiment, and the fluid may pass through the internal fluid passage and the external fluid passage in parallel, and both roads may be connected at the exit of both roads. It is preferable to have a configuration in which the fluid passing through is mixed (see Fig. 4).In this case, the inner diameter cross section is 1536-1, and the outer diameter cross section is 2.5 cd, for example, 1/100017. In the case of flow rate, the flow rate is 41.
It becomes 3m/sec. The fluid then vibrates, making its magnetic action even better.

〔発明の効果〕〔Effect of the invention〕

以上の説明より明らかなように、本発明の磁気処理装置
によれば、■内部流体通路と外側流体通路とを接続通路
を介して迂回通路とし、■内部流体通路と外側流体゛通
路との通路断面積を相違させ、■流体流入路と流体流出
路とを装置の同一端部に配した構成としているので、流
体の磁気処理を従来の形態と同様の形態(大きさ)で、
ポンプによる流速を変化させることなく、その磁気処理
条件を幅広く設定でき、効率的な磁気処理ができるとい
う効果を有する。
As is clear from the above description, according to the magnetic processing device of the present invention, (1) the inner fluid passage and the outer fluid passage are made into a detour passage via the connecting passage, and (2) the inner fluid passage and the outer fluid passage are connected as a detour passage. The cross-sectional areas are different, and the fluid inflow channel and fluid outflow channel are arranged at the same end of the device, so magnetic processing of fluid can be performed in the same form (size) as the conventional form.
This has the effect that the magnetic processing conditions can be set over a wide range without changing the flow rate by the pump, and efficient magnetic processing can be performed.

また、本発明の流体処理装置は、流体がリング状磁石の
内部と外部とに形成される内部流体illと外部流体通
路に迂回するように流れるので、その構成をコンパクト
化でき、また、流体流入路と流体流出路とが、装置の一
方の端部に位置するようにしているので、種々の形態で
設置できるという効果を有する。
Further, in the fluid treatment device of the present invention, the fluid flows in a detour manner to the internal fluid ill and the external fluid passage formed inside and outside the ring-shaped magnet, so the configuration can be made compact, and the fluid inflow Since the channel and the fluid outlet channel are located at one end of the device, it has the advantage that it can be installed in various configurations.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は、本発明の一実施例を示し、第1図は流体
処理システムの構成図、第2図は磁気処理装置の断面図
、第3図は、本発明の他の実施例を示す斜視図、第4図
は、本発明の変形例の断面図である。 ■・・・流体処理部、2・・・循環ポンプ、三・・・冷
却塔、4・・・非磁性内筒、5・・・磁性外筒、6・・
・リング状磁石、7・・・リング状スペーサー、8・・
・内部流体通路、9・・・外部流体通路、10.11・
・・蓋体、12・・・接続通路、13・・・流体流入路
、14・・・流体流出路、15・・・流体流入管、16
・・・流体流出管 fs3図 / 第4図 特 許 出願人 株式会社キョウドウ 株式会社 ミック 代理人 弁理士  吉 村 博 文
1.2 shows one embodiment of the present invention, FIG. 1 is a block diagram of a fluid treatment system, FIG. 2 is a sectional view of a magnetic processing device, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a sectional view of a modification of the present invention. ■...Fluid treatment section, 2...Circulation pump, 3...Cooling tower, 4...Non-magnetic inner cylinder, 5...Magnetic outer cylinder, 6...
・Ring-shaped magnet, 7...Ring-shaped spacer, 8...
- Internal fluid passage, 9... External fluid passage, 10.11.
... Lid body, 12... Connection passage, 13... Fluid inflow path, 14... Fluid outflow path, 15... Fluid inflow pipe, 16
・・・Fluid Outflow Pipe FS3 Diagram/Figure 4 Patent Applicant: Kyodo Co., Ltd. Mick Agent Patent Attorney: Hirofumi Yoshimura

