JPH0463089B2 - - Google Patents

Info

Publication number
JPH0463089B2
JPH0463089B2 JP60286409A JP28640985A JPH0463089B2 JP H0463089 B2 JPH0463089 B2 JP H0463089B2 JP 60286409 A JP60286409 A JP 60286409A JP 28640985 A JP28640985 A JP 28640985A JP H0463089 B2 JPH0463089 B2 JP H0463089B2
Authority
JP
Japan
Prior art keywords
inh
polymerization
polymer
mol
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60286409A
Other languages
Japanese (ja)
Other versions
JPS62146922A (en
Inventor
Shigeru Okita
Yoshuki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28640985A priority Critical patent/JPS62146922A/en
Publication of JPS62146922A publication Critical patent/JPS62146922A/en
Publication of JPH0463089B2 publication Critical patent/JPH0463089B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は耐熱性、耐加水分解性、耐薬品性に優
れた熱可塑性芳香族ポリエーテル芳香族ポリケト
ンに関する。 <従来の技術> 下記の反復単位()から成る熱可塑性芳香族
ポリエーテル芳香族ポリケトンは公知である
(R.N.Johson、J.Polymer Sci.、Part A−1、
5、2375(1967)、特公昭60−32642号公報)。 <発明が解決しようとする問題点> 前記反復単位()から成る芳香族ポリエーテ
ル芳香族ポリケトンは融点334℃、連続使用温度
200℃以上の耐熱性ポリマーとし知られ、電線被
覆用絶縁材料に有用である。しかしながら、最近
はさらに高い温度で連続使用できる成形材料が求
められており、前記反復単位()から成る芳香
族ポリエーテル芳香族ポリケトン以上の耐熱性を
有するポリマーの出現が望まれていた。 <問題点を解決するための手段> 本発明者は、さらに耐熱性に優れたポリマーの
探索を行なつた結果、下記反復単位()から成
り、かつ固有粘度〔η〕inhが0.7以上である強靭
な結晶性熱可塑性芳香族ポリエーテル芳香族ポリ
ケトンを見出すに致つた。 本発明の明細書に述べられている固有粘度
〔η〕inhとは、溶液100mlあたり重合体0.5gを含
む、密度1.84g/mlの濃硫酸中の重合体溶液につ
いて、スルホン化の影響を最小にする為、溶解完
了直後、25℃で測定した固有粘度のことである。
〔η〕inhの測定には流出時間が約2分間の粘度計
を使用した。濃硫酸の流出時間をt0、重合体溶液
の流出時間をtとすると固有粘度〔η〕inhは下
記式で与えられる。 〔η〕inh=lnt/t0/0.5 本発明の重合体は芳香族スルホン溶媒の存在
下、4,4′−ジヒドロキシジフエニル(P,P′−
ビフエノール)と4,4′−ジハロゲノベンゾフエ
ノンとの重縮合により製造できる。 実質的に無水の条件下に、4,4′−ジヒドロキ
シジフエニルと4,4′−ジハロゲノベンゾフエノ
ンの実質的に等モル量の混合物を、前記4,4′−
ジヒドロキシジフエニル1モルにつき、アルカリ
金属2グラム原子以上に相当する量のアルカリ金
属炭酸塩の存在下、下記式に表わされる芳香族ス
ルホン (式中、Yは直接結合、酸素原子、あるいは各ベ
ンゼン環に結合した水素原子を表わし、Z及び
Z′は水素原子あるいはフエニル基を表わす)中、
150〜450℃で重縮合し、最終温度を十分高くして
最終重合体を溶融状態に保つことにより製造し得
る。 重合反応により使用される4,4′−ジハロゲノ
ベンゾフエノンは4,4′−ジフルオロベンゾフエ
ノンが好ましいが、その一部を4,4′−ジクロロ
ベンゾフエノンで置換しても良い。 また、縮重合剤として使用するアルカリ金属炭
酸塩は、炭酸カリウムあるいは、炭酸カリウムと
炭酸ナトリウムの混合物が好ましく、4,4′−ジ
ヒドロキシジフエニル1モルにつき、アルカリ金
属イオンが2.00〜2.14モルとなる量が好ましい。 重縮合反応は前記の芳香族スルホン溶媒中で行
なわれ、このような芳香族スルホンとしてはジフ
エニルスルホン、ジベンゾチオフエンジオキソ
ド、フエノキサチインジオキシド等があるが、ジ
フエニルスルホンが好ましい。 重縮合温度は150〜450℃であるが、低い温度か
ら連続的にまたは段階的に昇温し、最終温度を
380℃近傍とするのが好ましい。 重合体の分子量は〔η〕inhで0.7以上であるべ
きで、好ましくは0.8以上である。〔η〕inhが0.7
より小さいと生成した重合体は脆く、成形品とし
て使用に耐えない。また〔η〕inhが2.5を越える
と溶融粘度が高過ぎて成形が困難となる。好まし
い〔η〕inh値は0.8〜1.8である。 本発明の重合体の分子量は4,4′−ジヒドロキ
シジフエニルあるいは4,4′−ジハロゲノベンゾ
フエノンのいずれかをわずかに過剰に使用するこ
とによりコントロールできる。この場合、重合体
の末端がフエノール末端よりハライド末端の方が
耐熱安定性が良いので4,4′−ジハロゲノベンゾ
フエノンを5モル%以下過剰に用いるのが好まし
い。 別の方法としては所望の分子量レベルに達した
時点で重合停止剤を添加して重合を停止する方法
である。重合停止剤としては、ハロゲンに対して
オルトあるいはパラの少なくとも一つの位置に電
子吸引基を有するハロゲンベンゼノイド化合物が
好ましい。 ハロゲン原子の数はいくつであつてもかまわな
いが、一つまたは二つが好ましく、4−フルオロ
フエニルスルホニルベンゼン、4,4′−ジフルオ
ロベンゾフエノン、4,4′−ジクロロジフエニル
スルホンが好ましい。 <実施例> 以下、実施例によつて本発明を説明する。な
お、実施例中、特に断わらない限り、部数は重量
部を意味する。 実施例 1 ヘリカルリボン撹拌翼、窒素導入管を備えた重
合反応容器中に、4,4′−ジフルオロベンゾフエ
ノン21.82g(0.10mol.)、4,4′−ジヒドロキシ
ジフエニル18.62g(0.10mol.)、粒子径300μm以
下の無水炭酸ナトリウム11.02g(0.104mol.)及
び無水炭酸カリウム0.14g(0.001mol.)、ジフエ
ニルスルホン60gを仕込み、反応容器内を窒素置
換した。窒素気流下で反応容器を180℃に加熱し、
ゆつくり撹拌した。30分後、昇温し、1.5時間で
