JPH0463169A - Coating method with aerosol - Google Patents

Coating method with aerosol

Info

Publication number
JPH0463169A
JPH0463169A JP17139990A JP17139990A JPH0463169A JP H0463169 A JPH0463169 A JP H0463169A JP 17139990 A JP17139990 A JP 17139990A JP 17139990 A JP17139990 A JP 17139990A JP H0463169 A JPH0463169 A JP H0463169A
Authority
JP
Japan
Prior art keywords
aerosol
particles
coated
solvent
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17139990A
Other languages
Japanese (ja)
Inventor
Masabumi Matsunaga
正文 松永
Takeshi Moriyama
剛 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson KK
Original Assignee
Nordson KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson KK filed Critical Nordson KK
Priority to JP17139990A priority Critical patent/JPH0463169A/en
Publication of JPH0463169A publication Critical patent/JPH0463169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To increase coating efficiency by heating an aerosol to a temp. above the temp. of a body to be coated during generation and/or transfer, condensing vapor of a solvent present in an atmosphere with particles of the aerosol in the atmosphere as nuclei, further condensing the vapor on the surface of the body to be coated and sticking the particles of the aerosol and the solvent on the body to be coated. CONSTITUTION:A soln. L to be sprayed to increase the amt. of vapor or a carrier gas CG and/or an aerosol generator 1 is heated or a generated aerosol is further heated during transfer. A body Oa to be coated is set at the lower part of a coating booth. Since vapor of a solvent in the aerosol is in a satd. state at a temp. above the temp. of the body Oa, the vapor is condensed by the temp. difference with particles of the aerosol as nuclei and further condensed on the surface of the body Oa. Fine particles R carried by the carrier gas collide against drops formed by the condensation, the kinetic energy of the particles is absorbed in the drops to reduce the bound of the particles and the particles stick on the drops. When a large number of such drops gather, a liq. film Sf is formed, covers the entire surface of the body Oa and can further reduce the bound of the fine particles.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はエアロゾルの塗布方法に係わる。[Detailed description of the invention] [Industrial application fields] The present invention relates to an aerosol application method.

[従来の技術] 従来のエアロゾル塗布方法の代表的例をあげると、第5
図に見られるように、液体(L3)などを加圧してスプ
レィノズル(54)から噴出し、それを硬板(55)に
82突させて、より黴細な微粒子となし、それらを導入
したキャリアガス(CG3 )などの気流に乗せて被塗
物(Oc)面上まで運び、その速度の下に被塗物(Oc
)面に打ち当て、又は静電気など(静電矢印加装N58
)の力などにより被塗物(Oc)面上に付着即ち塗布し
ていた。
[Prior art] A typical example of a conventional aerosol application method is the fifth method.
As shown in the figure, the liquid (L3) etc. was pressurized and ejected from the spray nozzle (54), and it was made to hit the hard plate (55) 82 to form finer particles, which were then introduced. It is carried on the airflow of carrier gas (CG3) to the surface of the object to be coated (Oc), and the surface of the object to be coated (Oc) is
) against a surface, or static electricity (electrostatic arrow added N58)
) was applied to the surface of the object to be coated (Oc).

[解決しようとする問題点] 上桁の如く、エアロゾルの粒子はキャリアガス即ち搬送
気流に乗って被塗物面上に打ち当てられていたが、この
際、これらの粒子の跳返り(バウンド)は避けられなか
った。
[Problem to be solved] As shown in the upper figure, aerosol particles were hit on the surface of the object to be coated while being carried by a carrier gas, but at this time, these particles rebounded (bound). was unavoidable.