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性内筒と磁性外筒とを有し、該両筒の両端を
閉鎖端とし、該閉鎖端の一端側に流体流入路と流体流出
路を設け、該非磁性内筒内に複数個のリング状磁石を同
極同士がリング状スペーサーを介して対面するように重
合して配し、該リング状磁石とリング状スペーサーとに
よって内部流体通路を形成し、また、上記非磁性内筒と
磁性外筒との間に外部流体通路を形成し、上記閉鎖端の
他端側で該内部流体通路と外部流体通路とを流体接続通
路によって接続し、また、該内部流体通路を上記流体流
入路と接続すると共に該外部流体通路と上記流体流出路
を接続し、かつ、上記内部流体通路と外部流体通路の流
体通過断面積を変え、処理しようとする流体を内部流体
通路より接続通路を介して外部流体通路に迂回流通させ
て流体処理するようにしたことを特徴とする流体処理装
置。
(1) It has a non-magnetic inner cylinder and a magnetic outer cylinder, both ends of the cylinders are closed ends, a fluid inflow path and a fluid outflow path are provided on one end side of the closed end, and a plurality of fluid inflow paths and fluid outflow paths are provided in the non-magnetic inner cylinder. ring-shaped magnets are arranged in a superimposed manner so that the same poles face each other through a ring-shaped spacer, an internal fluid passage is formed by the ring-shaped magnets and the ring-shaped spacer, and the non-magnetic inner cylinder and a magnetic outer cylinder, the internal fluid passage and the external fluid passage are connected by a fluid connection passage on the other end side of the closed end, and the internal fluid passage is connected to the fluid inflow. the external fluid passage and the fluid outflow passage, and change the fluid passage cross-sectional area of the internal fluid passage and the external fluid passage, so that the fluid to be treated is transferred from the internal fluid passage through the connecting passage. 1. A fluid treatment device characterized in that fluid treatment is performed by bypassing the fluid through an external fluid passage.
(2)内部流体通路を螺旋通路としている請求項1に記
載の流体処理装置。
(2) The fluid treatment device according to claim 1, wherein the internal fluid passage is a spiral passage.
JP17367890A 1990-06-30 1990-06-30 Fluid treating device Pending JPH0463196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17367890A JPH0463196A (en) 1990-06-30 1990-06-30 Fluid treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17367890A JPH0463196A (en) 1990-06-30 1990-06-30 Fluid treating device

Publications (1)

Publication Number Publication Date
JPH0463196A true JPH0463196A (en) 1992-02-28

Family

ID=15965073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17367890A Pending JPH0463196A (en) 1990-06-30 1990-06-30 Fluid treating device

Country Status (1)

Country Link
JP (1) JPH0463196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168003A1 (en) * 2013-04-10 2014-10-16 株式会社大丸製作所 Device for magnetic degradation of solid organic matter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028558U (en) * 1983-08-03 1985-02-26 三菱自動車工業株式会社 Fixed structure of seat belt webbing protector
JPS635021A (en) * 1986-06-20 1988-01-11 エラン コ−ポレ−シヨン ピ− エル シ− Absorption controlled drug composition
JPS63137793A (en) * 1986-11-17 1988-06-09 ベントウラマ・アクチエンゲゼルシヤフト Method and device for sterilizing aqueous medium, particularly, drinking water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028558U (en) * 1983-08-03 1985-02-26 三菱自動車工業株式会社 Fixed structure of seat belt webbing protector
JPS635021A (en) * 1986-06-20 1988-01-11 エラン コ−ポレ−シヨン ピ− エル シ− Absorption controlled drug composition
JPS63137793A (en) * 1986-11-17 1988-06-09 ベントウラマ・アクチエンゲゼルシヤフト Method and device for sterilizing aqueous medium, particularly, drinking water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168003A1 (en) * 2013-04-10 2014-10-16 株式会社大丸製作所 Device for magnetic degradation of solid organic matter

Similar Documents

Publication Publication Date Title
US4933151A (en) Device for magnetically treating hydrocarbon fuels
US4532040A (en) Water treatment device
US20090065438A1 (en) Fluid magnetic treatment unit having moving or stationary magnets
ES8300308A1 (en) Bypass water conditioner.
EP1059268A2 (en) Device for treating a fluid with ultra-high magnetic force
CN205461606U (en) High -efficient deironing filter of fluidic
JPS59189991A (en) Water disposal device
JP2007069192A (en) Apparatus for magnetically treating water
JPH0463196A (en) Fluid treating device
RU66329U1 (en) MAGNETIC LIQUID TREATMENT DEVICE IN A PIPELINE
JP3933516B2 (en) Liquid magnetizer for use in flow path
JP4038279B2 (en) Water treatment equipment using multipolar magnetic field
ATE229921T1 (en) PHYSICAL FLUID HANDLER
JPS6253714A (en) Magnetic cleaning apparatus for fluid
JPH02303595A (en) Feed water cleaning device
JPH031119Y2 (en)
JPH11221572A (en) Liquid reforming method using magnet and ceramic and device therefor
KR100249076B1 (en) Liquid magnetizer
RU16660U1 (en) APPARATUS FOR MAGNETIC TREATMENT OF LIQUIDS AND (OR) GASES (OPTIONS)
JPH1133556A (en) Stirring type apparatus for magnetically treated water
JP3460126B2 (en) Water quality activation device
KR20000067720A (en) Disposal unit of magnetizing water
JPH091152A (en) Water treating device
RU2092446C1 (en) Apparatus for magnetically treating liquids
JP2003053347A (en) Device for modifying liquid by using magnet