250℃とし、その後1.5時間250〜270℃に保持し
た。さらに昇温を続け、約2時間かけて380℃と
なつたところで撹拌を止め、冷却した。冷却する
と固化するので、内容物を取り出して粉砕し、粒
子径300μm以下の粉末とした。これを300mlのア
セトンで抽出洗浄し、さらに300mlのエタノール
中で還流して抽出洗浄することによりジフエニル
スルホンを除去した。この後、多量の水を用いて
抽出洗浄して無機塩を除去し、真空中120℃で一
晩乾燥した。 反復単位 から成るこの重合体は、濃硫酸中0.5g/dl濃度、
25℃で測定した固有粘度〔η〕inhが1.01であつ
た。 Perkin−Elmer社製差動走査熱量計DSC−1B
で測定した融点は387℃であり、東洋ボールドウ
イン社製レオバイブロンDDV−−EAにより測
定した動的粘弾性の温度依存曲線から得られるガ
ラス転移点は175℃であつた。 また、第1図に示すように、赤外線吸収スペク
トルでは1630cm-1、1220cm-1に芳香族ケトン、芳
香族エーテルに基く吸収がそれぞれ観測された。 元素分析値は下記の通りであり、C、Hとも
に、反復単位()の理論値の±0.3%以内であ
つた。 C H 理論値 82.40 4.43 % 実測値 82.65 4.41 また、450℃でプレス成形して得たフイルムを
230℃で15分間アニールしたサンプルについて広
角X線散乱により結晶化度を測定した。結晶化度
は、広角X線散乱強度をBragg角に対して目盛つ
た全強度面積(A)から、無定形非晶サンプルの全強
度面積(B)を差引いて得られる結晶化部分の強度面
積(C)と全強度面積(A)との比として与えられる。 結晶化度(%)=C/A×100=A−B/A×100 広角X線散乱の測定の結果、第2図に示すよう
な散乱強度曲線が得られ、結晶化度は40.0%であ
つた。 実施例 2 実施例1の反応終了直前に4,4′−ジフルオロ
ベンゾフエノン2gを添加し、30分間撹拌するこ
とにより末端停止した。固有粘度〔η〕inh=
0.94であつた。 実施例 3 実施例1の反応終了直前に4,4′−ジクロロジ
フエニルスルホン2gを添加し、30分間撹拌する
ことにより末端停止した。固有粘度〔η〕inh=
0.91であつた。 実施例 4 4,4′−ジフルオロベンゾフエノン22.04g
(0.101mol.)使用する以外は実施例1と同様にし
て重合を行なつた。固有粘度〔η〕inh=0.86で
あつた。 実施例 5 4,4′−ジフルオロベンゾフエノン21.82g
(0.10mol.)の代わりに4,4′−ジフルオロベン
ゾフエノン20.73g(0.095mol.)と4,4′−ジク
ロロベンゾフエノン1.26g(0.005mol.)の混合
物を使用する以外は実施例1と同様にして重合し
た。固有粘度〔μ〕inh=0.99であつた。 比較例 1 炭酸ナトリウムの量を11.45g(0.108mol.)に
増加させる以外は実施例1と同じ条件で重合し
た。重合度は上がらず、〔η〕inh=0.21であつ
た。 比較例 2 実施例1と同じ条件で重合を行なつたが、最終
重合温度が320℃になつた時点で重合を止めた。
〔η〕inh=0.22であり、重合度は上がつていなか
つた。 比較例 3 ジフエニルスルホンの代わりにスルホラン(テ
トラヒドロチオフエン1,1−ジオキシド)を用
いて実施例1と同様にして重合を行なつた。スル
ホランの沸点が低い為、重合反応温度は最高280
℃止まりであつた。重合度は上がらず、〔η〕inh
=0.12であつた。 比較例 4 4,4′−ジフルオロベンゾフエノン23.35g
(0.106mol.)使用する以外は実施例1と同様にし
て重合を行なつた。〔η〕inh=0.52であり、重合
度が低かつた。 <発明の効果> 本発明による熱可塑性芳香族ポリエーテル芳香
族ポリケトンは非常に高い融点を有する高結晶性
ポリマーであるため、特に高い耐熱性を要求され
る成形材料分野に有用な素材である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thermoplastic aromatic polyether aromatic polyketone having excellent heat resistance, hydrolysis resistance, and chemical resistance. <Prior art> Thermoplastic aromatic polyether aromatic polyketones consisting of the following repeating units () are known (RN Johson, J. Polymer Sci., Part A-1,
5, 2375 (1967), Special Publication No. 60-32642). <Problems to be solved by the invention> The aromatic polyether aromatic polyketone consisting of the repeating unit () has a melting point of 334°C and a continuous use temperature.
Known as a heat-resistant polymer of 200°C or higher, it is useful as an insulating material for covering electric wires. However, recently there has been a demand for molding materials that can be used continuously at even higher temperatures, and it has been desired to develop a polymer that has a heat resistance higher than that of the aromatic polyether aromatic polyketone consisting of the repeating unit (2). <Means for solving the problem> As a result of searching for a polymer with further excellent heat resistance, the present inventor found that the polymer consists of the following repeating unit () and has an intrinsic viscosity [η] inh of 0.7 or more. We have discovered a strong crystalline thermoplastic aromatic polyether aromatic polyketone. Intrinsic viscosity [η]inh as stated in the specification of the present invention is defined as the intrinsic viscosity [η] inh for a solution of the polymer in concentrated sulfuric acid with a density of 1.84 g/ml containing 0.5 g of polymer per 100 ml of solution, which minimizes the effects of sulfonation. This is the intrinsic viscosity measured at 25℃ immediately after dissolution is completed.