元来、微粒子(1ミクロン前後)というのは、表面積/
重量が大きく、即ち比較的空気抵抗が大であるのに反し
、慣性のカが小であるため、微粒子の周辺の気体の動き
に左右され易い。換言すれば、気体中の微粒子の運動速
度が終末速度に達するまでの時間は殆どなく、従って、
エアロゾル粒子の初速度と気体の流速とは殆ど無関係な
のである。文献、ウィリアム、C,ハインズ蒼:「エア
ロゾルテクノロジー」弁上書院(昭60)によると粒径
(μm)        終末速度に達する時間fms
)100   ’             9210
               0.941     
          0.011上記の如く、殆ど瞬間
的に終末速度に達するのである。即ち、エアロゾル粒子
は、殆ど瞬間的に気体の流速と等しくなるのである。
Originally, fine particles (around 1 micron) have a surface area of
Although they have a large weight, that is, a relatively large air resistance, they have a small inertial force, so they are easily affected by the movement of the gas around the particles. In other words, there is very little time for the velocity of the particles in the gas to reach the terminal velocity, and therefore,
The initial velocity of aerosol particles is almost unrelated to the gas flow velocity. Literature, William C. Hines Ao: "Aerosol Technology" Benjo Shoin (1980) Particle size (μm) Time to reach terminal velocity fms
)100' 9210
0.941
0.011 As mentioned above, the terminal velocity is reached almost instantaneously. That is, the aerosol particles almost instantaneously become equal to the gas flow velocity.

従って、静止気体中ではエアロゾル粒子は殆ど動かなく
なり、被塗物までの到着時間が長くなる。一方、キャリ
アガスの流速を上げると、エアロゾル粒子はそれと殆ど
rfIJ遼となり、被塗物面上に衡突し、跳返り現象が
発生し、付着効率が低下するのである。
Therefore, aerosol particles hardly move in stationary gas, and the time required for them to reach the object to be coated becomes longer. On the other hand, when the flow rate of the carrier gas is increased, most of the aerosol particles become rfIJ particles and collide with the surface of the object to be coated, causing a rebound phenomenon and reducing the adhesion efficiency.

本発明の動機は、上述の如く、塗布時におけるエアロゾ
ル粒子のバウンドを少なくして塗着効率を上げ、同時に
放電による被塗物の破壊や危険性などを解消して安全な
塗布方法を実施すること[問題点を解決するための手段
] 前述したように、非常に微細なエアロゾル粒子(例えば
1ミクロン前後)は、キャリアガスによって移動させら
れ、ある程度の速度を持った運動エネルギをもって、w
1塗物面上に開業する。しかし、それら微粒子の付1す
る力はVan derすaals  力若しくは若干の
荷電を持った静電気による引力であって、非常に小さい
エネルギである。他方上記被塗物への開業により、変換
された跳ね返りエネルギはより大きく、上記エアロゾル
粒子は付着し難い。
As mentioned above, the motivation of the present invention is to reduce bounce of aerosol particles during coating to increase coating efficiency, and at the same time, to implement a safe coating method by eliminating damage to the coated object or danger caused by electrical discharge. [Means for solving the problem] As mentioned above, very fine aerosol particles (for example, around 1 micron) are moved by a carrier gas, and with kinetic energy at a certain speed, w
1 Open on the painted surface. However, the force exerted by these fine particles is the Van der Saals force or the attractive force due to slightly charged static electricity, and has very small energy. On the other hand, due to the opening on the object to be coated, the converted rebound energy is larger and the aerosol particles are less likely to adhere.

例えば、被塗物がプラスチックと、より硬い石英との場
合には、それらの付着力には3倍も相異があると言われ
ている。
For example, when the object to be coated is plastic and harder quartz, it is said that there is a three-fold difference in adhesion between them.

本発明の目的は、エアロゾル塗布方法において、エアロ
ゾルの分散質即ち粒子をバウンドを少なくして効率的に
被塗物面に塗着せしめ、更に静電気の荷電によって、よ
り効果的に塗着効率を上げることである。
An object of the present invention is to efficiently apply aerosol dispersoids, that is, particles, to the surface of a workpiece by reducing bounce, and to more effectively increase the application efficiency by electrostatic charging in an aerosol application method. That's true.

本発明の要旨は、エアロゾル生成装置により発生したエ
アロゾルを被塗物面上」で導いて塗布する方法において
、そのエアロゾル中に溶媒蒸気を存在させ、かつエアロ
ゾル発生工程及び/又はエアロゾル移送行程を被塗物温
度よりも高い温度まで加温し、その温度差により被塗物
上方の雰囲気中に存在する溶媒蒸気を上記雰囲気中のエ
アロゾルの粒子を核にして凝結させ、また被塗物面上に
も結露させつつ、上記導かれてきたエアロゾルの分散質
【以下粒子と称す)を被塗物に付着せしめ、しかる後、
溶媒を蒸発させ、残されたエアロゾル粒子のみを塗布す
ることを特徴とするエアロゾルの塗布方法である。
The gist of the present invention is a method of guiding and coating an aerosol generated by an aerosol generation device onto the surface of a workpiece, in which solvent vapor is present in the aerosol, and the aerosol generation step and/or aerosol transfer step is performed. The material is heated to a temperature higher than the temperature of the object to be coated, and the temperature difference causes the solvent vapor present in the atmosphere above the object to be condensed with aerosol particles in the atmosphere as nuclei, and the surface of the object to be coated is heated. While condensing, the aerosol dispersoids (hereinafter referred to as particles) introduced above are allowed to adhere to the object to be coated, and then,
This aerosol coating method is characterized by evaporating the solvent and coating only the remaining aerosol particles.

また、エアロゾル及び/又は被塗物に、静電気を荷電す
ることにより、塗着効率を上げることもできる。
Furthermore, the coating efficiency can be increased by charging the aerosol and/or the object to be coated with static electricity.

次に、本発明の詳細な説明する。エアロゾル生成−に当
たって使用される液体を、溶媒の含まれている溶液と、
含まれていない13体の二つに分けて説明する。
Next, the present invention will be explained in detail. The liquid used for aerosol generation is a solution containing a solvent,
I will explain the 13 bodies that are not included in two parts.

(1)溶液の場合 先ず、従来のエアロゾル生成方法を簡単に説明する。第
1図を参照されたい。液体(L)をポンプアップして、
チャンバ(2)内にてスプしイノズル(4)より噴出、
そのスプレィを硬板(5)に打ち当て、微細化された微
粒子を得る。同時に上記液体(L)中の溶媒も気化し、
これら気体と微粒子より成るエアロゾル(As)が生成
される。また他方、チャンバ(2)の下方よりは、必要
とするガス(G)が導入され、これはキャリアガス(C
G)として上記エアロゾル(As)を塗布部(22)内
に運ぶ。
(1) In the case of solutions First, a conventional aerosol generation method will be briefly explained. Please refer to FIG. Pump up the liquid (L) and
Sprays in the chamber (2) and ejects from the nozzle (4),
The spray is applied to a hard plate (5) to obtain fine particles. At the same time, the solvent in the liquid (L) is also vaporized,
Aerosol (As) consisting of these gases and fine particles is generated. On the other hand, a necessary gas (G) is introduced from below the chamber (2), and this is a carrier gas (C
As G), the aerosol (As) is transported into the application section (22).

上記エアロゾル内の気体には、上述の如く溶媒の気化し
た蒸気が含まれており、これら蒸気量のより多いことが
望ましい。
The gas in the aerosol contains vapors of the solvent as described above, and it is desirable that the amount of these vapors be as large as possible.

そのためには、スプレィする溶′e(L3やキャリアガ
ス(CG)及び/又はエアロゾル発生装置! (1)を
加温して、即ちエアロゾル発生工程を加温すれば良く、
更に又、このエアロゾルを移送する移送行程においても
加温すれば良い。また塗布部の下方には、被塗物(Da
)が置かれ、エアロゾル内の溶媒蒸気はその被塗物温度
よりも高い温度において飽和状態となっているので、そ
の温度差により、溶媒蒸気はエアロゾルの粒子を核とし
て凝結し、また被塗物面上にも結露(Sc)する(第2
図コ照)、、これら結露した露、尚の上に、キャリアガ
スに乗ってきた微粒子fR)は打ち当たる。たたし、こ
れらn滴の液体により、微粒子の運動エネルギは吸収さ
れ、バウンドが減少し、同n1jI上に付着する。
To do this, it is sufficient to heat the solution to be sprayed (L3, carrier gas (CG) and/or aerosol generator! (1), that is, to heat the aerosol generation step.
Furthermore, it is sufficient to heat the aerosol during the transfer process. In addition, below the coating part, there is a
), and the solvent vapor in the aerosol is saturated at a temperature higher than the temperature of the object to be coated, so due to the temperature difference, the solvent vapor condenses with the aerosol particles as nuclei, and Condensation (Sc) also occurs on the surface (second
In addition to the condensed dew (see figure), the fine particles fR) carried by the carrier gas are struck. However, the kinetic energy of the fine particles is absorbed by these n liquid drops, the bounce is reduced, and the fine particles are deposited on the same n1jI.