[η]inh was measured using a viscometer with a flow time of about 2 minutes. When the outflow time of concentrated sulfuric acid is t 0 and the outflow time of the polymer solution is t, the intrinsic viscosity [η]inh is given by the following formula. [η] inh=lnt/t 0 /0.5 The polymer of the present invention is a 4,4′-dihydroxydiphenyl (P,P′-
Biphenol) and 4,4'-dihalogenobenzophenone. Under substantially anhydrous conditions, a mixture of substantially equimolar amounts of 4,4'-dihydroxydiphenyl and 4,4'-dihalogenobenzophenone is added to the 4,4'-
An aromatic sulfone represented by the following formula in the presence of an alkali metal carbonate in an amount equivalent to 2 gram atoms or more of an alkali metal per mol of dihydroxydiphenyl. (In the formula, Y represents a direct bond, an oxygen atom, or a hydrogen atom bonded to each benzene ring, and Z and
Z' represents a hydrogen atom or a phenyl group),
It can be produced by polycondensation at 150-450°C and raising the final temperature sufficiently high to keep the final polymer in a molten state. The 4,4'-dihalogenobenzophenone used in the polymerization reaction is preferably 4,4'-difluorobenzophenone, but a portion thereof may be substituted with 4,4'-dichlorobenzophenone. Further, the alkali metal carbonate used as the condensation polymerization agent is preferably potassium carbonate or a mixture of potassium carbonate and sodium carbonate, and the alkali metal ion is 2.00 to 2.14 mol per mol of 4,4'-dihydroxydiphenyl. amount is preferred. The polycondensation reaction is carried out in the above-mentioned aromatic sulfone solvent, and examples of such aromatic sulfones include diphenyl sulfone, dibenzothiophene dioxide, and phenoxathiine dioxide, with diphenyl sulfone being preferred. The polycondensation temperature is 150 to 450℃, but the temperature is raised continuously or stepwise from a low temperature until the final temperature is reached.
Preferably, the temperature is around 380°C. The molecular weight of the polymer should be [η]inh greater than or equal to 0.7, preferably greater than or equal to 0.8. [η]inh is 0.7
If the size is smaller, the resulting polymer is brittle and cannot be used as a molded product. Furthermore, when [η]inh exceeds 2.5, the melt viscosity is too high and molding becomes difficult. The preferred [η]inh value is 0.8 to 1.8. The molecular weight of the polymers of this invention can be controlled by using a slight excess of either 4,4'-dihydroxydiphenyl or 4,4'-dihalogenobenzophenone. In this case, it is preferable to use 4,4'-dihalogenobenzophenone in an excess of 5 mol % or less since the polymer has a halide end having better heat resistance