なお、これらm滴が多数集合すると、第3図に示すよう
に、液膜状(Sf)となって、被塗物面上を一面に覆い
、微粒子のバウンドをより少なくすることができるので
ある。
In addition, when a large number of these m droplets gather, as shown in Figure 3, they form a liquid film (Sf) that completely covers the surface of the object to be coated, making it possible to further reduce the bounce of fine particles. .

上述のエアロゾルの生成材料を溶液としたが、それは懸
濁液及び乳1111W等も含まれることは公知の通りで
ある。次に懸濁液を使用した場合の実験例について述べ
る。
Although the above-mentioned aerosol generating material was used as a solution, it is known that it also includes suspensions, milk 1111W, and the like. Next, an experimental example using a suspension will be described.

実験例 t!il液   水(純粋)           9
2重量部ジルコニア粉(粒径5μm)     7重量
部ロジン系水溶性用脂        1重量部室温 
   25℃ 液圧    40Kg/cm2(プランジャポンプにて
)W!     60℃ エアロゾル   分散質 ジルコニア粉及びロジン系水
溶性樹脂 分散媒 水 キャリアガス  乾燥空気 流速(エアロゾル移送管19中にて) 8m/min エアロゾル移送管上の加熱温度   80℃被塗物  
 石英ガラス   10cmX10cm被塗物温度 2
0℃ 所要時間(上記被塗物1枚に対し)  5分結果   
5分後にガラス面1mm2当たり約2千個のジルコニア
粉が均一に分布付着する塗布面を得ることができた。
Experiment example t! IL liquid water (pure) 9
2 parts by weight Zirconia powder (particle size 5 μm) 7 parts by weight Rosin water-soluble fat 1 part by weight Room temperature
25℃ Liquid pressure 40Kg/cm2 (with plunger pump) W! 60°C Aerosol Dispersoid Zirconia powder and rosin-based water-soluble resin dispersion medium Water carrier gas Dry air flow rate (in the aerosol transfer pipe 19) 8 m/min Heating temperature on the aerosol transfer pipe 80°C Object to be coated
Quartz glass 10cm x 10cm object temperature 2
0℃ Required time (for 1 piece of the above-mentioned object) 5 minutes Result
After 5 minutes, it was possible to obtain a coated surface on which about 2,000 pieces of zirconia powder were evenly distributed and adhered per 1 mm 2 of the glass surface.

溶液及び乳濁液については、未実験につきデータなし。There is no data regarding solutions and emulsions as they have not been tested.

よって溶媒蒸気発生装置(47)により、適当する溶媒
蒸気を同室内に導入してやる。それによって、同室内で
はエアロゾルの粒子を核とする凝結や、被塗物(Ob)
面上への結露が行われて、上記被塗物上にそれら溶媒の
露滴や[膜が形成されるのである。これらに、エアロゾ
ル中の微粒子が、バウンドすることが少なく、効率的に
塗着することは、上積と同様である。
Therefore, a suitable solvent vapor is introduced into the same chamber by the solvent vapor generator (47). As a result, in the same room, condensation with aerosol particles as a nucleus and the object to be coated (Ob)
Condensation occurs on the surface, forming dew droplets or a film of the solvent on the object to be coated. The fine particles in the aerosol are less likely to bounce and are efficiently coated on these surfaces, similar to the case with the top layer.

上述のように、エアロゾルの分散質としての固体微粒子
には、単一成分の場合と複数成分との場合がある。液体
の場合も同様に単一成分と複数成分との場合がある。ま
た、これらが、液体の微粒子と固体の微粒子との混合体
の場合もある。
As mentioned above, the solid fine particles used as the dispersoid of the aerosol may have a single component or multiple components. Similarly, in the case of a liquid, there may be a single component or a plurality of components. Further, these may be a mixture of liquid fine particles and solid fine particles.