stability than a phenol end. Another method is to add a polymerization terminator to stop the polymerization when the desired molecular weight level is reached. The polymerization terminator is preferably a halogen benzenoid compound having an electron-withdrawing group at at least one position ortho or para to the halogen. The number of halogen atoms may be any number, but one or two are preferred, and 4-fluorophenylsulfonylbenzene, 4,4'-difluorobenzophenone, and 4,4'-dichlorodiphenylsulfone are preferred. . <Examples> The present invention will be explained below with reference to Examples. In the examples, unless otherwise specified, parts mean parts by weight. Example 1 In a polymerization reaction vessel equipped with a helical ribbon stirring blade and a nitrogen introduction tube, 21.82 g (0.10 mol.) of 4,4'-difluorobenzophenone and 18.62 g (0.10 mol.) of 4,4'-dihydroxydiphenyl were added. ), 11.02 g (0.104 mol.) of anhydrous sodium carbonate and 0.14 g (0.001 mol.) of anhydrous potassium carbonate having a particle size of 300 μm or less, and 60 g of diphenyl sulfone were charged, and the inside of the reaction vessel was purged with nitrogen. Heat the reaction vessel to 180 °C under a nitrogen stream,
Slowly stir and stir. After 30 minutes, increase the temperature and in 1.5 hours
The temperature was set to 250°C and then held at 250-270°C for 1.5 hours. The temperature continued to rise further, and when it reached 380°C over about 2 hours, stirring was stopped and the mixture was cooled. Since it solidified when cooled, the contents were taken out and crushed to obtain a powder with a particle size of 300 μm or less. This was extracted and washed with 300 ml of acetone, and further extracted and washed by refluxing in 300 ml of ethanol to remove diphenyl sulfone. Thereafter, the inorganic salts were removed by extraction and washing using a large amount of water, and the mixture was dried in vacuo at 120° C. overnight. repeat unit This polymer consists of 0.5 g/dl concentration in concentrated sulfuric acid,
The intrinsic viscosity [η]inh measured at 25°C was 1.01. Perkin-Elmer differential scanning calorimeter DSC-1B
The melting point measured was 387°C, and the glass transition point obtained from the temperature dependence curve of dynamic viscoelasticity measured with Rheovibron DDV--EA manufactured by Toyo Baldwin Co., Ltd. was 175°C. Furthermore, as shown in FIG. 1, in the infrared absorption spectrum, absorptions based on aromatic ketones and aromatic ethers were observed at 1630 cm -1 and 1220 cm -1 , respectively. The elemental analysis values were as follows, and both C and H were within ±0.3% of the theoretical values of the repeating unit (). C H Theoretical value 82.40 4.43% Actual value 82.65 4.41 In addition, the film obtained by press forming at 450℃