(2)溶融体の場合 溶媒を含まない溶融体のエアロゾルを生成した場合であ
る。第4図を参照されたい。加熱溶融された液状の溶融
体(HM)は、スプレィノズル(34)から噴出し、硬
板(35)に打ち当てられて微粒子化する。ただし前述
の液体の場合のように溶媒は含まれていないので、溶融
体の単体の固体の微粒子より成るエアロゾルが生成され
る。それが、キャリアガスに乗せられ、塗布室C42)
内に至る。同室の下方部には被塗物(Ob)の置かれて
いることは前述と同様であるが、同室内のエアロゾルの
中には溶媒が含まれていないので、溶媒蒸気と被塗物と
の温度差による結露現象は起こらない。
(2) In the case of a molten body This is a case where an aerosol of a molten body containing no solvent is generated. Please refer to Figure 4. The heated liquid melt (HM) is ejected from a spray nozzle (34), and is struck against a hard plate (35) to become fine particles. However, since no solvent is included as in the case of the liquid described above, an aerosol consisting of single solid particles of the melt is produced. It is placed on the carrier gas, coating chamber C42)
Reach within. As mentioned above, the object to be coated (Ob) is placed in the lower part of the same room, but since the aerosol in the same room does not contain solvent, the solvent vapor and the object to be coated are separated. Condensation due to temperature differences does not occur.

[効果] 本発明の方法によれば、生成されたエアロゾルの粒子を
、バウンドすることなく効果的に被塗物面上に塗布する
ことができるのである。
[Effect] According to the method of the present invention, the generated aerosol particles can be effectively applied onto the surface of the object to be coated without bouncing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエアロゾル塗布方法の説明図 第2図
は同上図上”A”部における結露状態図 第3図は同じ
< ” A ”部における結露の集合して形成された液
膜上に微粒子の付着する状態説明図 第4図はエアロゾ
ルの分散質が溶融体である場合のエアロゾル塗布方法 
第5図は従来のエアロゾル塗布方法主要な符合の説明
Figure 1 is an explanatory diagram of the aerosol application method of the present invention. Figure 2 is a diagram of dew condensation at the "A" section in the same figure as above. Figure 3 is a liquid film formed by the collection of dew condensation at the "A" section of the same figure. Figure 4 shows the aerosol application method when the aerosol dispersoid is a melt.
Figure 5 is an explanation of the main symbols of the conventional aerosol application method.

Claims (1)

【特許請求の範囲】 1、エアロゾル生成装置より発生したエアロゾルを被塗
物面上まで導いて塗布する方法において、エアロゾル中
に溶媒蒸気を存在させ、かつエアロゾル発生工程及び/
又はエアロゾル移送行程において被塗物(Oa)温度よ
りも高い温度まで加温せしめ、その温度差により被塗物
上方の雰囲気中に存在する溶媒蒸気を上記雰囲気中のエ
アロゾルの粒子(R)を核として凝結させ、また被塗物
面上にも結露させつつ、上記エアロゾルの粒子(R)を
溶媒と共に被塗物上に付着せしめ、しかる後、上記溶媒
を蒸発させ、残されたエアロゾルの粒子(R)のみを塗
布することを特徴とするエアロゾルの塗布方法。 2、エアロゾル及び/又は被塗物に、静電気を荷電する
ことを特徴とする特許請求の範囲第1項記載のエアロゾ
ルの塗布方法。 3、エアロゾルの分散質が、単一成分若しくは複数成分
の固体粒子から成る特許請求の範囲第1項記載のエアロ
ゾルの塗布方法。 4、エアロゾルの分散質が、単一成分若しくは複数成分
の液体粒子から成る特許請求の範囲第1項記載のエアロ
ゾルの塗布方法。 5、エアロゾルの分散質が、単一成分若しくは複数成分
より成る固体粒子と単一成分若しくは複数成分より成る
液体粒子とから成る固体と液体との混合粒子であること
を特徴とする特許請求の範囲第1項記載のエアロゾルの
塗布方法。
[Claims] 1. A method of guiding and coating an aerosol generated from an aerosol generation device onto the surface of the object to be coated, in which solvent vapor is present in the aerosol, and the aerosol generation step and/or
Alternatively, in the aerosol transfer process, the object to be coated (Oa) is heated to a higher temperature than the object to be coated (Oa), and the temperature difference causes the solvent vapor present in the atmosphere above the object to be nucleated by aerosol particles (R) in the atmosphere. The aerosol particles (R) are deposited together with the solvent on the object to be coated while condensing on the surface of the object to be coated, and then the solvent is evaporated to form the remaining aerosol particles (R). An aerosol application method characterized by applying only R). 2. The method for applying an aerosol according to claim 1, which comprises charging the aerosol and/or the object to be coated with static electricity. 3. The method for applying an aerosol according to claim 1, wherein the dispersoid of the aerosol consists of solid particles of a single component or multiple components. 4. The method for applying an aerosol according to claim 1, wherein the dispersoid of the aerosol consists of liquid particles of a single component or a plurality of components. 5. Claims characterized in that the dispersoid of the aerosol is a mixed particle of solid and liquid consisting of solid particles consisting of a single component or multiple components and liquid particles consisting of a single component or multiple components. The method for applying an aerosol according to item 1.
JP17139990A 1990-06-29 1990-06-29 Coating method with aerosol Pending JPH0463169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17139990A JPH0463169A (en) 1990-06-29 1990-06-29 Coating method with aerosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17139990A JPH0463169A (en) 1990-06-29 1990-06-29 Coating method with aerosol

Publications (1)

Publication Number Publication Date
JPH0463169A true JPH0463169A (en) 1992-02-28

Family

ID=15922437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17139990A Pending JPH0463169A (en) 1990-06-29 1990-06-29 Coating method with aerosol

Country Status (1)

Country Link
JP (1) JPH0463169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812606A (en) * 1994-06-30 1996-01-16 Sumitomo Chem Co Ltd Production of oxygen-containing compound by using c4-lpg
US5504766A (en) * 1992-04-13 1996-04-02 Fanuc, Ltd. Controller for laser beam oscillator
US5878355A (en) * 1995-09-01 1999-03-02 Encapsulation Technology, Llc Method and apparatus for encapsulating particulates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504766A (en) * 1992-04-13 1996-04-02 Fanuc, Ltd. Controller for laser beam oscillator
JPH0812606A (en) * 1994-06-30 1996-01-16 Sumitomo Chem Co Ltd Production of oxygen-containing compound by using c4-lpg
US5878355A (en) * 1995-09-01 1999-03-02 Encapsulation Technology, Llc Method and apparatus for encapsulating particulates
US6102992A (en) * 1995-09-01 2000-08-15 Encapsulation Technology, Llc Method and apparatus for encapsulating particulates

Similar Documents

Publication Publication Date Title
US6139913A (en) Kinetic spray coating method and apparatus
CA2198622A1 (en) Suspension plasma spray deposition
JP4237260B2 (en) Method and apparatus for manufacturing thin wall elastomeric products
JPS6369555A (en) Electrostatic spray coating head and coating method using said head
EP0152200A3 (en) Fluid application method and apparatus
TW200308187A (en) An atmospheric pressure plasma assembly
EP2906353A1 (en) Method and apparatus for electrostatic painting
JPH10298733A (en) Method for adhering metal coating to surface of cast metal substrate
US3896760A (en) Apparatus for making self-locking internally threaded articles
US5156880A (en) Space charge electrostatic coating method and apparatus
US3377183A (en) Electrostatic powder coating on heated parts
TW201321088A (en) Apparatus and process for depositing a thin layer of resist on a substrate
US3208951A (en) Electrostatic encapsulation
JPS59219751A (en) Method for matting recording material
KR20080018918A (en) Method for coating turbine engine components with high velocity
JPH0463169A (en) Coating method with aerosol
JPH02122873A (en) Applying method for aerosol
JPH0785790B2 (en) Aerosol application method
US4433003A (en) Electrogasdynamic coating system
JPH05271900A (en) Heating and pressurizing method of thermally sprayed film
RU1773072C (en) Method for deposition of powder metal coatings
JPH0785783B2 (en) Method and apparatus for applying solid ultrafine particles
JPS5727159A (en) Method of electrostatic powder coating
JPH02229562A (en) Method and device for forming and spraying particle of liquid or melt
JPS5644070A (en) Melt-sticking of plasma spray coating