Crystallinity was measured by wide-angle X-ray scattering on samples annealed at 230°C for 15 minutes. The degree of crystallinity is calculated by subtracting the total intensity area (B) of the amorphous sample from the total intensity area (A) where the wide-angle X-ray scattering intensity is scaled with respect to the Bragg angle. C) and the total intensity area (A). Crystallinity (%) = C/A x 100 = AB/A x 100 As a result of wide-angle X-ray scattering measurement, a scattering intensity curve as shown in Figure 2 was obtained, and the crystallinity was 40.0%. It was hot. Example 2 Immediately before the end of the reaction in Example 1, 2 g of 4,4'-difluorobenzophenone was added and the mixture was stirred for 30 minutes to terminate the terminal. Intrinsic viscosity [η] inh=
It was 0.94. Example 3 Immediately before the end of the reaction in Example 1, 2 g of 4,4'-dichlorodiphenyl sulfone was added and the mixture was stirred for 30 minutes to terminate the end. Intrinsic viscosity [η] inh=
It was 0.91. Example 4 4,4'-difluorobenzophenone 22.04g
(0.101 mol.) Polymerization was carried out in the same manner as in Example 1, except that 0.101 mol. The intrinsic viscosity [η]inh=0.86. Example 5 4,4'-difluorobenzophenone 21.82g
Example except that a mixture of 20.73 g (0.095 mol.) of 4,4'-difluorobenzophenone and 1.26 g (0.005 mol.) of 4,4'-dichlorobenzophenone was used instead of (0.10 mol.). Polymerization was carried out in the same manner as in 1. The intrinsic viscosity [μ] inh was 0.99. Comparative Example 1 Polymerization was carried out under the same conditions as in Example 1 except that the amount of sodium carbonate was increased to 11.45 g (0.108 mol.). The degree of polymerization did not increase and was [η]inh=0.21. Comparative Example 2 Polymerization was carried out under the same conditions as in Example 1, but the polymerization was stopped when the final polymerization temperature reached 320°C.
[η]inh=0.22, and the degree of polymerization did not increase. Comparative Example 3 Polymerization was carried out in the same manner as in Example 1 using sulfolane (tetrahydrothiophene 1,1-dioxide) in place of diphenyl sulfone. Due to the low boiling point of sulfolane, the polymerization reaction temperature can reach a maximum of 280℃.
The temperature remained at ℃. The degree of polymerization does not increase, and [η]inh
= 0.12. Comparative example 4 4,4'-difluorobenzophenone 23.35g
(0.106 mol.) Polymerization was carried out in the same manner as in Example 1, except that 0.106 mol. [η]inh=0.52, and the degree of polymerization was low. <Effects of the Invention> Since the thermoplastic aromatic polyether aromatic polyketone according to the present invention is a highly crystalline polymer having a very high melting point, it is a useful material particularly in the field of molding materials that requires high heat resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるポリマーの赤外線吸収
スペクトル、第2図は、本発明によるポリマーの
広角X線散乱を示すグラフである。 1……無定形非晶サンプル、2……230℃、15
分間、アニーリングしたサンプル。
FIG. 1 is a graph showing the infrared absorption spectrum of the polymer according to the present invention, and FIG. 2 is a graph showing the wide-angle X-ray scattering of the polymer according to the present invention. 1...Amorphous non-crystalline sample, 2...230℃, 15
Sample annealed for 1 minute.

Claims (1)

【特許請求の範囲】 1 下記反復単位()から成り、かつ固有粘度
〔η〕inhが0.7以上である熱可塑性芳香族ポリエ
ーテル芳香族ポリケトン。
[Scope of Claims] 1. A thermoplastic aromatic polyether aromatic polyketone consisting of the following repeating unit () and having an intrinsic viscosity [η] inh of 0.7 or more.
JP28640985A 1985-12-19 1985-12-19 Thermoplastic aromatic polyether aromatic polyketone Granted JPS62146922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28640985A JPS62146922A (en) 1985-12-19 1985-12-19 Thermoplastic aromatic polyether aromatic polyketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28640985A JPS62146922A (en) 1985-12-19 1985-12-19 Thermoplastic aromatic polyether aromatic polyketone

Publications (2)

Publication Number Publication Date
JPS62146922A JPS62146922A (en) 1987-06-30
JPH0463089B2 true JPH0463089B2 (en) 1992-10-08

Family

ID=17704022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28640985A Granted JPS62146922A (en) 1985-12-19 1985-12-19 Thermoplastic aromatic polyether aromatic polyketone

Country Status (1)

Country Link
JP (1) JPS62146922A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490296A (en) * 1977-09-07 1979-07-17 Ici Ltd Thermoplastic polyether aromatic ketone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490296A (en) * 1977-09-07 1979-07-17 Ici Ltd Thermoplastic polyether aromatic ketone

Also Published As

Publication number Publication date
JPS62146922A (en) 1987-06-30

Similar Documents

Publication Publication Date Title
EP0001879B1 (en) Thermoplastic aromatic polyetherketones, a method for their preparation and their application as electrical insulants
US4331798A (en) Production of aromatic polyethers with infusible particulate substance
JP2664180B2 (en) Crystalline polyarylether and method for producing the same
JPH0680112B2 (en) Method for producing polyaryl ether ketone
JPH0360850B2 (en)
US4774314A (en) Preparing poly(aryl ethers) using alkaline earth metal carbonates, organic acid salts, and optionally copper compounds, as catalysts
KR102327908B1 (en) Demineralization of Polyaryl Ethers by Melt Extraction
WO1986007599A1 (en) Novel poly(aryl ether ketones)
CN107428932B (en) Desalting of polyaryl ethers by melt extraction
JPS62172020A (en) Production of aromatic block copolymer ether
JPS636023A (en) Improved manufacture of poly(aryl ether) and poly(aryl ether ketone)
EP0010868A2 (en) Production of aromatic polyethers
JPH0463089B2 (en)
JPH0676488B2 (en) Method for producing thermoplastic aromatic polyether
RU2775553C1 (en) Method for producing modified copolyaryl ether ether ketone
JP2572268B2 (en) Aromatic ether ketone copolymer
JPH0417971B2 (en)
JPH0433294B2 (en)
JPH075725B2 (en) Method for producing polyaryl ether ketone
JP2505599B2 (en) Method for producing polyaryl ether ketone
JPH07102058A (en) Production of aromatic polyetherketone
US5191056A (en) Arylene sulfide ketone copolymer and preparation process thereof
GB1569602A (en) Production of aromatic polymers
JPH0432094B2 (en)
JPH0527648B2 (en)